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Abstract 

The importance of surrogate modeling techniques in the design of modern antenna systems has 

been continuously growing over the recent years. This phenomenon is a matter of practical 

necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-

wave electromagnetic (EM) simulation tools. On the other hand, the computational costs 

incurred by repetitive EM analyses involved in solving common tasks (parameter tuning, 

uncertainty quantification, multi-criterial design, etc.), are often prohibitive. The replacement 

of full-wave simulations by fast surrogates may mitigate these issues; as a matter of fact, it is 

the only viable option for carrying out EM-driven design in many cases. Among available 

modeling approaches, data-driven surrogates are by far the most popular due to their 

accessibility and versatility. At the same time, a construction of reliable models is hindered by 

the curse of dimensionality, high nonlinearity of antenna characteristics, as well as broad ranges 

of parameters and operating conditions that the model has to cover to ensure its design utility. 

Recently proposed performance-driven modeling frameworks offer a workaround these issues 

by restricting the model domain to the parameter space regions that contain high-quality 

designs (w.r.t. the assumed performance metrics). However, the domain determination requires 

acquisition of a set of pre-optimized reference designs, which adds to the overall computational 

cost of the surrogate model setup in a significant manner. This work proposes a novel two-

stage knowledge-based approach, where the confined domain is defined without using any 

reference designs. Instead, a preselected set of random observables is employed to establish an 

inverse regression model being a basis for domain determination of the final surrogate. 

Comprehensive numerical validation involving three antenna structures indicates that our 

methodology offers the computational benefits similar to those of the previous performance-

driven methods while considerably reducing the initial setup cost, by a factor of sixty percent 

on the average, which has been achieved by exploiting the problem-specific knowledge. 
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1. Introduction

Although theoretical models and methods are still applicable in the design of antenna 

structures, a continuous shift towards simulation-based techniques has been observed over the 

recent years [1]-[4]. In particular, full-wave electromagnetic (EM) analysis, once mainly 

employed to design verification, is nowadays used at all design stages, including topology 

development [5], parametric studies [6], and, first and foremost, final tuning of geometry 

parameters [7], [8]. The primary reasons for the aforementioned shift include inadequacy of 

analytical (e.g., circuit-theoretical) antenna representations in accounting for, e.g., the mutual 

coupling, the effects of connectors, housing, installation fixtures, or substrate anisotropy. At 

the same time, antenna geometries have become increasingly involved to meet the demands of 

contemporary applications, and enable multi-band [9], broadband [10], or MIMO operation 

[11], circular polarization [12], or polarization/pattern diversity [13]. Realization of these 

capabilities is often achieved using dedicated components (stubs [14], slots [15], shorting pins 

[16], defected ground structures [17]). Evaluating the effects thereof can only be achieved 

through full-wave EM simulation. While ensuring accuracy, EM analysis tends to be 

computationally expensive, to the extent of being prohibitive when multiple simulations are 

required, e.g., when solving tasks such as parametric optimization [18] or uncertainty 

quantification (statistical analysis [19], tolerance-aware design [20]). This might be a problem 

even for local tuning of relatively simple components, let alone global optimization [21] or 

multi-criterial design [22] of complex devices (frequency selective surfaces [23], substrate 

integrated waveguide (SIW)-based components [24], multi-layer antennas [25], etc.). 

Considerable research efforts have been directed towards expediting EM-driven design 

procedures, especially in the context of parametric optimization (both single- and multi-

objective) but also uncertainty quantification [26], [27]. Some of available options include 

acceleration of gradient-based procedures using adjoint sensitivities [28], mesh deformation 
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methods [29], or sparse Jacobian updates [30], [31], as well as utilization of dedicated solvers 

[32]. Surrogate-assisted frameworks constitute a quickly growing class of techniques 

developed as computationally efficient alternatives to conventional methods. Physics-based 

metamodels are particularly popular for local optimization. Herein, the surrogate is constructed 

through a suitable correction of the underlying low-fidelity model. Exemplary approaches 

include space mapping [33], response correction (manifold mapping [34], adaptive response 

scaling [35], shape-preserving response prediction [36]). Data-driven (or approximation) 

models (kriging [37], radial-basis functions [38], neural networks [39], Gaussian process 

regression [40], support vector machines [41]) find applications in accelerating global search 

(including multi-criterial design) [42], [43], often in combination with sequential sampling 

procedures [44]. Polynomial chaos expansion (PCE) surrogates are well suited for handling 

uncertainty quantification tasks because statistical moments of the system outputs (given 

probability distributions of the inputs) can be determined directly from the model coefficients, 

without defaulting to Monte Carlo simulation [45]. Yet another approach is exploitation of the 

specific structure of the system response, e.g., allocation of multi-band antenna resonances [46] 

(feature-based optimization (FBO) [47], [48] or cognition-driven design [49]). The former 

allows for reducing the cost of the optimization process by reformulating the design task in 

terms of appropriately defined characteristic points of the responses, the coordinates of which 

are in slightly nonlinear dependence on the geometry and/or material parameters of the device 

at hand. 

