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a b s t r a c t

Savitzky–Golay (SG) filtering is a classical signal smoothing technique based on the local least squares
approximation of the analyzed signal by a linear combination of known functions of time (originally
— powers of time, which corresponds to polynomial approximation). It is shown that the regularized
version of the SG algorithm can be successfully applied to identification of time-varying finite impulse
response (FIR) systems. Such a solution is possible owing to the recently proposed preestimation
technique, which converts the problem of identification of a time-varying FIR system into the problem
of smoothing of the appropriately generated preestimates of system parameters. The resulting fast
regularized local basis function estimators, optimized using the empirical Bayes approach, have
very good parameter tracking capabilities, favorably comparing with the state-of-the-art in terms of
accuracy, computational complexity and numerical robustness.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Savitzky–Golay (SG) filtering, i.e., filtering successive subsets
f adjacent data points with a low degree polynomial by the
ethod of least squares, is a classical smoothing technique (Sav-

tzky & Golay, 1964; Schafer, 2011). Due to their analytical and
omputational simplicity, and good smoothing capabilities, SG
ilters have been extensively used in such research areas as spec-
roscopy (Li, Deng, Li, & Yu, 2015; Turton, 1992), voltamme-
ry (Jakubowska & Kubiak, 2004) and biomedical signal process-
ng (Acharya, Rani, Agarwal, & Singh, 2016; Goel, Kaur, & Tomar,
016; Hargittai, 2005), among many others.
The idea behind SG filtering was recently extended,

n a generalized form, to identification of time-varying systems
Niedźwiecki & Ciołek, 2019b). In the follow-up paper
Niedźwiecki, Ciołek, & Gańcza, 2020a) it was shown that almost
dentical results can be obtained by smoothing, using the SG filter,
he sequence of parameter preestimates obtained by ‘‘inverse
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filtering’’ the estimates yielded by the short-memory exponen-
tially weighted least squares algorithm. The resulting identifi-
cation procedure has very good parameter tracking capabilities,
favorably comparing with the state-of-the art multi-wavelet es-
timation scheme proposed in Wei, Liu, and Billings (2002) -
see Niedźwiecki, Gańcza, and Ciołek (2020b). Additionally, it is
computationally simple and numerically robust.

The paper aims to show that identification results can
be further improved if preestimates are postfiltered using the
‘‘regularized’’ version of the SG smoother. Regularization is a
well-established technique in machine learning and system iden-
tification. Although originally introduced as a way of solving ill-
posed or numerically ill-conditioned inverse problems (Phillips,
1962; Tikhonov & Arsenin, 1977), it has more to offer (Ljung
& Chen, 2013; Ljung, Chen, & Mu, 2020). First, when the regu-
larization term, added to the minimized cost function, is tuned
to the experimental data, the regularized solution can improve
the estimation bias–variance trade-off which decides upon ac-
curacy of the identified model. Secondly, regularization allows
one to include in the formulation of the identification problem
some expected, or desired, properties of the solution, such as
smoothness, rate of decay etc. Both aspects of the problem are
discussed in the paper. Regularization hyperparameters are tuned
using the empirical Bayes approach (Akaike, 1980; Berger, 1985;
Good, 1965). Simulation evidence confirms good properties of
the proposed identification algorithms. The paper seems to be
the first attempt to incorporate the regularization technique into

identification of time-varying systems.
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. Identification of time-varying systems

.1. Local basis function estimators

In this section we will consider the problem of identification
f a time-varying FIR system governed by

y(t) =

n∑
j=1

θj(t)u(t − j + 1) + e(t) = ϕT(t)θ(t) + e(t) (1)

where y(t) denotes system output, ϕ(t) = [u(t), . . . , u(t − n +

1)]T denotes regression vector made up of past values of the
observable input signal u(t), and e(t) denotes white measure-
ment noise. Finally, θ(t) = [θ1(t), . . . , θn(t)]T denotes the vec-
tor of time-varying system parameters. Note that the sequence
θ1(t), . . . , θn(t) can be interpreted as a time-varying impulse re-
sponse of the system (1).

One of the challenging recent applications, which requires
identification of a time-varying FIR system, is tracking and equal-
ization of underwater acoustic (UWA) channels. Due to the multi-
path propagation of the transmitted signal, caused, among others,
by its multiple reflections from the water surface and the bottom,
impulse response of the UWA channel usually involves many co-
efficients (taps). Their time variation is the result of Doppler effect
due to the transmitter/receiver and water motion (Stojanovic &
Preisig, 2009). Therefore, to secure reliable UWA communication,
on-line channel estimation is necessary (Kochańska, 2015; Li &
Preisig, 2007). Additionally, since some tracking delay is accept-
able, channel identification can be carried out using noncausal
estimation algorithms, such as the ones considered in this paper.
Another successful application of time-varying system identifica-
tion techniques is the self-interference mitigation in full-duplex
UWA systems (Qiao, Gan, Liu, Ma, & Sun, 2018; Shen, Henson,
Zakharov, & Mitchell, 2020).

