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Gdańsk Univ. of Techn., WETI
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Abstract—This paper addresses the performance evaluation of
an off-body path loss model, based on measurements at 2.45 GHz,
which has been developed with the use of the Generalised
Additive Model, allowing to model a non-linear dependence on
different predictor variables. The model formulates path loss as
a function of distance, antennas’ heights, antenna orientation
angle and polarisation, results showing that performance is very
sensitive to the orientation angle and to the polarisation of the
transmitting and receiving antennas. Considering the model’s
global performance, the obtained overall value of the adjusted
coefficient of determination equals 0.60, while the mean error and
the root mean square error equal 0 dB and 5.6 dB, respectively,
which can be considered quite good for such a large diversity
of addressed scenarios. One can then conclude that, regardless
of the low performance of the method for some particular cases,
the overall model accuracy may be considered good.

Index Terms—Generalised Additive Model, Path Loss, Body
Area Networks, Off-Body Channel, Model Evaluation.

I. INTRODUCTION

In the process of designing any kind of wireless system,

there is the need to deeply understand the properties of the

radio channel that is going to be used for signal transmission.

A similar demand also exists in Body Area Networks (BANs),

which refer to body centric wireless communications where

at least one of the communication devices is attached to the

human body [1]. In this paper, an off-body case of BANs is

considered, in which the radio link is established between an

on-body (wearable) device and an off-body (external) access

point [2].

Since the knowledge about the radio channel is crucial for

calculating the radio link budget, one of the most commonly

analysed and modelled channel components is the path loss,

namely its mean value (MPL - Mean Path Loss), besides small-

and large-scales fading [3]. Most of the research on MPL mod-

els takes a perspective based on the use of linear regression

(LR) or more complex Multivariate Linear Regression (MLR),

both with the Least Square Method (LSM) approach, e.g., [3],

[4], [5], [6].

Recently, more sophisticated perspectives for radio channel

modelling can also be found in the literature, e.g. different

machine learning methods [7], deep learning techniques [8],

neural network approaches [9], or even fuzzy-logic viewpoints

[10]. Moreover, although path loss presents a linear depen-

dence on many parameters (e.g., frequency and distance),

other non-linear variations need to be considered (e.g., angular

ones), which implies that modelling perspectives should take

this into account.

The Generalised Additive Model (GAM) is a statistical

learning method that uses smooth functions of predictor vari-

ables. This approach allows to analyse the contributions of

each of the features towards the composite model and to

model non-linear behaviours [12]. It is commonly used for

elaborating statistical models in a wide scope of applications,

e.g., gas usage [13], hospital admissions [14], high-speed rail-

ways management [15], or even for spatio-temporal criminal

incidents [16]. To the best of the authors knowledge, the MPL

modelling of the off-body channel proposed in [11] seems

to be the first use of GAM for the development of models

in BANs or any other kind of wireless system, which is the

novelty of the present research.

The aim of this paper is to evaluate the performance of

GAM in off-body MPL modelling for particular cases in BANs

regarding several parameters related to the scenario geometry

and antennas characteristics, i.e., the distance between the user

and the off-body access point, the absolute difference between

antennas’ heights, the on-body antenna orientation angle with

respect to the off-body antenna, and the polarisation of both the

transmitting (Tx) and receiving (Rx) antennas. The influence

of users with their different body constitutions has also been

taken into account.

The rest of the paper is structured as follows. Section II

consists of a brief description of the off-body measurements

taken for model development and of the evaluation criteria

used for model assessment. In Section III, a short description

of the model itself is done. Section IV consists of the analysis

of the model evaluation results, while Section V summarises

this evaluation and analyses the model’s usage possibilities.

Section VI concludes the paper.
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II. MEASUREMENTS AND EVALUATION CRITERIA

In order to evaluate the performance of the off-body MPL

model, the empirical data gathered during previously con-

ducted research have been used. These measurements were

performed for a narrow-band channel operating at 2.45 GHz

in an indoor (office) environment with the use of the mea-

surement set-up presented in [17], and in accordance with the

methodology for off- and body-to-body radio channels with

different diversity schemes proposed in [18]. Only the key

information from the viewpoint of this paper is provided.