 From the design perspective, a replacement of expensive full-wave simulations by a 

stand-alone surrogate would be the most economical option as it enables conducting all kinds 

of simulation-driven procedures, primarily optimization, at a low computational cost. In this 

context, the most suitable choices are approximation techniques. Numerous methods, such as 

kriging [50], neural networks (in many variations, e.g., deep neural networks [51], 
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convolutional neural networks [52]), radial basis functions [53], PCE [54], support vector 

regression (SVR) [55] are easily accessible using various toolboxes (e.g., [56], [57]). 

Approximation models are versatile, transferrable between the problem domains, and 

straightforward to handle. Notwithstanding, data-driven modeling of antenna structures is 

hindered by both the curse of dimensionality, and a typically high nonlinearity of antenna 

characteristics. Furthermore, in order for the surrogate to be useful for design purposes, it needs 

to cover broad ranges of geometry parameters, which makes the modeling task even more 

challenging. Many of the mitigation methods, such as high-dimensional model representation 

(HDMR) [58], or least-angle regression [59], are of limited use in the case of antenna structures. 

On the other hand, variable-fidelity techniques have been shown to work well for antenna 

modeling (co-kriging [60], two-stage GPR [61]). 

 A conceptually distinct, alternative approach to alleviating dimensionality and 

parameter range problems has been proposed in the form of performance-driven modeling 

methods [62]. The principal idea thereof is to restrict the domain of the surrogate to the vicinity 

of the region containing design that are optimum (or nearly-optimum) with respect to the 

assumed figures of interest or operating/implementation condition (allocation of operating 

frequencies, substrate permittivity, power split ratio in the case of coupling structures, etc.). 

Setting up the model within a confined domain requires a significantly smaller number of 

training samples and allows us to maintain good predictive power over broad ranges of the 

parameters [63]. Several variations of performance-driven frameworks have been proposed 

[64], [65], with a notable example of nested kriging [64], further generalized to variable-fidelity 

setup [66], as well as combined with dimensionality reduction methods [67]. The principal 

issue of the aforementioned techniques is that identification of the domain involves a set of 

pre-optimized reference designs, acquisition of which adds to the overall cost of the surrogate 

setup. With a typical number of reference designs ranging from ten to twenty (for two- or three-
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dimensional objective space [64]), this cost can be as high as over a thousand EM evaluations 

of the antenna structure of interest. Utilization of advanced techniques such as gradient-

enhanced kriging (GEK) may reduce these expenses somehow [68] but the underlying problem 

remains.  

 This paper proposes a novel knowledge-based approach to surrogate modeling of 

antenna structures. Our methodology capitalizes on the performance-driven modeling concept; 

however, it does not require any pre-optimized reference designs. The domain of the final 

surrogate is established using an inverse regression model constructed from a preselected set 

of random observables. The inverse model maps the objective space of the antenna at hand into 

its parameter space, and it is identified based on the knowledge about the system at hand in the 

form of performance figure values extracted from the EM simulated antenna responses across 

the observable set. To form the domain, the image of the inverse model is then orthogonally 

extended towards its normal vectors, with the amount of extension deduced from the allocation 

of the observables in the parameter space, which is yet another way of exploiting the system-

specific knowledge by the proposed modeling technique to make it more reliable and efficient. 

Using three antenna examples it is shown that the presented procedure offers the computational 

benefits comparable or even exceeding those pertinent to the prior performance-driven 

frameworks (including nested kriging). At the same time, the initial setup cost is considerably 

reduced, by over sixty percent on the average. Design utility of the framework is demonstrated 

through applications to parametric optimization of the considered antenna structures. 