As recently shown in Niedźwiecki and Ciołek (2019b), esti-
mation of fast time-varying parameters in (1) can be efficiently
carried out using the local basis function (LBF) approach. Denote
by Tt = [t−k, t+k] the local analysis interval of width K = 2k+1,
centered at t , and let F = {f1(i), . . . , fm(i)}, i ∈ Ik = [−k, k],
be the set of m linearly independent basis functions which will
be used to approximate (locally) the parameter trajectories. For
convenience, but without any loss of generality, we will assume
that basis functions are orthonormal, i.e.,

∑k
i=−k f(i)f

T(i) = Im,
where f(i) = [f1(i), . . . , fm(i)]T and Im denotes the m × m identity
matrix. The typical choices of basis functions prior to orthonor-
malization are powers of time (local Taylor approximation) or
cosine functions (local Fourier approximation).

The idea behind the LBF approach is to repeatedly, for every
position of the sliding analysis window Tt , apply the functional
series approximation

θj(t + i) =

m∑
l=1

fl(i)ajl = fT(i)αj

i ∈ Ik, j = 1, . . . , n

αj = [aj1, . . . , ajm]
T

(2)

which in the vector form can be written down as
θ(t + i) = F(i)α, i ∈ Ik

α = [αT
1, . . . ,α

T
n]

T (3)

where the n × mn matrix F(i) is given by

F(i) = In ⊗ fT(i) (4)

and ⊗ denotes the Kronecker product of the corresponding vec-
tors/matrices. The parameter estimates are obtained using the
2

method of least squares

α̂LBF(t) = argmin
α

k∑
i=−k

[y(t + i) − ψT(t, i)α]2

θ̂
LBF

(t) = F0α̂LBF(t)

(5)

where F0 = F(0) = In ⊗ fT0, f0 = f(0) and ψ(t, i) = FT(i)ϕ(t +

i) = ϕ(t + i) ⊗ f(i) denotes the generalized regression vector.
The procedure is repeated for consecutive values of t , i.e., the
estimation is carried out in the sliding window mode.

Due to its conceptual similarity to the SG scheme, the result-
ing estimation algorithm was called in Niedźwiecki and Ciołek
(2019b) the generalized Savitzky–Golay filter. The generalized SG
algorithm has superb parameter tracking capabilities, even if pa-
rameter changes are fast, but is computationally very demanding,
as it requires inversion of the mn × mn generalized regression
matrix

∑k
i=−k ψ(t, i)ψT(t, i) every time step t .

2.2. Preestimation technique

As demonstrated in the follow-up paper (Niedźwiecki et al.,
2020a), the computational complexity of LBF estimators can be
significantly reduced, without compromising their tracking prop-
erties, using the preestimation technique. Following (Niedźwiecki
et al., 2020a), we will assume that:

A1) {u(t)} is a zero-mean wide sense stationary Gaussian se-
quence with an exponentially decaying autocorrelation func-
tion ru(i) = E[u(t)u(t − i)]: ∃ 0 < α < ∞, 0 < γ < 1 :

|ru(i)| ≤ αγ |i|, ∀i.
A2) {e(t)}, independent of {u(t)}, is a sequence of zero-mean

independent and identically distributed random variables
with variance σ 2

e .
A3) {θ(t)} is a uniformly bounded sequence, independent of

{u(t)} and {e(t)}.

e note that assumptions (A1)–(A3) are fulfilled in typical chan-
el identification applications — see e.g. Shen et al. (2020). The
reestimated parameter trajectory {θ∗(t)} can be obtained by
‘inverse filtering’’ the estimates yielded by the short-memory
xponentially weighted least squares estimates

EWLS
(t) = argmin

θ

t−1∑
i=0

λi
0[y(t − i) − ϕT(t − i)θ]2 (6)

amely
∗(t) = Lt̂θ

EWLS
(t) − λ0Lt−1̂θ

EWLS
(t − 1) (7)

here λ0, 0 < λ0 < 1, denotes the so-called forgetting constant
nd Lt =

∑t−1
i=0 λi

0 = λ0Lt−1 + 1, L0 = 1, denotes the effective
idth of the exponential window. Note that for large values of t ,
hen the effective window width reaches its steady state value

∞ = 1/(1 − λ0), the formula (7) can be replaced with

∗(t) =
1

1 − λ0

[̂
θ
EWLS

(t) − λ0̂θ
EWLS

(t − 1)
]

(8)

According to Niedźwiecki et al. (2020a), when the system obeys
assumptions (A1)–(A3), the preestimates defined in this way are
approximately unbiased, i.e.,