Path loss values have been measured for 6 different dis-

tances between Tx and Rx antennas, from 1 m to 6 m, with

a 1 m step. At each point, a full body rotation was performed

with a 45° counter-clockwise increment. Four users have been

considered, whose characteristics are detailed in Tab. I, jointly

with 3 antenna locations: torso’s front side (TOF), head’s left

side (HEL), and right arm bottom part, at the wrist (ABR).

Depending on the user and antenna’s placement, the height of

the Tx linearly polarised antenna, hTx, took different values,

while the height of the dual linearly polarised Rx antenna at

the access point, hRx, was fixed at 1.4 m.

TABLE I
HEIGHTS OF THE TX ANTENNA.

User (gender, height, weight)
hTx [m]

HEL TOF ABR

U1 (male, 1.93 m, 65 kg) 1.77 1.40 0.87

U2 (male, 1.82 m, 74 kg) 1.64 1.30 0.89

U3 (male, 1.76 m, 88 kg) 1.65 1.30 0.93

U4 (female, 1.60 m, 50 kg) - 1.30 -

For each distance and rotation, measurements were per-

formed with 50 samples, and a median value of the path

loss was calculated. Globally, 33 600 instantaneous and 672

median path loss values have been collected during mea-

surements. The sample size (number of measurements) for

each value of a particular factor influencing the path loss is

summarised in Tab. II, where:

• d - distance between user and off-body access point;

• ∆h =
∣

∣hTx−hRx

∣

∣ - absolute difference between Tx and

Rx antennas’ heights;

• ϕ - on-body antenna orientation angle, i.e., the angle

between the main directions of the on-body (Tx) and the

off-body (Rx) antennas (counter clockwise);

• P - polarisation factor with two possible values, for co-

polarised (CP) and cross-polarised (XP) channels, i.e.,

the polarisation of Tx and Rx antennas being the same

or orthogonal to each other.

For the evaluation of model’s performance, the commonly

used statistical metrics have been applied: the mean error, µe,

indicating the average difference between the measured path

loss and the one predicted by the model [11], [19], and the

root mean square error,

√

ε̄2e, measuring the dispersion of the

empirical data around the model (the standard deviation can

be easily calculated from the previous two), hence, describing

how well the model matches experimental data [19].

TABLE II
SAMPLE SIZE FOR PARTICULAR FACTORS.

Factor Value Sample size

User
U1, U2 7 200 (per each user)

U3 14 400
U4 4 800

d [m] 1, 2, 3, 4, 5, 6 5 600 (per each d)

∆h [m]

0.00, 0.37 2 400 (per each ∆h)
0.10 12 000
0.25 7 200

0.47, 0.52 4 800 (per each ∆h)

ϕ [°]
0, 90, 180, 270 6 000 (per each ϕ)

45, 135, 225, 315 2 400 (per each ϕ)

P CP, XP 16 800

The coefficient of determination, R2, is also used in its

adjusted formulation, i.e., R2

adj , which is defined in [20], [21].

One should keep in mind that R2

adj , being in the range of

[0,1], gives the percentage of the variance in the dependent

variable that can be explained by the independent variables

used in the model. When R2

adj = 1, the model perfectly fits

the measurement data, and when R2

adj = 0, the model does

not explain any variation.

III. DESCRIPTION OF THE GAM OFF-BODY MPL MODEL

The off-body MPL model under evaluation was developed

with the use of GAM, since this method allows for replacing

linear components used in LR approaches by non-linear func-

tions, which reflect real-life scenarios in a more realistic way,

as described in [11].