 

2. Two-Stage Knowledge-Based Modeling with Inverse Regression 

 This section introduces the proposed two-stage modeling procedure. We start by 

recalling the concept of performance-driven modeling (Section 2.1). Section 2.2 describes the 

inverse regression surrogate (stage one) constructed from the set of pre-selected random 
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observables, and used to define the domain of the final surrogate (stage two). Definition of the 

surrogate model domain, design of experiments scheme, as well as final model construction 

are covered in Section 2.3. Section 2.4 summarizes the operating flow of the entire modeling 

framework. Numerical verification of the procedure and benchmarking will be discussed in 

Section 3.  

 

2.1.  Performance-Driven Modeling Concept 

The modeling procedure proposed in this paper capitalizes on the performance-driven 

concept (also referred to as constrained modeling) [65], which is briefly recalled below. The 

principal idea is to restrict the surrogate domain to those regions of the parameter space that 

contain high-quality designs (with respect to the assumed performance figures). The volume 

of such a region is normally small because the antenna geometry parameter vectors 

corresponding to optimum designs are well correlated (e.g., re-designing the antenna for 

different operating frequencies requires synchronized adjustment of at least some of its 

parameters [69]). Reducing the domain size as compared to the conventional approach, 

normally being an interval determined by the lower/upper bounds of antenna parameters, 

results in a considerable reduction of the number of necessary training points and ensuring 

good predictive power of the surrogate even in higher-dimensional cases and for broad ranges 

of the parameters [63], [64]. 

 

Table 1. Performance-driven modeling: Notation 

Description Notation 

Antenna parameter vector x = [x1 … xn]T 

Conventional parameter space X = [l, u] 

Lower bounds on the parameters l = [l1 …, ln]T 

Upper bounds on the parameters u = [u1 …, un]T 

Figures of interest  fk, k = 1, …, N 

Objective space F: fk.min  fk
(j)  fk.max, k = 1, …, N 

Objective vector f = [f1 … fN]T 
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The standard notation used in the context of performance-driven modeling follows [64] 

and was highlighted in Table 1. The figures of interest include, e.g., operating frequency, 

bandwidth, substrate permittivity. The ranges of the figures of interest delimit the objective 

space F, which constitutes the intended region of validity of the surrogate model.  

The critical component of performance-driven modeling is a definition of the surrogate 

model domain. This requires the notion of design optimality, which is understood in terms of 

minimizing the scalar merit function U(x,f) that quantifies the design quality [65]. More 

specifically, for a given f  F, the optimum design x* is obtained by solving 

* ( ) argmin ( , )FU U 
x

x f x f                                                  (1) 

The set of designs that are optimum for all f  F is denoted by  

 ( ) ( ) :F FU F U F f f                                                        (2) 

Note that—assuming the uniqueness of solving (1)—UF(F) is an N-dimensional manifold 

embedded in the parameter space X. 

The surrogate model domain is constructed to contain a possibly small vicinity of UF(F) 

[65]. This requires a relatively precise identification of the optimum designs, which is normally 

achieved using a set of reference designs x(j) = [x1
(j) … xn

(j)]T j = 1, …, p, pre-optimized with 

respect to the objective vectors f(j) = [f1
(j) … fN

(j)], allocated within the objective space. Having 

the dataset {f(j),x(j)}, j = 1, …, p, a first-level surrogate sI(f) : F  X is identified [64] to serve 

as an initial approximation of UF(F). A graphical illustration of the aforementioned concepts 

can be found in Fig. 1.  

The necessity of acquiring the reference designs is the most serious practical issue 

related to performance-driven modeling methods. This is for two primary reasons: 

 Depending on the objective space dimensionality, the number of reference designs 

varies between ten and twenty [63], [64]. Assuming that each design is obtained through 
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local (e.g., gradient-based) search, and the average parameter space dimensionality is 

ten, the cost of reference point acquisition may be as high as a thousand EM analyses 

of the antenna at hand. This cost adds to the surrogate model setup cost. Needless to 

say, it is detrimental to the computational efficiency of the modeling process. 

 Acquisition of the reference vectors is a numerically challenging task because the 

antenna structure of interest has to be re-designed over broad ranges of operating 

conditions. In practice, it may entail several optimization attempts to obtain a single 

design, including manual adjustment of the starting point. Automation of this process 

is difficult [70]. 

As mentioned in the introduction, it is possible to reduce the number of reference points 

using advanced techniques such as the establishment of the first-level surrogate using gradient-

enhanced kriging [68], or attempt to automate the acquisition process [70]. Nevertheless, the 

main problem, i.e., the necessity of gathering at least several designs allocated within the 

optimum design manifold, remains. 

