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Abstract: The continuing trend for miniaturization of electronic devices necessitates size reduction of
the comprising components and circuitry. Specifically, integrated circuit-antenna modules therein
require compact radiators in applications such as 5G communications, implantable and on-body
devices, or internet of things (IoT). The conflict between the demands for compact size and electrical
and field performance can be mitigated by means of constrained numerical optimization. Evaluation
of performance-related constraints requires expensive electromagnetic (EM) analysis of the system
at hand; therefore, their explicit handling is inconvenient. A workaround is the penalty function
approach where the primary objective (typically, antenna size) is complemented by additional terms
quantifying possible constraint violations. The penalty coefficients that determine contributions of
these terms are normally adjusted manually, which hinders precise control over antenna performance
figures and often leads to inferior results in terms of achieved miniaturization rates. This paper
proposes a novel algorithm featuring an automated adjustment of the penalty factors throughout the
optimization process. Our methodology is validated using three broadband antenna structures. The
obtained results demonstrate that the presented adaptive adjustment permits a precise control over
the constraint violations while leading to better miniaturization rates as compared to manual penalty
term setup.

Keywords: antenna miniaturization; compact antennas; EM-driven design; constrained optimization;
penalty functions; constraint violations

1. Introduction

Accommodation along with the integration requirements of antennas with the circuit
parts has rendered miniaturization a necessity in applications such as wireless communica-
tions, internet of things, or portable and on-body devices [1,2]. As the majority of antenna
performance figures (reflection, gain, bandwidth, radiation efficiency, radiation pattern)
are linked to the physical size [3], a miniaturization task is far from trivial. Miniaturization
techniques based on utilization of high-permittivity substrates [3,4], have been successful
in reducing the antenna size at the expense of degrading the bandwidth. Several other tech-
niques based on geometrical modifications of the antenna structure have been proposed,
including the use of meandered traces [1,5], introduction of corrugations in the ground
plane and the radiator [6,7], or incorporation of L-shaped slits [1].

Although the aforementioned techniques provide degrees of freedom to work out a
compromise between the antenna size and the electromagnetic (EM) performance, they also
contribute to the complexity of the antenna design process, primarily due to an increase in
the number of geometry parameters. The unintuitive interrelations between the antenna
dimensions and the performance figures virtually eliminate the possibility of finding an
optimum design using traditional tuning techniques, especially when multiple objectives
are to be taken into account. The only way to produce the optimum design is through
simultaneous numerical optimization of all geometrical parameters. Depending on the
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antenna type, available initial design, and the design goals and constraints, this can be
done with either global [8–10], quasi-global [11], or local search routines [12,13].

The reliability of the optimization process is strongly correlated with the accuracy of
the computational model, which, most often, is based on full-wave electromagnetic (EM)
analysis. Conventional optimization routines require numerous EM simulations, which
entails significant computational costs. To alleviate this difficulty, a number of techniques
have been proposed, including adjoint sensitivities [14–19], surrogate-based methods in-
volving multi-fidelity simulation models [13,20–22], response surface approximations [23],
several variations of space mapping (SM) [24] (e.g., aggressive space mapping [25], implicit
SM [26]), feature-based optimization [27], but also machine learning methods [28,29], and
surrogate-assisted versions of nature-inspired algorithms [30,31].

In the context of EM-driven antenna miniaturization, explicit reduction of the structure
size (footprint area, volume) is the preferred approach because it enables direct control
over the primary objective. Notwithstanding, the problem becomes a constrained task
as electrical and field performance figures (impedance matching, gain, axial ratio) have
to be controlled so that the appropriate levels thereof are ensured [32–34]. The principal
inconvenience is that the majority of constraints are expensive to evaluate, i.e., require
EM analysis of the antenna. A workaround is to handle the constraints in an implicit
manner using the penalty function approach [34]. Therein, a satisfaction of the constraints
is enforced by complementing the main objective with the contributions proportional to
constraint violations (evaluated using suitable metrics).

The appropriate adjustment of the penalty coefficients is a non-trivial task. A coeffi-
cient that is too small, leads to underestimating the contributions of constraint violations
to the objective function. Conversely, if the penalty coefficient is too large, the objective
function becomes extremely steep in the vicinity of the feasible region boundary, which
may cause a premature termination of the optimization process. A workaround was
proposed in [35], where the acceptance threshold for maximum in-band reflection has
been adaptively adjusted to facilitate exploration of the feasible space. An alternative
constraint-oriented objective function has been adopted in [34] to identify the constrained
optimum in the boundary of the feasible region [34], or to enable objective relaxation by
switching between miniaturization and the electrical performance figures of interest [10].
However, in all cases, the efficacy of the optimization process relies on a manual selection
of the penalty factors.