The final off-body MPL model (with parameters defined in

Section II) is formulated as follows:

Lp[dB] = 48.94 + 12.69 log
( d[m]

d0[m]

)

− 3.99∆h[m]+

+ 12.57 sin
(ϕ[°]

2

)

+ P[dB],

(1)

where d0 is a reference distance, i.e., 1 m, and the polarisation

factor is expressed by [11]:

P[dB] =

{

0.00 for CP,

7.75 for XP.
(2)

The model’s component related to the path length is a log-

linear function of the distance, with an average power decay

below 2, i.e., 1.269, which is expected in an indoor environ-

ment, given the high multipath behaviour of the signal in this

type of environments. The heights difference component, via

∆h, is characterised by a negative slope, which means that a

higher difference will imply a lower path loss, which can be

explained by some influence of the scenario geometry overall.

The non-linearity of the model can be seen in the component

related to the antenna orientation angle, where the obstruction

by the body is clearly taken into account. Regarding the

polarisation component, basically it expresses the two extreme

cases of polarisation matching between Tx and Rx antennas,

between co-polar and cross-polar, encompassing the cases

of non-light-of-sight (e.g., by body obstructions) where the

reflections in the surrounding environment are important.
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In [11], it has been shown that the model fits well to the

empirical data, all estimated MPL values being within the

prediction interval. Nevertheless, there is the need to analyse

its performance in narrower scenarios, in order to deepen the

awareness on its possible advantages and drawbacks.

IV. PERFORMANCE EVALUATION OF THE MODEL

This section includes the evaluation of results and the

analysis of performance of the MPL model for particular cases,

including all considered factors influencing the attenuation,

based on the metrics described in Section II.

The model performance for the worst cases of each inde-

pendent variable can be seen in the scatter plots in Figs. 1-5,

where the abscissa axis contains the measured MPL and the

ordinate axis the one predicted by the model. The exact match

between predictions and measurements is represented by the

dotted blue line, with a slope equal to 1, while the solid black

line shows the best linear fitting with a slope equal to R2 [11].

One can clearly see the variety of measured situations by the

spread of points for a given value of a measured path loss.

A. Influence of the User

The dependence of path loss on users has definitely a

random nature, in the sense that each person is different and

behaves in a different way. On the other hand, we all repeat

certain gestures and movements, which tend to be rather cyclic

and similar. The results regarding the comparison among users

are gathered in Tab. III.

TABLE III
RESULTS OF THE EVALUATION FOR DIFFERENT USERS.

User µe [dB]

√

ε̄2e [dB] R2

adj

U1 0.63 5.44 0.61

U2 0.46 5.73 0.59

U3 -0.42 5.46 0.60

U4 -0.40 5.92 0.56

The mean error, µe, ranges in [-0.42, 0.63] dB, and the root

mean square error,

√

ε̄2e, belongs to the range [5.44, 5.92] dB,

while the adjusted coefficient of determination, R2

adj , varies

around 0.6, in the range of [0.56, 0.61], hence, the extension

of the variation not being large; the ranges of variation of µe

and

√

ε̄2e are quite small (the intervals lengths are 1.05 dB

and 0.48 dB, respectively), implying that user dependence is

not that important for the measured scenarios, i.e., the impact

of user’s height or weight on model’s performance ends up

not being very important, as expected. Globally, these results

show that the model performs well. The worst behaviour

(in relative terms) is observed for User 4, which may be

caused by the fact that, for this particular case, measurements

have been performed only for one position of the on-body

antenna, the TOF one, which is the most difficult to predict

for antenna orientation angles in the range of [135°, 225°], due

to the higher influence of the body shadowing phenomenon in

relation to the two other cases, i.e., HEL or ABR.