θ∗(t) = θ(t) + z(t) (9)

where z(t) = [z1(t), . . . , zn(t)]T denotes (approximately) a zero-
mean white noise with a large covariance matrix. The best prees-
timation results can be obtained for small values of L∞. The rule
of thumb, which works pretty well in practice, is to choose λ0 =

max{0.9, 1 −
2
n }. When λ0 = 1 −

2
n , the equivalent width of the

exponential window N∞ = (1+λ0)/(1−λ0) ∼= 2/(1−λ0), different
from its effective width L∞ (Niedźwiecki, 2000), is approximately
equal to the number of estimated coefficients n.

http://mostwiedzy.pl
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.3. Fast local basis function estimators

Since preestimates have a very large variability, they must
e further processed to obtain statistically reliable parameter
stimates. This can be done using the basis function approach.
he resulting estimates, called in Niedźwiecki et al. (2020a) the
ast local basis function (fLBF) estimates, have the form

fLBF(t) = argmin
α

k∑
i=−k

∥θ∗(t + i) − F(i)α∥2

=

k∑
i=−k

θ∗(t + i) ⊗ f(i)

θ
fLBF

(t) = F0α̂fLBF(t) =

k∑
i=−k

fT0f(i)θ
∗(t + i) (10)

here fT0f(i), i ∈ Ik is the impulse response of a postprocess-
ing FIR filter. As shown in Niedźwiecki et al. (2020a), it holds
that θ̂

fLBF
(t) ∼= θ̂

LBF
(t). As a matter of fact, in most cases the

stimated parameter trajectories obtained using the fLBF ap-
roach are almost indistinguishable from those yielded by the –
omputationally much more involved – LBF approach.
According to (10), the estimate θ̂

fLBF
(t) is nothing but the result

of smoothing the preestimated parameter trajectory {θ∗(t)} using
he Savitzky–Golay filter.

.4. Prior-aware fast regularized local basis function estimators

Whenever some prior knowledge of the estimated impulse
esponse is available, it may be beneficial to expand the measure
f fit by a regularization term µ∥θ(t)∥2

R = µθT(t)Rθ(t), where
µ > 0 denotes regularization gain and R ≥ 0 is the n×n positive
emidefinite regularization matrix chosen so as to promote some
nown/desired features of the solution, such as its smoothness,
ate of the decay etc. Selection of the adequate regularization
atrix for identification of time-invariant systems has attracted a
reat deal of attention in recent years (Pillonetto, Dinuzzo, Chen,
e Nicolao, & Ljung, 2014). A more detailed comment on this
roblem will be provided in the next section. For the time being
e will assume that R = DTD, where D is a l × n, l ≤ n matrix.

When l < n the regularization matrix is singular. Without any
loss of generality we will assume that DDT > 0.

When θ(t) = F0α, it holds that ∥θ(t)∥2
R = αTBTBα = ∥α∥2

BTB,
where B = DF0 = D ⊗ fT0 is the l × mn matrix. Note that,
unlike the classical regularization approach, the regularization
term penalizes the norm of θ(t), rather than the norm of α which
is not of our primary interest. Due to singularity of the matrix
f0fT0, the regularization matrix BTB is also singular (even if R is
nonsingular), which is another nonstandard feature.

Fast regularized local basis function (fRLBF) estimators can be
defined in the following way

α̂fRLBF(t) =

= argmin
α

{ k∑
i=−k

∥θ∗(t + i) − F(i)α∥2
+ µ∥α∥2

BTB

}
= [Imn + µBTB]

−1α̂fLBF(t)

θ̂
fRLBF

(t) = F0α̂fRLBF(t) (11)

fLBF
where α̂ (t) is given by (10). We will prove that

3

Lemma 1. The fRLBF estimate given by (11) can be expressed in the
form

θ
fRLBF

(t) = [In + µfT0f0R]
−1̂θ

fLBF
(t). (12)

Proof. Using the Woodbury matrix identity (Söderström & Stoica,
1988)

(A + BCD)−1
= A−1

− A−1B[C−1
+ DA−1B]

−1DA−1

(assuming that all inverses exist), one obtains

[Imn + µBTB]
−1

= Imn − µBT
[Il + µBBT

]
−1B (13)

Using the well-known property of the Kronecker product: (A ⊗

B)(C ⊗ D) = (AC) ⊗ (BD) (provided that all dimensions match),
one obtains

BBT
= (D ⊗ fT0)(D

T
⊗ f0) = fT0f0DD

T. (14)

Hence
[Imn + µBTB]−1

= Imn − µ[DT
⊗ f0][Il + µfT0f0DD

T
]
−1

[D ⊗ fT0]
= Imn −

{
µDT

[Il + µfT0f0DD
T
]
−1D

}
⊗ [f0fT0].

(15)

Observe that

[In + µfT0f0D
TD]−1

= In − µfT0f0D
T
[Il + µfT0f0DD

T
]
−1D (16)

Combining (15) and (16), and noting that DTD = R, one arrives
at

[Imn + µBTB]−1
= Imn − In ⊗

[
f0fT0
fT0f0

]
+ [In + µfT0f0R]

−1
⊗

[
f0fT0
fT0f0

] (17)

nd

α̂fRLBF(t) = α̂fLBF(t) − θ̂
fLBF

(t) ⊗

[
f0
fT0f0

]
+

{
[In + µfT0f0R]

−1̂θ
fLBF

(t)
}

⊗

[
f0
fT0f0

]
.