The discussion above indicates that the appropriate setup of the objective function,
in particular, the penalty terms, is of paramount importance for the reliability and overall
performance of EM-driven antenna miniaturization. This paper proposes a novel algorithm
for explicit antenna size reduction, which features automated adjustment of the penalty
factor values in the course of the optimization process. The adjustment process is focused
on identifying the optimum penalty factor values based on current constraint violations
and eliminates the need for manual, trial-and-error efforts. This, in turn, allows fulfill-
ment of constraint satisfaction (up to the requested tolerance) while leading to improved
miniaturization rates as compared to the conventional approach.

Our methodology is validated using three broadband antenna structures optimized
for minimum size. Extensive benchmarking indicates that the adaptive adjustment of the
penalty factors allows for a precise control over the constraint violations while leading
to overall better results in terms of the achievable miniaturization rates (as compared to
algorithms using fixed penalty terms).

2. Optimization-Based Antenna Miniaturization

This section recalls the formulation of EM-driven antenna miniaturization as a con-
strained numerical problem with explicit size reduction. Subsequently, we present the
reference trust-region-based algorithm, as well as outline the proposed algorithm for
automated adjustment of the penalty factors.
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2.1. Problem Formulation

We will use R(x) to denote the response of the EM simulation model of the antenna
structure of interest. Here, x is a vector of the geometry parameters of the structure,
which are to be adjusted in the course of the optimization process. The optimization
problem at hand is to minimize the antenna size A(x) while ensuring acceptable levels of
performance figures pertinent to electrical and field characteristics of the structure, e.g., of
the standard form.

sj(x) ≤ Sj, j = 1, . . . , k (1)

Note that sj(x) are evaluated based on the simulated antenna response R(x). As
mentioned before, the penalty function approach provides convenient means of handling
the performance constraints, in which case the objective function can be defined as

UA(R(x)) = A(x) + β1c1(x)
2 + . . . + βkck(x)

2 (2)

where k is the total number of constraints, cj(x) is the penalty function quantifying violation
of the jth constraint (1), with βj being the corresponding penalty factor. The penalty
functions only contribute to (2) if the corresponding constraints are violated, i.e., sj(x) > Sj.
A typical definition of the penalty function would be the one measuring a relative violation
of the constraint, i.e.,

cj(x) = max

{
γj

Sj
, 0

}
(3)

where γj is the constraint violation defined as

γj = sj(x)− Sj (4)

The design task is defined as a nonlinear minimization problem of the form.

x∗ = argmin
x∈X

UA(R(x)) (5)

where X is the parameter space, typically determined by the lower and upper bounds
for antenna geometry parameters x. It should be noted that without the penalty func-
tion approach, the design task would be subject to additional constraints (1). Whereas,
when using (1)–(3), it becomes an unconstrained problem, apart from the aforementioned
box constraints.

2.2. Trust-Region Gradient-Based Algorithm

The standard trust-region-based algorithm [33] is employed in this work as the core
optimization engine. The procedure approximates x* with a series x(i), i = 0, 1, . . . , obtained
by solving

x(i+1) = arg min
x; ||x−x(i) ||≤δ

UA(L(i)(x)) (6)

In (6), L(i)(x) is a linear (first-order Taylor) approximation of R(x(i)). The candidate
solution rendered by (6) is only accepted if UA(R(x(i+1))) < UA(R(x(i))). The trust region
radius δ is adaptively adjusted based on a gain ratio calculated as

ρA =
UA(R(x(i+1)))−UA(R(x(i)))

UA(L(i)(x(i+1)))−UA(L(i)(x(i)))
(7)

The algorithm is terminated when the trust region radius is diminished below a certain
user-defined limit δ1, or convergence in the argument is achieved, i.e., ||x(i+1) − x(i)|| ≤ δx.
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3. Size Reduction with Adaptive Penalty Coefficients

Formulation (1) of the objective function offers an efficient way of handling the design
constraints, especially those that are expensive to evaluate (i.e., require EM analysis of the
antenna). Notwithstanding, an appropriate setup of penalty coefficients is a non-trivial
matter and may affect the performance of the optimization process as elaborated on in
Section 1.