 

f2

f1

f2.max

f2.min

f1.maxf1.min

F

x1

x3

x2

UF(F)

sI(F)

X

f 
(j)

x
(j)

 

                                    (a)                                                                    (b) 

Fig. 1. Defining concepts of performance-driven modeling [64]: (a) the objective space F, (b) the parameter 

space X. The reference designs are shown as black circles, whereas the optimum design manifold UF(F) is 

indicated as a grey surface. The first-level model image sI(F) provides a first approximation of the manifold, 

and has to be further extended to encapsulate the entire UF(F) (or, at least, the majority of it). 
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One of the main purposes of this work is to develop a modeling approach that benefits 

from the overall concept of domain confinement; however, it does not rely on reference designs 

produced through separate optimization procedures. 

 

2.2.  Two-Stage Modeling: Stage One – Knowledge-Based Inverse Regression Surrogate 

The reference designs, as elaborated on in Section 2.1, provide a great deal of 

information about the spatial allocation of the optimum design manifold, which subsequently 

becomes the core of the surrogate model definition [65]. In this work, the reference designs are 

replaced by a pre-selected set of random observables generated in the parameter space X. Using 

the knowledge extracted from the observables, an inverse regression model is constructed that 

replaces the first-level surrogate discussed before. The inverse model will be then used to 

define the domain of the final surrogate, cf. Section 2.3. 

Let xr
(j), j = 1, 2, …, be a sequence of random parameter vectors sequentially generated 

in X using a uniform probability distribution. Let fr
(j) be the performance figure vector extracted 

from the EM-simulated antenna response at xr
(j). For example, in the case of a dual-band 

antenna with the figures of interest being the target operating frequencies, the vector fr
(j) 

contains the actual operating frequencies of the structure (regardless of the resonance depths). 

If fr
(j)  F, the observable is accepted; otherwise (also, if the components of fr

(j) fall beyond the 

assumed lower or upper limits for the figures of interest, or cannot be identified at all), it is 

rejected. Figure 2 shows a graphical illustration for the discussed case of a dual-band antenna. 

The sampling process is concluded when the prescribed number of observables has been found, 

here denoted as Nr (typically 50 to 100). 

The dataset {xr
(j),fr

(j)}j = 1,…,Nr, is used to establish the inverse regression model sr, which 

provides a rough allocation of the optimum design manifold. The inverse model is defined over 

the objective space F with the values in the parameter space X, or sr : F  X. In this work, the 

following analytical form of sr is assumed: 
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Fig. 2. Graphical illustration of the random observable generation procedure using an example of a 

dual-band antenna. The antenna is to be modelled over a two-dimensional objective space and within a 

three-dimensional parameter space. The random vectors that correspond to designs featuring operating 

frequencies within the assumed objective space are accepted, others are rejected. The final observable 

set {xr
(j)}j = 1,…,Nr, will be used to generate the inverse regression model sr(). 
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



N

k kkr

r r N

N
r n

n n n k kk

a a a fs

s f f

s a a a f

f

f s

f

                      (3) 

which is motivated by a normally weakly-nonlinear dependence between the geometry 

parameters and operating figures such as resonant frequencies, bandwidths, etc. [64].  

The model is identified by solving the nonlinear regression problems of the form  

        
0 1 1

2
( ) ( )

.0 .1 . 1 . .
[ ... ]

1

... arg min
r

K

N
k k

j j j K k r j r r j
b b b

k

a a a w s x






        f ,      j = 1, …, n               (4) 

where xr.j
(k) is the jth component of the observable vector xr

(k). The weighting factors wk are 

introduced to discriminate between “good” and “poor” observables. This is decided upon using 

the supplementary vectors pr
(j) = [pr.1

(j) … pr.N
(j)]T, also extracted from EM-simulated antenna 

outputs. The entries of pr
(j) contain relevant data concerning the design quality. For example, 

in the discussed case of a dual band antenna, these could be the reflection levels at the operating 

frequencies, the lower the better. The weighing factors are assigned as 
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( ) ( )

1max{ ( ),..., ( )}j j

k Nw M p p   x x ,       k = 1, …, Nr                              (5) 

where M = max{k = 1, …, Nr, j = 1, …, N : pj
(k)}. Here, it is assumed that pj

(k) is nonnegative 

and lower values correspond to a better design. Again, the previously considered example of 

reflection levels at the operating frequencies conform to this assumption, as their moduli may 

change between zero and one. 