(18)

inally, combining θ̂
fRLBF

(t) = (In ⊗ fT0 )̂α
fRLBF(t) with (18), one

rrives at (12). ■

According to Lemma 1, the fRLBF estimate can be obtained
without evaluating α̂fRLBF(t) by ‘‘shrinking’’ the ordinary fLBF es-
timate.

Evaluation of the fRLBF estimates can be easily performed
in the matrix-inversion-free way. Actually, suppose that l = n,
i.e., the regularization matrix R is nonsingular. As a symmetric
positive definite matrix, R admits the factorization R = QΛnQT

where Λn = diag{λ1, . . . , λn} is a diagonal matrix made up of
the eigenvalues of R, and Q, such that QTQ = QQT

= In, is an
orthogonal matrix made up of its normalized eigenvectors.

Note that
[In + µfT0f0R]

−1
= [Q(In + µfT0f0Λn)QT

]
−1

= Q(In + µfT0f0Λn)−1QT (19)

and

(In + µfT0f0Λn)−1

= diag
{

1
1 + µλ1fT0f0

, . . . ,
1

1 + µλnfT0f0

}
.

hen l < n, i.e., the regularization matrix is singular, one can use
he identity (16) and apply the same technique to invert the l× l
atrix I + µfTf DDT.
l 0 0

http://mostwiedzy.pl
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Finally, note that the fRLBF estimate (18) can be also expressed
in a matrix-inversion-free form
α̂fRLBF(t) = α̂fLBF(t)

+ [̂θ
fRLBF

(t) − θ̂
fLBF

(t)] ⊗

[
f0
fT0f0

]
.

(20)

.5. Optimization

Optimization of µ will be carried out using the type II max-
mum likelihood method (Akaike, 1980; Good, 1965), recently
ore frequently referred to as the empirical Bayes approach (Car-

in & Louis, 1996; Chen, Ohlsson, & Ljung, 2012). Observe that
inimization of the regularized measure of fit is equivalent to
aximization of the quantity

exp
{

−
1

2σ 2
z

k∑
i=−k

∥θ∗(t + i) − F(i)α∥2
}

× exp
{
−

µ

2σ 2
z

∥α∥2
BTB

} (21)

here the first term can be attributed to the conditional (normal)
ata distribution p(Θ(t)|α, σ 2

z ), Θ(t) = {θ∗(t + i), i ∈ Ik}, and the
econd term – to the prior distribution of α: π (α|µ, σ 2

z ). This leads
o the following

emma 2. Under Gaussian probability distributions of Θ(t) (con-
itional) and α (prior) induced by (21), the best-local value of the
egularization gain µ can be obtained from

(t) = argmin
µ

{
M log δ(t, µ) − l logµ

+ log |Imn + µBTB|
}
. (22)

here |·| denotes the determinant of a matrix, M = kn − mn + l,
nd

δ(t, µ) =

k∑
i=−k

∥θ∗(t + i)∥2

− [̂αfLBF(t)]T[Imn + µBTB]
−1α̂fLBF(t).

(23)

erivation
The conditional Gaussian data distribution associated with the

irst term in (21) has the form

p(Θ(t)|α, σ 2
z ) =

1
(2πσ 2

z )Kn/2
exp

{
−

1
2σ 2

z
∥α∥2

+
1
σ 2
z
αT

k∑
i=−k

FT(i)θ∗(t + i) −
1

2σ 2
z

k∑
i=−k

∥θ∗(t + i)∥2
} (24)

Such a form of the likelihood corresponds to the following as-
sumptions specifying the local properties of the identified system

A4) System parameters {θ(t+ i), i ∈ Ik} obey (3), i.e., they can be
locally expressed as linear combinations of basis functions.

A5) {z(t+ i), i ∈ Ik} is a sequence of zero-mean uncorrelated and
normally distributed random vectors with covariance matrix
σ 2
z In.

According to (A4), it holds that θ∗(t + i) − F(t)α = z(t + i), i ∈ Ik.
Assumption (A5) is fulfilled in typical communication systems,
where both the input (transmitted) and noise sequences (both
determining z(t) - see Niedźwiecki et al., 2020a) are white.