The scatter plot for User 4 is presented in Fig. 1, where one

can observe that the two lines (the dotted blue for the exact
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Fig. 1. Measured vs. predicted path loss for user 4 (R2

adj
= 0.56).

match and the solid black for the best linear fitting) cross at

66.8 dB; it should be noted that below this crossing point, on

average, the model is overestimating path loss, while above

it there is an underestimation. Furthermore, for the observed

measurements, the model presents an overestimation below

roughly 62 dB, while there is a consistent underestimation

above roughly 75 dB. The range of variation of the measured

path loss is over 40 dB, meaning that the deployment of

antennas on the body does lead to significant changes in the

radio channel; on the other hand, consistently with the previous

observations, the predicted path loss extends over an interval

of only 30 dB, i.e., the model tends to concentrate predictions

around a certain value, not properly reaching the ”extreme”

measured values, which somehow can be expected, i.e., these

”extreme instantaneous” values are usually captured by the

modelling of slow fading and not of MPL.

B. Influence of the Distance

The general dependence of path loss on distance is well

known, the logarithmic variation being a commonly accepted

approximation, which is followed by this MPL model as well.

Hence, the results obtained for this parameter, presented in

Tab. IV can be considered expected ones. The intervals lengths

for the ranges of variation of µe and

√

ε̄2e continue to be

small, i.e., 1.01 dB and 1.58 dB, respectively, although the

latter is no longer that negligible. The value of µe continues

to vary roughly around 0 dB, while for

√

ε̄2e it is around

roughly 5.6 dB, which is quite similar to the user dependence

case. In the case of R2

adj , it varies now in [0.41, 0.66],

which is an interval wider than the previous one for user

dependence. Again, the model performs well, but, clearly,

distance variability has a larger impact on path loss that the

user one.

There is a trend that R2

adj decreases with distance, i.e., the

model is giving better predictions for smaller distances. Given

that the measurements were taken in a room, where multipath

can play a significant role, this trend can be easily explained,

in the sense that for lower distances multipath tends to be less

important (reflected rays end up being smaller compared to

direct ones), hence, leading to a better average behaviour of

the logarithmic dependence with distance.
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TABLE IV
RESULTS OF THE EVALUATION FOR DIFFERENT PATH LENGTHS.

d [m] µe [dB]

√

ε̄2e [dB] R2

adj

1 -0.26 6.39 0.57

2 0.27 5.07 0.66

3 0.56 5.97 0.52

4 -0.36 5.19 0.52

5 -0.45 4.81 0.50

6 0.24 5.90 0.41
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Fig. 2. Measured vs. predicted path loss for d = 6 m (R2

adj
= 0.41).

The correlation between measured and predicted path loss

values for the worst performing case (d = 6 m) is shown

in Fig. 2. The two lines cross now at 69.2 dB, which is

very similar to the previous user dependence case. For the

measured points, the model presents an overestimation below

roughly 63 dB, while there is a consistent underestimation

above roughly 78 dB, thus, not being much different from

the previous case as well. However, the range of variation of

measured the path loss is reduced to around 30 dB, meaning

that distance dependence can be more controlled than user

one, in terms of dependence of path loss on their changes; the

predicted path loss extends now for around 23 dB.

C. Influence of the Heights

In general terms, one can expect that the difference in

heights between the user located antenna and the one on

the external access point will have quite an impact on path

loss, due to mobility, obstructions and user behaviour, among

others, hence, this is an important parameter. In this case,

the absolute difference between Tx and Rx antennas’ heights

depends not only on the location of the user’s antenna, but

also on the user type (see Tab. I), in the sense that User 4 had

just one location.

From Tab. V, one can observe that there is no particular

trend in the model accuracy for different ∆h values. The

value of µe varies in [-0.27, 0.90] dB while

√

ε̄2e does so

in [4.65, 6.04], therefore, with interval lengths similar to the

previous case (1.17 dB and 1.39 dB, respectively). Also, R2

adj

continues to be in the similar range of acceptable values, in

[0.52, 0.74], although slightly higher.

The scatter plot for the worst case in Fig. 3 shows the two

lines crossing at 64.0 dB, continuing to be quite similar to the

TABLE V
RESULTS OF THE EVALUATION FOR DIFFERENT ∆h VALUES.