The idea behind the weighting factors is to put more emphasis on high-quality 

observables, while still incorporating information contained in the remaining vectors. In 

particular, the designs characterized by higher weights are allocated closer to the optimum 

design manifold, therefore, they should determine the inverse surrogate in a more significant 

manner than the lower-quality ones. The aforementioned knowledge-based assessment of the 

quality of the observables allows for more efficient and reliable rendition of the inverse 

surrogate. A graphical illustration of the inverse regression model, corresponding to the 

example of Fig. 2, has been shown in Fig. 3.  

 

2.3.  Two-Stage Modeling: Stage Two – Domain Definition and Final Surrogate 

The image sr(F) of the inverse model provides a rough approximation of the spatial 

allocation of the optimum design manifold. In order to encapsulate most of UF(F) into the 

domain of the surrogate model, sr(F) needs to be extended, which is realized using the 

procedure similar to the one developed for the nested kriging framework [64]. Let {vn
(k)(f)}, k 

= 1, …, n – N, denote the orthonormal basis of vectors normal to sr(F) at the objective vector 

f. Further, let T = [T1 … Tn]
T be a vector of positive real numbers determining the amount of 

extension for the antenna parameters. Using these, we calculate the extension coefficients 

T
T (1) ( )

1( ) [ ( ) ... ( )] | ( ) | ... | ( ) |  


    

n N

n N n nα f f f Tv f Tv f                        (6) 

The domain XS of the final surrogate model is then defined similarly as in [64] 
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Fig. 3. Graphical illustration of the knowledge-based inverse regression model sr established using the 

pre-selected observables xr
(j) and the corresponding objective vectors fr

(j). The components sr.j of the 

inverse model are obtained as in (3)-(5), and their images are visualized as the grey-shaded surfaces for 

antenna parameters x1 (left), x2 (middle), and x3 (right), respectively. 

 

 

 

( )

1

( ) ( ) ( ) : ,

1 1, 1,...,

n N
k

r k k n

kS

k

s F
X

k n N

 







 
   

  
      

x f f v f f
                                      (7) 

which is a set of vectors of the form of (7) obtained for all f  F, and all k  [–1, 1], k = 1, …, 

n – N. It can be noted that the extension boundaries of the domain are obtained for the extreme 

values of the coefficients k, which are the surfaces defined by 

  ( )

1
: ( ) ( )

n N k

r k nk
S X s 



 
   x x f f v f  and   ( )

1
: ( ) ( )

n N k

r k nk
S X s 



 
   x x f f v f .  

It should be emphasized that the extension factors Tj (the entries of the vector T) are 

individualized for all geometry parameters (e.g., in the nested kriging framework of [64], it 

was a scalar coeffficient). Also, the amount of extension can be estimated using the available 

observable set (in [64], it was arbitrarily chosen by the user). The knowledge-based assessment 

of the extension factors is arranged as follows. Let, for any observable pair {xr
(j),fr

(j)}, the vector 

Pk(xr
(j)) be the element of the space [lk uk ] × F (recall that lk and uk are parameter-space-defining 

lower and upper bounds for the kth parameter) that minimizes the distance between [xr.k
(j) 

(fr
(j))T]T and [sr.k(f) f

T]T, f  F (here, xr.k
(j) is the kth component of the observable vector xr

(j)), 

i.e., 
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( ) ( ) ( ) T T T T

.( ) arg min || [ ( ) ] [ ( ) ] ||


 j j j

k r r k r r
F

P x s
f

x f f f                                     (8) 

In other words, Pk(xr
(j)) determines the orthogonal projection of [xr.k

(j) (fr
(j))T]T onto the image 

of the kth component of the inverse regression model within the space [lk uk ] × F. Then,  

( ) ( ) ( ) T T ( ) ( ) T T

. .( ) || [ ( ) ] [ ( ( )) ( ) ] || j j j j j

r k r r k r r r rd x s P Px f x x                                  (9) 

is the minimum distance between [xr.k
(j) (fr

(j))T]T and the said image. Graphically, dr.k can be 

interpreted as the distances between the respective observable components and the grey-

colored surfaces in Fig. 3. 

Using the above, the extension factor Tk can be then defined as 

( )

.