The prior distribution of α associated with the second term in
(21) is singular Gaussian (supported on a subspace of Rmn) of the
form Rao (2009)

f (α) =
1√ e−

1
2 α

TΣ+α
|2πΣ |+

4

here Σ+ denotes the Moore–Penrose pseudoinverse of a pos-
tive semidefinite matrix Σ , and |Σ |+ denotes its pseudodeter-
minant – the product of all nonzero eigenvalues of Σ . In the case
considered Σ+

=
µ

σ2
z

BTB. Note that BTB = (DT
⊗ f0)(D ⊗ fT0) =

DTD) ⊗ (f0fT0) = R ⊗ (f0fT0), and |R|+ = |DTD|+ = |DDT
|

here |·| denotes determinant of a square matrix. Using the
dentity |A ⊗ B|+ = |A|

r(B)
+ |B|

r(A)
+ , where r(·) denotes the rank of

he corresponding matrix, the prior density associated with the
econd factor of (21) can be expressed in the form

π (α|µ, σ 2
z ) =

(µfT0f0)
l/2

|DDT
|
1/2

(2πσ 2
z )l/2

× exp
{
−

1
2σ 2

z
αT

[
R ⊗ µ[f0fT0]

]
α

}
.

(25)

sing the formula

Rp
exp

{
−

1
2

xTAx − xTb − c
}
dx

=
(2π )p/2

|A|
1/2 exp

{
1
2

bTA−1b − c
}

valid for a p×p positive definite matrix A (Gupta, 1963), the like-
lihood for the unknown parameters µ and σ 2

z can be expressed
in the form

L(µ, σ 2
z ) =

∫
Rmn

p(Θ(t)|α, σ 2
z )π (α|µ, σ 2

z )dα

=
(µfT0f0)

l/2
|DDT

|
1/2

(2πσ 2
z )M/2|Imn + µBTB|

1/2 exp
{
−

δ(t, µ)
2σ 2

z

}
(26)

here δ(t, µ) denotes the residual sum of squares given by (23).
It is convenient to work with −2 log likelihood. According to

26)

2 log L(µ, σ 2
z ) = const + M log σ 2

z − l logµ

+ log |Imn + µBTB| +
δ(t, µ)

σ 2
z

. (27)

etting to zero the derivative of (27) with respect to σ 2
z , one

arrives at the following maximum likelihood estimate of σ 2
z :

σ 2
z (t) = δ(t, µ)/M . Finally, the optimal-local value of the regu-
arization gain can be obtained by minimizing −2 log L(µ, σ̂ 2

z (t)),
which leads to (22).

Minimization of the empirical Bayes measure of fit can be
carried out numerically or, approximately, using a grid search
over a set of predefined values, i.e., by restricting the search of
µ in (22) to the set M = {µ1, . . . , µL}.

Using (20) and the identity FT0θ = (In ⊗ f0)(θ⊗1) = θ⊗ f0, the
residual sum of squares (23) can be rewritten in a computation-
ally more convenient form

δ(t, µ) =

=

k∑
i=−k

∥θ∗(t + i)∥2
− ∥̂αfLBF(t)∥2

+
1

fT0f0
∥̂θ

fLBF
(t)∥2

−
1

fT0f0
[̂θ

fLBF
(t)]T[In + µfT0f0R]

−1̂θ
fLBF

(t) (28)

Note also that using the identity |Ii + PQ| = |Ij + QP| (Lütke-
pohl, 2005), where P and Q are matrices of dimensions i × j and
j × i, respectively, the last term of (22) can be written down in
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he form

log |Imn + µBTB| = log |Il + µBBT
|

= log |Il + µfT0f0DD
T
| = log

l∏
i=1

(1 + µλifT0f0)

=

l∑
i=1

log(1 + µλifT0f0)

(29)

where λi, i = 1, . . . , l, denote eigenvalues of the matrix DDT,
i.e., nonzero eigenvalues of the matrix R.

3. Selection of regularization matrix

Depending on the available prior knowledge and/or desired
properties of the estimated impulse response, one can shape the
regularization matrix in different ways. So far it was assumed
that the reqularization matrix is fixed and hence is not subject
to optimization. In practice, to gain greater flexibility, the matrix
R is often parameterized in terms of some prior-related hyperpa-
rameter vector β. In such a case the matrices R = DTD and B are
functions of β and can be written down as R(β) = DT(β)D(β) and
(β), respectively. Consequently, the minimization carried out in
22) can be extended, at the cost of additional computational
omplexity, to µ and β.

.1. Time domain smoothness priors

Historically, this seems to be the oldest approach, originally
roposed by Whittaker (Whittaker, 1923), (Whittaker & Robin-
on, 1924), and later exploited or reinvented by Akaike (1980),
ongdon (2014), Gersch and Kitagawa (1989), Hunt (1973), Kita-
awa and Gersch (1985, 1996), Phillips (1962), among many
thers.
Denote by g the one step lag advance: gθj(t) = θj+1(t). As a

ocal measure of smoothness of the impulse response (for a fixed
alue of t), one can adopt the pth order difference

pθj(t) = (1 − g)pθj(t) =

p∑
i=0

ciθj+i(t) (30)

here ci = (−1)i
(p
i

)
, i = 0, . . . , p. Assuming that θj(t) = 0 for

> n, which is in the case considered reasonable, the n × n
moothness-enhancing regularization matrix can be adopted in
he form R(p) = DT(p)D(p), where

(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 . . . cp 0 . . . 0 0
0 c0 . . . cp−1 cp . . . 0 0
...