This work proposes a novel algorithm incorporating adaptive adjustment of penalty
coefficients in the course of the optimization run. The presented procedure eliminates
the need for trial-and-error objective function setup as well as leads to improved antenna
miniaturization rates, as demonstrated in Section 4. In the following, we discuss the penalty
factor adjustment concept (Section 3.1), the adjustment procedure (Section 3.2), as well as
the complete optimization algorithm (Section 3.3).

This section recalls the formulation of EM-driven antenna miniaturization as a con-
strained numerical.

3.1. Adaptively Adjusted Penalty Factors. The Concept

As mentioned before, an appropriate setup of penalty coefficients is of utmost im-
portance for the performance of the optimization process. On the one hand, having the
coefficients set at too low values will result in excessive violations of the constraints. On
the other hand, the values that are too high make the optimization problem numerically
challenging, especially in the context of size reduction, which requires exploration of the
feasible region boundary.

The objective of the technique presented in this is to automate the process of setting
up the penalty coefficients so that their specific values are based on currently detected con-
straint violations. We use the following prerequisites, which involve the current constraint
violations as well as their possible improvements over the last consecutive iterations:

• If the parameter vector x(i+1) produced at the iteration i is feasible from the point of
view of the jth constraint, the corresponding penalty coefficient βj may be reduced;

• If x(i+1) is infeasible but the violation of the jth constraint was reduced to a sufficient
extent w.r.t. the (i–1)th iteration, the coefficient βj remains intact;

• If x(i+1) is infeasible and there was no improvement of the jth constraint violation or
the improvement was insufficient, the coefficient βj should be increased.

The above can be viewed as a set of rules (applied to each and every constraint), which
are simple, yet allow us to relax the ‘pressure’ from the penalty terms when the algorithm
operates in a feasible region and increase it if the discussed indicators show the lack of
improvement in terms of reducing constraint violations. Furthermore, implementing
these rules facilitates exploration of the feasible region boundary, which is where the
minimum-size design is likely to reside. The notion of the aforementioned sufficient
constraint violation improvement will be specified and discussed at length below, along
with providing a rigorous formulation of the adjustment rules. To clarify the matter,
Figure 1, conceptually illustrates the possible situations and the actions performed.
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Figure 1. The concept of adaptive adjustment of penalty coefficients. Shown are the four possible
situations concerning constraint violation, and the actions undertaken.

3.2. Adaptively Adjusted Penalty Factors. The Procedure

In order to formalize the set of penalty factor adjustment rules considered in Section 3.1,
we need to quantify the sufficient constraint violation improvement, which will be defined,
for the jth constraint, as

∆j = Mγj (8)

In (8), γj is the absolute violation, cf. (4), whereas 0 < M < 1 is the improvement factor.
We will elaborate on the selection of the value of M later in this section. Both the violation
and its improvement are considered in relation to the new parameter vector x(i+1) produced
in the ith iteration and the previous point x(i), therefore, we will use the superscript i + 1
to specify which iteration the above quantities are referring to. In particular, we have
γj

i+1 and ∆j
i+1 as the constraint violation at x(i+1) and the improvement from x(i) to x(i+1).

Similarly, the penalty coefficient for the jth constraint at iteration i will be denoted as βj
i.

We are now in a position to formulate the adjustment rules in a rigorous manner.
These are described using the following pseudocode:

if γj
i+1 ≤ 0

βj
i+1 = βj

i/mdecr;
else

if γj
i − γj

i+1 > ∆j
i+1

βj
i+1 = βj

i;
else

βj
i+1 = βj

imincr;
end

end

The multiplication factors mdecr and mincr determine the amount of penalty factor
modifications. In our numerical experiments, they are set to mdecr = 1.25 and mincr = 5,
but their values are not critical. As discussed in Section 3.1, maintaining fixed penalty
coefficients under sufficient constraint violation improvement (while the design is still
infeasible) allows us to maintain stability of the optimization process, i.e., the values of βj
do not bounce back and forth (i.e., are immediately increased or decreased after the design
crosses the feasible region boundary). This facilitates exploration of the boundary and
leads to improved size reduction ratios.