1

1
( )

2

rN
j

k r k r

jr

T d
N 

  x                                                           (10) 

which is half of the average distance between the observable component and the respective 

inverse regression model surface. It should be recalled that high-quality observables are 

allocated close to the optimum design manifold UF(F) (they also contribute more to the 

determination of the inverse model through the associated weighting factors wk, cf. (4)), 

whereas poor observable are farther away from UF(F). Consequently, the average distance 

between the inverse regression model surface and the observables gives an overly pessimistic 

estimate of the necessary domain extension (i.e., if used, the domain would also contain many 

designs that are of not-so-good quality). To account for this, the definition (10) uses half of the 

average distance instead. As indicated in Section 3, this is sufficient to ensure design utility of 

the surrogate. 

Having the domain XS, the final surrogate s(x) is generated therein using kriging 

interpolation [71]. The training data set is denoted as {xB
(k),R(xB

(k))}k = 1, …, NB, where xB
(k)  XS, 

whereas R represents the relevant antenna characteristics obtained through EM analysis. Figure 

4 presents graphical illustration of the design of experiments procedure similar to that proposed 

in [64], which capitalizes on the one-to-one transformation of the unit interval [0,1]n onto XS.  
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Fig. 4. Conceptual illustration of the employed design experiments procedure: (i) samples allocated 

using Latin Hypercube Sampling (LHS) [72] (top), (ii) transformation with the use of function h1 onto 

the Cartesian product of the objective space F and [–1,1]n–N (middle), (iii) samples (black circles) 

mapped onto the constrained domain XS using transformation h2 (bottom); whereas the samples 

allocated onto the image of F before orthogonal shift are marked with light gray circles. 

 

 

 

Observe that the data samples xB
(k)=h2(h1(z

(k))) allocated in XS are uniformly distributed 

with respect to the objective space F, and not necessarily with respect to the parameter space 

X. Here, {z(k)}, k = 1, …, NB, denote a uniformly distributed set of samples in [0,1]n (obtained 

using Latin Hypercube Sampling, LHS [72]). Note that the same mapping can be also 

employed to carry out design procedures (e.g., parametric optimization) using the proposed 

two-stage surrogate model. Although a straightforward application of the model (i.e., operating 

with the domain XS) might be challenging due to a relatively complex geometry of the domain, 

all operations can be executed within the unity interval [0, 1]n, with the antenna parameters 
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mapped to XS for the purpose of surrogate model evaluation. Furthermore, the vector sr(f) 

provides a good initial design for any target objective vector f  F. 

The computational benefits of restricting the model domain as described in this section are 

expected to be similar to those of other performance-driven procedures [65], in particular, the 

nested kriging framework. By focusing on a volume-reduced region of the space, the surrogate 

can be constructed using small training data sets without formally limiting range of validity of the 

model, both in terms of the ranges of antenna geometry parameters and the operating conditions. 

On the other hand, the approach proposed here does not require any pre-optimized reference 

designs, which has a significant impact on the model setup cost. This will be demonstrated in 

detail in Section 3. An additional benefit is that defining the surrogate domain using random 

observables (cf. Section 2.2), provides a convenient way to determine its lateral dimensions (cf. 

(8)-(10)), which is a non-trivial problem for prior performance-driven techniques.  

 

2.4.  Complete Modeling Framework 

This section provides a concise summary of the modeling procedure proposed in this 

work. The only user-defined control parameters are the number of (accepted) random 

observables Nr (typically 50 to 100) and the number NB of training data samples for rendering 

the final surrogate model. The input data consists of the definition of the parameter space X, 

and the objective space F. The modeling process works as follows: 

1. Generate random observables xr
(j)  X until Nr samples are found such that their 

corresponding objective vectors fr
(j) are in the assumed objective space F (cf. 

Section 2.2); for these samples, also evaluate supplementary performance vectors pr
(j); 
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2. Construct the inverse regression model sr using {xr
(j),fr

(j)}j = 1,…,Nr, as the training data 

set (cf. (3)) and supplementary vectors pr
(j) to compute the weighting factors for the 

observables (cf. (5)); 

3. Calculate the extension vector T as in (8)-(10) as well as the extension coefficients  

(cf. (6)); 

4. Define the surrogate model domain XS using (7); 

5. Perform design of experiments (see Fig. 4) to find NB training data samples 

{xB
(k),R(xB

(k))}k = 1, …, NB; 

6. Identify the final surrogate model s using kriging interpolation of the training samples 

obtained in Step 5 extended by the observable set {xr
(k),R(xr

(k))}k = 1, …, Nr; 

Figure 5 shows the flow diagram of the modeling process. It should be noted that adding 

the observable set to the training data is expected to considerably improve the predictive power 

of the proposed model for small values of NB, which is an additional advantage of the presented 

approach.  