. . .

0 0 c0 c1 . . . cp−1 cp
0 0 0 c0 . . . cp−2 cp−1
...

...
. . .

0 0 0 0 . . . c0 c1
0 0 0 0 . . . 0 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(31)

ote that in such a case θT(t)R(p)θ(t) = ∥x(t)∥2 where x(t) =

(p)θ(t) = [∇
pθ1(t), . . . ,∇pθn(t)]T, i.e., the regularization term

uantifies the degree of smoothness of the sequence of impulse
esponse coefficients θ1(t), . . . , θn(t) under zero terminal con-
itions. The typical choices are p = 1, which promotes local
onstancy of the impulse response, p = 2, which promotes its

ocal linearity, and p = 3, which promotes its local convexity.

5

3.2. Frequency domain smoothness priors

This approach, originally proposed by Kitagawa and Gersch
(1985), Gersch and Kitagawa (1989) for identification of time-
invariant systems, can be easily adapted to the time-varying case.
Denote by

H(ω, t) =

n∑
i=1

θi(t)e−jωi, j =
√

−1 (32)

the frozen frequency response of the system (1). Note that∫ π

−π

⏐⏐⏐⏐drH(ω, t)
dωr

⏐⏐⏐⏐2 dω =

n∑
i=1

i2rθ2
i (t) (33)

Adopting (33) as a measure of smoothness of the frequency
response, one can select the n × n regularization matrix in the
form R(r) = D(r)D(r) where

(r) = diag{1, 2r , 3r , . . . , nr
}. (34)

.3. Exponential stability priors

Assuming that the identified system is exponentially stable,
ne has the right to expect that the coefficients of its impulse
esponse should smoothly decay to zero at an exponential rate.
here may be also other physical reasons for such an expectation.
or example, in the UWA channel case, the decaying power profile
s due to the spreading and absorption loss (Stojanovic & Preisig,
009). Exponential stability of the identified system has been the
ain intuition behind designing many regularization matrices,
lso referred to as kernels, proposed recently (Chen et al., 2012;
illonetto et al., 2014). One of the examples is the first-order
table spline kernel, known also as tuned correlation kernel, of
he form

−1(γ ) =

⎡⎢⎢⎢⎣
1 γ . . . γ n−1

γ γ . . . γ n−1

...
...

γ n−1 γ n−1 . . . γ n−1

⎤⎥⎥⎥⎦ , 0 < γ < 1 (35)

which, as shown in Marconato, Schoukens, and Schoukens (2016),
combines the second order smoothness constraints with the ex-
ponential decay requirement — see the same reference for an
interesting extension of this concept.

4. Computational aspects

Since evaluation of parameter estimates is repeated every time
instant t , reduction of the computational load of the identification
algorithms is of primary importance. From this point of view the
proposed approach, summarized below, is very attractive. First,
the cost of evaluation of the preestimates is low and equal to
O(n2) flops per time update (or even to O(n) flops if the so-called
ast EWLS algorithms are used). Secondly, for selected functional
ases, such as Legendre or Fourier, the fLBF estimates θ̂

fLBF
(t)

and α̂fLBF(t) can be updated recursively at the cost of O(m2n)
flops (note that this cost does not depend on the width of the
analysis window K ) (Niedźwiecki & Ciołek, 2019a). When the
fLBF algorithm is operated in the batch (off-line) mode and the
convolutions (10) are computed using the FFT-based procedure,
the total cost of evaluating the estimates θ̂

fLBF
(t) and α̂fLBF(t) at N

points t = 1, . . . ,N , is equal to O(mnN logN) flops (for any K and
any set of basis functions), i.e., O(mn logN) flops per time step. To
obtain regularized fLBF estimates θ̂

fRLBF
(t) and α̂fRLBF(t) using (12)

and (20), one needs additional O(n2) and O(mn) flops per time

update, respectively. Finally, if optimization is carried out via grid
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earch, the matrices [In + µfT0f0R(β)]
−1 and D(β), which are data

independent, can be precomputed for the considered values of µ

and β, and saved in the computer memory. In such a case the
cost of optimization using (22) and exploiting (28) and (29), is of
order O(Ln2) where L is the number of grid points.

Summary of the fRLBF algorithm
(batch mode)

Input/output data: y(t),ϕ(t), t = 1, . . . ,N

Settings:
• n = dim[ϕ(·)] – number of estimated parameters

• m – number of basis functions

• K = 2k+ 1 – width of the sliding analysis window Tk(t) =

[t − k, t + k]

• F = {f1(i), . . . , fm(i)}, i ∈ Ik = [−k, k] – set of linearly
independent orthonormal basis functions

• M = {µ1, . . . , µL} – set of grid points used for optimization
of the regularization gain

• λ0 = max{0.9, 1 − 2/n} – forgetting constant

Parameter estimation:
1. Compute EWLS estimates θ̂

EWLS
(t), t = 1, . . . ,N , according

to (6), using the recursive EWLS algorithm.