Let us now consider the improvement factor M introduced in (8). Assuming that the
parameter vector x(i) resides in the infeasible region, and sufficient constraint violation
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improvement is observed for a few consecutive iterations, say, from i to i + k, the upper
bound on the constraint violation at the iteration i + k can be calculated as

γi+k
j ≤ Mγi+k−1

j ≤ M2γi+k−2
j ≤ . . . ≤ Mkγi

j (9)

As M < 1, the constraint violation is reduced at a geometric rate, and the improvement
is faster when M is closer to zero. At the same time, satisfaction of the sufficient improve-
ment condition is more demanding for lower values of M. For M = 0.5, as selected in this
work, we get a balance between the rate of approaching the feasible region boundary (e.g.,
the constraint violation is reduced to only about six percent of its original values after only
four iterations), and the difficulty of satisfying the improvement condition (reduction of
only half of the current violation has to be achieved per iteration).

3.3. Optimization Framework

This section provides a summary of the operation of the trust-region gradient-based
algorithm incorporating the adaptive adjustment of penalty coefficients as presented in
Section 3.2. Here is a summary of the control parameters of the algorithm:

• δx, δTR—termination thresholds (cf. Section 2.1);
• minc, mdec—increase and decrease factors for the automated adjustment of penalty

coefficients (cf. Section 3.2);
• M—a factor used to determine sufficient constraint violation improvement (cf. Section 3.2);
• βj

max, βj
min—maximum and minimum values of penalty coefficients; j = 1, . . . , k;

• βj
0—initial values of the penalty coefficients; j = 1, . . . , k;

The algorithm operation has been presented in Figure 2. Additional clarification is
provided in the form of a flow diagram in Figure 3. In the algorithm, Steps 1 and 2 are
used to initialize the optimization procedure. In Steps 3 and 4, the antenna response and
its sensitivity matrix are evaluated using EM analysis. The linear approximation model
L(i)(x) of the antenna responses is constructed in Step 5, along with its corresponding
objective function UA(L(i)(x)) (Step 6). The candidate design is produced in Step 7 by
minimizing UA(L(i)(x)). It is validated in Steps 8 and 9, where the gain ratio is calculated
for the purpose of either accepting or rejecting x(i+1) and computing constraint violation
improvements (Step 10). The latter is then used in Step 11 to update the penalty coefficients.
The termination condition for the procedure is convergence in argument or reducing the
trust region size beyond the user-defined threshold (Step 12).
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4. Verification Case Studies

This section provides the results of numerical experiments conducted to validate the
proposed procedure for adaptive adjustment of penalty coefficients, introduced in Section 3.
The verification studies involve three broadband antennas optimized for minimum size
with the maximum acceptable in-band reflection considered as the only constraint. The
results are compared with those obtained for manually set penalty terms, ranging from
the relaxed to very tight constraint satisfaction conditions. All of the considered antenna
structures have been previously described in the literature and experimentally validated
therein [36–38]. Consequently, no experimental results are provided here.

The remaining part of this section is organized as follows. The experimental setup
is described in Section 4.1, whereas the benchmark antennas are described along with
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the numerical results in Section 4.2, Section 4.3, and Section 4.4, respectively. Section 4.5
provides a detailed discussion.

4.1. Experimental Setup

The objective is to optimize the considered antennas for minimum size, as determined
by the substrate area A(x). The optimization process is subject to a single constraint imposed
on the antenna reflection coefficient |S11(x)|.

More specifically, we have s1(x) ≤ −10, where s1(x) stands for the maximum value of
|S11(x)| within the operating frequency range of the antennas, here, 3.1 GHz to 10.6 GHz.
Correspondingly, a single penalty coefficient is used, denoted as β1. The penalty function c
is defined based on a relative violation of the constraint, cf. (3).

The performance of the algorithm is evaluated statistically through multiple runs
initiated from random starting points. This allows for reducing a possible bias associated
with a particular choice of the initial design. The performance figures include the antenna
size averaged over ten independent runs, and the average value of constraint violation,
both evaluated at the final design yielded by the optimization algorithm.

The proposed algorithm is compared to the standard TR algorithm executed for
different (fixed) values of the penalty coefficients β = 10q, q = 2, 3, 4, 5, 6. The values set for
the control parameters are βj

min = 100, βj
max = 106, and βj

0 = 100. Other parameters are set
as in Section 3.2. The termination thresholds are set to δx = δTR = 10−3.