 

 

3. Demonstration Case Studies and Benchmarking 

 This section demonstrates application of the proposed two-stage procedure to modeling 

of several microstrip antenna structures. The selected structures cover a variety of antenna 

response types (narrow-band, multi-band, broadband, along with modeling of different 

characteristics, i.e., reflection and gain). Furthermore, considered modeling tasks are 

challenging, especially as compared to what is normally reported in the literature, both with 

respect to the dimensionality of the parameters space, and—more importantly—the parameter 

ranges. For the sake of benchmarking, our technique is compared to conventional surrogates, 

as well as the recent performance-driven approach, specifically, the nested kriging framework. 

The chosen benchmark set contains the methods representative for conventional modelling 
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approaches, as well as performance-driven ones, with the nested-kriging method viewed as a 

direct predecessor of the procedure introduced in this work (cf. Section 2). Design utility is 

validated by employing the two-stage surrogate to parameter tuning of the considered antennas.  

 

3.1. Case I: Ring-Slot Antenna 

 The first verification case is the ring-slot antenna [73] shown in Fig. 6. Table 2 provides 

the details on the antenna design variables, its computational model, as well as the design 

objectives. The relative permittivity εr of the substrate is one of the figures of interest (cf. 

Section 2.1), i.e., one of the components of the objective space F. The feed line width wf is 

adjusted for a given εr to ensure 50 ohm input impedance.  

 

Parameter 

space X

Objective 

space F

EM 

solver

Generate observables xr
(j)

, j = 1,...,Nr

Construct inverse regression model sr

Calculate extension vector T

Define surrogate model domain XS

Perform design of experiments in XS

and acquire EM simulation data

Identify final surrogate s

{(xr
(j)

,fr
(j)

,pr
(j)

)}j=1, ,Nr

sr

T

XS

{xB
(j)

,R(xB
(j)

)}j=1, ,NB

Final surrogate model 

set up in XS 

 

Fig. 5. Flow diagram of the proposed two-stage knowledge-based modeling procedure involving inverse 

regression surrogates and domain confinement. 
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The surrogate model of the antenna reflection coefficient is supposed to be valid over 

the entire objective space as given in Table 2. It should be noted that the modeling task is 

challenging not only due to the number of parameters but primarily due to their broad ranges 

(the average upper-to-lower bound ratio is around five).  

The proposed modeling procedure has been validated with the number of random 

(accepted) observables (cf. Section 2) set to Nr = 50. These were obtained using 106 antenna 

simulations. The surrogates were constructed for NB = 50, 100, 200, 400, and 800 training 

samples so that the scalability of the modeling error can be investigated as well. Furthermore, 

these numbers are considered typical for modelling of high-frequency components in engineering 

practice. The training data was allocated using modified Latin Hypercube Sampling (LHS) [72].  

The following methods were used as benchmark:  

 Conventional kriging interpolation model (set up in the space X); 

 Conventional RBS model (set up in the space X); 

 Nested kriging model [64] with the thickness parameter of T = 0.1 (domain XS); 

In the case of nested kriging, ten reference designs were employed. The computational cost of 

their acquisition is 864 EM simulations of the antenna (even when using feature-based 

optimization procedure [47]), which adds to the overall cost of the surrogate model setup. 

 

Table 2. Case I: Ring-Slot Antenna 

Parameters 

Substrate thickness h = 0.76 mm 

Designable parameters x = [lf ld wd r s sd o g]T 

Lower bounds  l = [22.0 3.5 0.3 6.5 3.0 0.5 3.5 0.2]T 

Upper bounds  u = [27.0 8.0 2.3 16.0 7.0 5.5 6.0 2.3]T 

Computational model ~300,000 cells 

Simulation time 90 s 

Design objective ranges 

Substrate permittivity 2.0  r  5.0 

Operating frequency 2.5 GHz  f0  6.5 GHz 
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Table 3 provides the numerical results, whereas Fig. 7 visualizes the inverse regression 

model surfaces along with the random observables for selected antenna parameters. It can be 

observed that observables are well correlated for the parameters that are dominant in terms of 

determining the antenna operating conditions, and spread for other variables. Figure 8 compares 

EM-simulated and surrogate-model-predicted antenna reflection characteristics at the selected 

test locations. The accuracy is estimated using a relative RMS error, calculated at the design x as 

||Rs(x) – Rf(x)||/||Rf(x)||, where Rs and Rf stand for the surrogate and EM-simulated reflection 

characteristics, respectively. The testing set included 100 samples allocated using LHS. It should 

be noted that utilization of the split-sample validation methods may result in a relatively large 

variance of modeling error estimation, especially for smaller training data sets, where a specific 

alloction of both training and testing samples may influence the error value in a noticeable 

manner. Notwithstanding, the results presented in Table 3 (as well as the result tables for other 

test cases) are consistent in the sense of the monotonicity of the model predictive power as a 

function of the training data set cardinality. 