2. Compute preestimates θ∗(t), t = k + 1, . . . ,N − k using
(7).

3. Compute fLBF estimates θ̂
fLBF

(t), t = k+1, . . . ,N−k, using
(10).

4. Find the best fitting regularization gains µ̂(t) ∈ M, t =

k + 1, . . . ,N − k, using (22).

5. Compute fRLBF estimates θ̂
fRLBF

(t), t = k + 1, . . . ,N − k,
using (12) with µ = µ̂(t).

Notice: The values of m and k can be selected adaptively
using the parallel estimation technique.
When operated in a sliding window mode, the fRLBF al-
gorithm is suitable for almost real-time applications, i.e.,
applications that tolerate a constant decision (estimation)
delay of k sampling intervals.

5. Selection of the number of basis functions and the analysis
window size

It is known that m (the number of basis functions) and k (half-
width of the analysis interval) are important design parameters
which should be chosen so as to trade-off the bias and variance
components of the mean squared parameter estimation error.
Increasing m and/or decreasing k results in decreasing the esti-
mation bias at the cost of increasing its variance. Decreasing m
and/or increasing k has the opposite effect (Niedźwiecki et al.,
2020a). For this reason, to guarantee satisfactory estimation re-
sults, the values of m and k should be locally adjusted to the
rate and mode of parameter variation. The problem can be solved
using the parallel estimation technique. In this framework, not
one but several identification algorithms, equipped with different
settings, are run simultaneously yielding the estimates α̂fLBF

m|k (t),
fLBF
m|k (t), m ∈ M, k ∈ K. At each time instant only one of the
ompeting algorithms is chosen, i.e., the parameter estimates are
btained in the form
fLBF (t), θ̂

fLBF
(t) (36)
m̂(t)|̂k(t) m̂(t)|̂k(t)

6

Fig. 1. Location of ‘‘zeros’’ (◦) and ‘‘poles’’ (×) of the identified time-varying IIR
system.

where

{m̂(t), k̂(t)} = argmin
m∈M
k∈K

Jm|k(t) (37)

and Jm|k(t) denotes the local decision statistic.
The cross-validation selection rule proposed in Niedźwiecki

et al. (2020a) is based on minimization of the localized sum
of squared leave-one-out output interpolation errors. Alterna-
tively, the best-local choice of m and k can be made using
the suitably modified Akaike’s final prediction error (FPE) cri-
terion (Niedźwiecki & Ciołek, 2019a). Once the best-fitting fLBF
estimates are chosen, one can apply to (36) the adaptive regular-
ization procedure described above.

6. Simulation results

To make simulations more realistic, the second-order IIR (in-
finite impulse response) system governed by

y(t) = y0(t) + e(t), y0(t) = G0(t, q−1)u(t − 1)

G0(t, q−1) =
b0 + b1q−1

+ b2q−2

1 + a1(t)q−1 + a2(t)q−2

(38)

here q−1 denotes the one-step time delay, was used to generate
ata which were next approximated by the 50-tap FIR filter. The
ransfer function of the identified system had two time-invariant
eal ‘‘zeros’’ located at −1.02 and 0.98 (b0 = b2 = 0.02008,
1 = 0.04017) and two time-varying complex-conjugate ‘‘poles’’
lowly moving, with a constant speed, along the trajectory par-
llel to the unit circle, from their initial position A (0.78 ± j0.18)

to the terminal position D (0.18± j0.78) - see Fig. 1. The distance
from A to D was covered in T = 3000 time steps. At the
point A the ‘‘frozen’’ transfer function G0(1000, q−1) describes the
second-order Butterworth filter analyzed in Ljung et al. (2020).
The system was excited by the first order autoregressive signal
u(t) = 0.8u(t−1)+v(t), var[v(t)] = 1, where {v(t)} denotes white
noise independent of {e(t)}. The variance of the measurement
noise was set to σ 2

e = 0.0025. At the checkpoints A, B, C and D
the average signal-to-noise ratio (SNR) was equal to: 28 dB, 20 dB,
12 dB and 9 dB, respectively.

To provide a clear picture of the improvement yielded by
regularization, simulations were carried out for fixed values of
k = 100 and m = 3. The basis set, prior to orthonormalization,
was made up of powers of time: g1(i) = 1, g2(i) = i, g3(i) = i2, i ∈

Ik. It is worth noticing that parameter trajectories of the simulated
IIR system cannot be expressed as linear combinations of the
dopted basis functions. To avoid initialization (transient) effects,
ntil t = 1000 simulation was carried out for a system with
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Fig. 2. Average FIT scores for the LBF algorithm, fLBF algorithm, and for two
egularized versions of the fLBF algorithm: fRLBF1 and fRLBF2 .