∆h [m] µe [dB]

√

ε̄2e [dB] R2

adj

0.00 0.90 5.69 0.57

0.10 -0.27 5.56 0.62

0.25 0.02 6.04 0.56

0.37 0.34 4.65 0.74

0.47 -0.21 5.28 0.57

0.52 0.21 5.60 0.52
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Fig. 3. Measured vs. predicted path loss for ∆h = 0.52 m (R2

adj
= 0.52).

previous cases. Regarding measured points, the model over-

estimation is below roughly 58 dB and the underestimation

above roughly 70 dB, still in line with the previous cases as

well. There is an outlier near 90 dB, but all the other measured

points stay within an interval around 35 dB below 80 dB. The

range of variation of the measured path loss is around 44 dB,

while the predicted one is less than 21 dB.

D. Influence of the Antenna Orientation Angle

The on-body antenna orientation angle is the factor whose

influence on the path loss is modelled by a non-linear com-

ponent, and this non-linearity may be also observed in the

accuracy of the model, Tab. VI. The best performance with

the highest values of R2

adj (in [0.75, 0.80]) has been obtained

for the angles for which the Line-of-Sight (LoS) conditions

occurs, i.e., for ϕ ∈ {315°, 0°, 45°}, even within the half

power beamwidth of the Tx antenna. On the other hand the

lowest values of R2

adj (in [0.11, 0.28]) are observed for the

Non-LoS cases, i.e., for ϕ ∈ {135°, 180°, 225°}; for these

situations, there is no direct component, and the received signal

consists of the components reflected and scattered from the

surrounding environment, where typical office furniture (like

computer desk or filing cabinet) were present.

The length for the range of variation for µe is also much

higher, 4.17 dB, as is the one for

√

ε̄2e, 2.07 dB, although

globally the centre values do not change that much. These

results confirm that simple MPL models are not sufficient for

more complex scenarios and additionally large- and small-

scale fading components should be taken into account. This

may be confirmed by the scatter plot for the worst performing

case (ϕ = 225°), presented in Fig. 4, where a very low

correlation between measured and predicted path loss values
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TABLE VI
RESULTS OF THE EVALUATION FOR DIFFERENT ORIENTATION ANGLES.

ϕ [°] µe [dB]

√

ε̄2e [dB] R2

adj

0 0.82 6.67 0.75

45 -3.03 5.61 0.78

90 0.12 4.97 0.46

135 1.14 4.60 0.28

180 0.96 6.08 0.13

225 0.88 5.79 0.11

270 -0.74 4.94 0.44

315 -1.90 4.90 0.80
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Fig. 4. Measured vs. predicted path loss for ϕ = 225° (R2

adj
= 0.11).

can be observed, which may be caused by the presence of

the office furniture in this direction. For this case, the two

lines cross at 69.0 dB, and the overestimation/underestimation

behaviour continues to be observed. Interestingly, the range of

variation of the measured path loss is down to 24 dB, while

the predicted one is 20 dB, this being the case where both

ranges are closer to each other.

One can conclude that the model’s accuracy is very sensitive

to the orientation angle and the immediate surroundings.

E. Influence of Polarisation

Considering the results for mutual orientation of Tx and

Rx antennas, Tab. VII, the obtained root mean square error

is comparable, being 5.53 dB and 5.63 dB for CP and XP,

respectively, with the zero mean error for both. Nevertheless,

one can observe a significant difference in R2

adj , which equals

0.70 for CP and 0.31 for XP case, which shows that, for the

case when Tx and Rx antennas are orthogonally polarised,

there is some part of the variance in the path loss that cannot

be explained by the independent variables used in the model.

TABLE VII
RESULTS OF THE EVALUATION FOR DIFFERENT POLARISATION FACTORS.