4.2. Antenna I

Figure 4 shows the geometry of the first benchmark structure (Antenna I) [36]. It is
a broadband monopole antenna operating within the UWB band (3.1 GHz to 10.6 GHz).
The design parameters are x = [L0 dR R rrel dL dw Lg L1 R1 dr crel]T (all dimensions in
mm). The feed line width is fixed to w0 = 1.7 mm. The antenna is implemented on RF-35
substrate with relative permittivity εr = 3.5, and thickness h = 0.762 mm. The computational
model incorporating the SMA connector is simulated in the time-domain solver of CST
Microwave Studio.
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Table 1 provides the data including the average footprint area, average constraint
violation, as well as the standard deviations thereof; the latter is used to quantify the
repeatability of solutions. Figure 5a illustrates the reflection coefficient of Antenna I at
the initial and final designs obtained for a selected run of the proposed optimization
algorithm, whereas Figure 5b shows the evolution of the penalty factor throughout the
optimization process.

Table 1. Optimization results for antenna I.

Performance Figure β = 102

(Fixed)
β = 103

(Fixed)
β = 104

(Fixed)
β = 105

(Fixed)
β = 106

(Fixed)
Adaptive β
(This Work)

Antenna area [mm2] 1 113.7 250.4 318.6 331.6 367.6 222.6
Std(A) 2 9.07 24.0 60.0 63.4 51.9 49.6

Constraint violation γ [dB] 3 8.4 1.2 0.14 0.10 0.05 0.08
Std(γ) 4 0.53 0.5 0.1 0.14 0.11 0.06

1 Average miniaturized antenna area for ten algorithm runs. 2 Standard deviation of the miniaturized antenna area for ten algorithm runs.
3 Average constraint violation for ten algorithm runs. 4 Standard deviation of the constraint violation γ, for ten algorithm runs.
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4.3. Antenna II

The second verification case is a broadband rectangular-slot monopole antenna (An-
tenna II), shown in Figure 6 [37], operating in the UWB range. The design parameters of
the antenna are x = [Lg L0 Ls Ws d dL ds dWs dW a b]T (all in mm). The feed line width is
W0 = 3 mm. The structure is fabricated on FR4 substrate (εr = 4.3, h = 1.55 mm). The compu-
tational model incorporates the SMA connector, and it is simulated using the time-domain
solver of CST Microwave Studio. Table 2 gathers the numerical results. Figure 7 shows
the antenna responses and evolution of the penalty factor for a representative run of the
proposed algorithm.
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Figure 6. Geometry of Antenna II: the light gray shade is the ground plane on the backside of
the structure.

Table 2. Optimization results for antenna II.

Performance Figure β = 102

(Fixed)
β = 103

(Fixed)
β = 104

(Fixed)
β = 105

(Fixed)
β = 106

(Fixed)
Adaptive β
(This Work)

Antenna area [mm2] 1 56.1 212.8 225.0 280.1 258.8 180.7
Std(A) 2 3.8 14.3 25.1 47.4 29.6 11.1

Constraint violation γ [dB] 3 8.6 1.0 0.15 0.05 0.00 0.17
Std(γ) 4 0.60 0.4 0.10 0.07 0.01 0.23

1 Average miniaturized antenna area for ten algorithm runs. 2 Standard deviation of the miniaturized antenna area for ten algorithm runs.
3 Average constraint violation for ten algorithm runs. 4 Standard deviation of the constraint violation γ, for ten algorithm runs.
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4.4. Antenna III

Figure 8 shows Antenna III, the third verification structure. It is also a UWB monopole
antenna [38]. The design parameters are x = [L0 g a l1 l2 w1 o]T, (all dimensions in mm).
We also have w0 = 2o + a, and wr = 1.7 mm. The antenna is implemented on FR4 substrate
(εr = 4.3, h = 7.62 mm). The computational model incorporates the SMA connector, and it is
simulated in the time-domain solver of CST Microwave Studio.
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Figure 8. Geometry of Antenna III: the light gray shade is the ground plane on the backside of
the structure.

Table 3 shows the numerical results, arranged the same way as for Antennas I and II.
Antenna responses and evolution of the penalty coefficient for a selected algorithm run
have been shown in Figure 9.
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Table 3. Optimization results for antenna III.