Fig. 3. Four snapshots of the true (black line) and estimated (red line) impulse
response of the identified system — the fLBF approach. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

constant a-parameters set to a1(1) = · · · = a1(1000) = −1.561
nd a2(1) = · · · = a2(1000) = 0.6414. After t = 4000 system
arameters were again set to constant (terminal) values a1(4000)
nd a2(4000). Evaluation of identification results was started at
he instant t = 1001, once system parameters begun to vary with
ime, and stopped at the instant t = 4000. At each time instant
he first 50 coefficients of the true time-varying impulse response
ere calculated and checked against their estimates obtained for
he FIR model (note: the true impulse response of a time-varying
IR system differs from its ‘‘frozen’’ impulse response, i.e., impulse
esponse of a time-invariant system with parameters fixed at
(t)). The forgetting constant used to generate preestimates was
et to the recommended value λ0 = 1 −

2
50 = 0.96.

Estimation accuracy was evaluated using the following nor-
alized root mean squared error measure of fit (Ljung & Chen,
013)

(t) = 100

⎛⎝1 −

[∑50
j=1 |θj(t) − θ̂j(t)|

2∑50
j=1 |θj(t) − θ̄ (t)|2

]1/2⎞⎠ (39)

here θ̄ (t) =
1
50

∑50
j=1 θj(t). The maximum value of w(t), equal

o 100, corresponds to the perfect match between the true and
stimated impulse response. The final scores, further referred to
7

Fig. 4. Four snapshots of the true (black line) and estimated (red line) impulse
response of the identified system — the fRLBF1 approach. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

as FIT (%) were obtained by ensemble averaging (100 independent
realizations of {e(t)} and {v(t)}) of the instantaneous measures.

Two variants of regularization were checked: (a) with an ex-
onential stability prior matrix (35) and γ ∈ {0.9, 0.92, 0.94,

0.96, 0.98} – referred to as fRLBF1; (b) with a smoothness priors
regularization matrix (31) and p = 3 – referred to as fRLBF2. In
both cases optimization of µ was carried out numerically using
(22) in the interval [0,100] with a step 0.1. Fig. 2 shows the
average value of FIT in the evaluation interval [1001,4000]. All
FIT scores decrease with time because of declining SNR. Note
that, compared to the standard (not regularized) fLBF algorithm,
the fRLBF1 algorithm yields improvement of 8%–33%. When the
RLBF2 algorithm is used, the improvement is even more sig-
ificant and ranges between 12% and 33%. Finally, note poor
erformance of the LBF algorithm. This is not a surprise since, in
he case considered, the LBF algorithm estimates at each time step
n = 150 hyperparameters from K = 2k+1 = 201 input/output
easurements, which is against the good practice in system iden-

ification called the principle of parsimony (Niedźwiecki, 2000)
the asymptotic equivalence of LBF and fLBF estimators, men-
ioned in Section 3.3, holds true provided that mn ≪ K ). Finally,
we note that the situation does not change if k and m are chosen
in an adaptive manner set out in Section 5 - the regularized
algorithms continue to perform better than the not regularized
ones.

To give additional insight into the identification process, four
snapshots of the true and estimated impulse responses, evalu-
ated at the points A, B, C and D, respectively, were depicted
in Fig. 3 (fLBF estimates), Fig. 4 (fRLBF1 estimates) and Fig. 5
(fRLBF2 estimates). Note that in each case regularization yields
both quantitative and qualitative improvement over the standard
fLBF solution.

The times needed to execute a single identification step (single
time update) using computer equipped with the Intel Core i7
1.8 GHz processor (4 cores) were equal to 0.3 ms, 20 ms and
4 ms for the algorithms fLBF, fRLBF1 and fRLBF2, respectively.
For the LBF algorithm the analogous execution time was equal
to 4 ms. MATLAB codes used to generate simulation results are
available under the link: https://eti.pg.edu.pl/katedra-systemow-
automatyki/fRLBF.

Remark. It was noticed that the optimization rule (22) may
occasionally select very large values of µ, which results in tempo-
rary degradation of the model quality. This negative effect, which
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Fig. 5. Four snapshots of the true (black line) and estimated (red line) impulse
response of the identified system — the fRLBF2 approach. (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

ccurs mostly for small signal-to-noise ratios (SNR≤ 10 dB) can
e eliminated, or at least significantly reduced, by imposing an
pper bound on µ, like in our simulation examples above. It
hould be stressed that the effect described above is not caused
by the fact that the preestimation model (9) is only an approxi-
mation — the same behavior can be observed in the ‘‘ideal’’ case,
where the signal θ∗(t) is artificially generated by adding spatially
uncorrelated white Gaussian noise to θ(t). For this reason it seems
to be worth further investigation.

7. Conclusion

It was shown that identification of time-varying FIR systems
can be effectively carried out by means of smoothing the ap-
propriately generated sequence of parameter preestimates. As
a smoothing filter one can use the regularized Savitzky–Golay
algorithm, locally optimized using the empirical Bayes approach.
The resulting identification algorithm outperforms the currently
available solutions in terms of estimation (tracking) accuracy,
computational complexity and numerical robustness.
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