P µe [dB]

√

ε̄2e [dB] R2

adj

CP 0 5.53 0.70

XP 0 5.63 0.31

In this case, the crossing of the two lines occurs at 69.5 dB,

and the overestimation/underestimation behavior continues to

be observed, but in a much smaller number of cases, while

the ranges of variation of measured and predicted path losses

are 36 dB and 25 dB.
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Fig. 5. Measured vs. predicted path loss for XP (R2

adj
= 0.31).

A comment deserves to be stated on the polarisation de-

pendence. Opposite to all previous ones (except users), which

are somehow continuous, in this case a binary approach has

been taken, which is a clear simplification of reality, i.e., the

polarisation mismatch between Tx and Rx antennas is indeed

a continuous parameter and, regardless of the polarisation of

the Tx antenna, propagation in the environment does change

polarisation, due to reflection, diffraction and scattering. Still,

these effects are more likely to be accounted for in fading

rather than in MPL.

V. MODEL USAGE

The MPL model may be used for designing narrow-band

BANs of the off-body type, operating in office indoor envi-

ronments at 2.45 GHz. It is applicable for distances within

[1, 6] m, the absolute difference of Tx and Rx antennas’

heights up to 52 cm, and the full range of on-body antenna’s

orientation angles, as well as for both co- and cross-polarised

Tx and Rx antenna configurations. Since the model has been

developed based on users with different body constitutions,

one can add that it is limited to users with a height within

[1.60, 1.93] m and a weight in [50, 88] kg, but it can also be

stated that this is a too strict limitation.

Considering the overall performance of the model on the

whole data set, one should analyse the taken metrics, i.e., the

mean error, the root mean square error, and the coefficient

of determination. The global values are µe = 0 dB,

√

ε̄2e =

5.6 dB, and R2

adj = 0.60, which allows to state that, despite the

lower accuracy for some particularly difficult cases, the global

application of the model presents a quite good accuracy for

the goal at stake.

The representation of the averages of µe and

√

ε̄2e over the

multiple 10th percentiles of the measured data is presented in

Fig. 6 and Fig. 7.

Globally speaking, regarding µe, the model overestimates

MPL for values under the median and underestimates other-

wise. From a network designer’s viewpoint, while overestima-

tion can be considered acceptable to some extent, underesti-

mation may lead to an incorrect operation of the network due

to failure to ensure an adequate communication range; if one

takes out the upper and lower 10th percentiles, then, µe has
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Fig. 7. Root mean square error for a given range of measured path loss.

a maximum absolute value of 4 dB, which can be considered

acceptable. Furthermore, concerning

√

ε̄2e, it is basically below

6 dB for nearly every measured path loss, except for the 10th

upper percentile, which, again, can be taken as a good result

for the purpose of the model. In conclusion, the analysed

model’s performance shows that it is at a fairly good level,

being a good approach for the estimation of MPL.

VI. CONCLUSIONS

In this paper, the evaluation of an off-body mean path

loss model’s performance based on the Generalised Additive

Model is performed, for several cases, from fitting measure

data at 2.45 GHz, allowing to take a non-linear dependence on

different predictor variables. The evaluation has been based on

the commonly used statistical parameters, i.e., mean error, root

mean square error and adjusted coefficient of determination.

The parameters taken for the model are the distance between

the user and the off-body access point, the absolute difference

between antennas’ heights, the on-body antenna orientation

angle with respect to the off-body antenna and the polarisation

of both Tx and Rx antennas.

The model’s evaluation shows that it is very sensitive to

the orientation angle and to the mutual polarisation of Tx

and Rx antennas, especially for the cases with the cross-

polarised antennas or the cases with the orientation angles

around 180°, where the coefficient of determination is very

low. However, for all analysed cases the absolute mean error

is lower than roughly 3 dB and the root mean squared error is

below 7 dB. Considering the overall performance of the model,

an acceptable value for R2

adj has been obtained, 0.60, and the

mean error and the root mean square error equal 0 dB and

5.6 dB, respectively. In conclusion, the Generalised Additive

Model can be used to model mean path loss from measured

data, with a good performance.
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