Performance Figure β = 102

(Fixed)
β = 103

(Fixed)
β = 104

(Fixed)
β = 105

(Fixed)
β = 106

(Fixed)
Adaptive β
(This Work)

Antenna area [mm2] 1 305.4 318.1 317.7 318.8 320.9 304.43
Std(A) 2 49.7 42.6 42.3 43.3 45.8 37.2

Constraint violation γ [dB] 3 6.7 1.2 0.4 0.05 0.06 0.45
Std(γ) 4 1.7 0.4 0.2 0.07 0.3 0.49

1 Average miniaturized antenna area for ten algorithm runs. 2 Standard deviation of the miniaturized antenna area for ten algorithm runs.
3 Average constraint violation for ten algorithm runs. 4 Standard deviation of the constraint violation γ, for ten algorithm runs.

4.5. Discussion

The analysis of results provided in Section 4 allows for several conclusions regard-
ing the importance of the automated adjustment of the penalty factors, as well as the
performance-wise advantages of the proposed adaptive algorithm over the fixed-setup
approach. To facilitate the interpretation, a graphical illustration of the data from Tables 1–3
has been provided in Figure 10. Therein, the average antenna footprint area along with
the average constraint violation is shown versus the penalty coefficient for fixed-setup
optimization runs. The horizontal lines represent the antenna area and constraint violation
obtained for the automated adjustment procedure. The range of these lines is representative
of the span in which the penalty coefficient varies throughout the optimization iterations.
As it can be seen, not only the optimum value of the penalty coefficient, but also the span
is problem-dependent and may not even reach the maximum set value in some cases. The
following observations can be formulated:

• Although the optimum value of penalty coefficient in the fixed-setup optimization
seems to be about β = 104 for Antenna I, between β = 103 and β = 104 for Antenna II,
and between β = 104 and β = 105 for Antenna III, considering the achievable minia-
turization rates along with sufficient constraint satisfaction, the optimum value of
penalty coefficient is problem-dependent. The optimum values should be identified
for particular iterations of the optimization process and they are generally dependent
on the status of constraint violation.

• In both fixed and automated adjustment setups, using a penalty coefficient lower than
the optimum value, results in significant constraint violation. As for the former, the
violation can easily become as high as five times of the tolerance threshold or even
more. Antennas I and II are representative examples of this design quality degradation.

• Automated adjustment of penalty coefficients seeks to improve the final design quality
by the optimum value of penalty coefficients at the level of iterations of the optimiza-
tion process. This, in turn, permits a better control of constraint violations along with
better achievable miniaturization rates.

• The performance improvements are significant. For the corresponding levels of
constraint violations, the procedure proposed in this work leads to antenna footprints
that are smaller by 110, 44, and 13 mm2 for Antenna I, II, and III, respectively.
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Figure 10. The average antenna footprint (left panel), and the average constraint violations (right
panel) versus discrete values of the penalty coefficient utilized by the fixed-setup algorithm. The
horizontal lines on the left show the average antenna footprint, whereas the ones on the right denote
the average constraint violation for the designs obtained using the proposed automated adjustment
algorithm. Defining the same constraint violation levels as the comparison criterion, the proposed
algorithm outperforms the fixed-setup algorithm in terms of the achievable miniaturization rates,
even under the optimistic scenario of having set beforehand the optimum value of β for the latter:
(a) Antenna I, (b) Antenna II, (c) Antenna III.

5. Conclusions

This paper proposed a novel algorithm for optimization-based antenna miniaturiza-
tion using local trust region gradient search routines. Our methodology incorporates the
frameworks employing a penalty function approach for handling design constraints in an
implicit manner. Therein, the appropriate adjustment of the objective function, specifically
the penalty terms, has a strong correlation with the reliability as well as the efficacy of the
optimization process, both in terms of the achievable miniaturization rate and constraint
satisfaction. The proposed methodology effectively eliminates the need for trial-and-error
efforts by automated adaptive adjustment of the penalty coefficients. The latter is based on a
sufficiency of constraint violation improvement between consecutive iterations throughout
the entire optimization process. The optimum values of penalty coefficients are identified
for particular iterations and consequently enabling the optimization process to realize a
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precise control over the constraint violations while leading to overall better results in terms
of the achievable miniaturization rates as compared to the fixed adjustment setup.

The proposed procedure has been validated using three broadband antenna struc-
tures optimized for minimum size with constraints imposed on their maximum in-band
reflection coefficient. Benchmarking the against the fixed penalty coefficient setups indi-
cates superiority of automated adaptive adjustment setup in terms of achieving smaller
size with a precise control over the constraint violations. The future work will involve
a more comprehensive validation of the methodology in applications featuring multiple
constraints, e.g., circularly polarized antennas, high-gain antennas, etc.
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