It can be observed that the accuracy of the proposed surrogate is considerably better than 

for the conventional models, both kriging and RBF. At the same time, it is comparable to that of 

the nested kriging framework. As a matter of fact, it is noticeably better for low values of NB 

(here, 50 and 100), which is because the random observables are included into the training set 

(unlike in nested kriging). However, the most important advantage of the two-stage surrogate is 

no need for reference designs. Acquisition of this set required almost nine hundred EM 

simulations in the case of nested kriging, whereas the cost of generating observable within the 

proposed approach is only about one hundred simulations. Thus, while ensuring similar 

predictive power, the setup cost is considerably lower, e.g., by over 80 percent for NB = 50, and 

as much as 45 percent for NB = 800. 
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Fig. 6. Ring slot antenna geometry [73]. Microstrip feed is shown using a dashed line. 

   

                       (a)                                                    (b)                                                      (c) 

Fig. 7. Ring slot antenna: inverse regression model for selected antenna parameters: (a) ld, (b) r, (c) sd. 

Inverse model surfaces and random observables shown using grey and blue circles, respectively. 

 

 

Fig. 8. Ring-slot antenna: reflection characteristics at the selected test designs: EM model (—), and the 

proposed two-stage surrogate (o). The surrogate set up using NB = 400 training samples. 

  

Design utility of the proposed two-stage surrogate has been demonstrated through 

parameter tuning of the antenna for several target operating frequencies f0 and the substrate 

permittivity values r, the antenna is to be implemented on. The results shown in Fig. 9 (see 

also Table 3) indicate that the model is well suited for the task. It does not only allow for 

identifying satisfactory designs across the range of considered operating frequencies and 
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permittivity values, but the agreement between the antenna response predicted by the surrogate 

and EM simulation data at the optimized design is excellent. Furthermore, the initial designs 

generated by the inverse regression model sr are of high quality, i.e., the corresponding antenna 

operating frequencies are relatively close to the assumed targets. 

 

Table 3. Ring-slot antenna of Fig. 6: Modeling results and benchmarking 

Number of 

training 

samples 

Modeling technique 

Kriging RBF Nested kriging [64] 
Two-stage surrogate 

(this work) 

Modeling 

error 

Model setup 

cost 

Modeling 

error 

Model setup 

cost 

Modeling 

error 

Model setup 

cost$ 

Modeling 

error 

Model setup 

cost 

50 56.9 % 50 61.0 % 50 19.4 % 914 13.4 % 156 

100 50.8 % 100 53.2 % 100 12.9 % 964 9.9 % 206 

200 35.8 % 200 37.9 % 200 7.7 % 1,064 6.9 % 306 

400 31.5 % 400 34.1 % 400 5.1 % 1,264 5.4 % 506 

800 25.6 % 800 27.2 % 800 3.7 % 1,664 4.4 % 906 
$The cost includes acquisition of the reference designs, which is 864 EM simulations of the antenna when using feature-based optimization [47] 
as listed in the table. Conventional (minimax) optimization required 1,012 simulations. 
#The cost includes generation of random observables, here, 106 simulations in total to yield Nr = 50 accepted samples. 

 

 
                                             (a)                                                                                      (b) 

 
                                             (c)                                                                                      (d) 

Fig. 9. Ring-slot antenna: EM-simulated reflection responses at the initial design () obtained using the 

inverse regression model, as well as surrogate (o) and EM-simulated response (—) at the design obtained 

by optimizing the proposed two-stage surrogate set up using NB = 800 training samples. The designs 

obtained for the following objective vectors: (a) f0 = 5.3 GHz, r = 3.5, (b) f0 = 2.7 GHz, r = 4.3, (c) f0 = 

3.6 GHz, r = 2.2, (d) f0 = 4.8 GHz, r = 4.3. The vertical line denotes the target operating frequency. 
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Table 4. Ring-slot antenna: Optimization results using the proposed two-stage surrogate 

Target operating 

conditions 
Geometry parameter values [mm] 

f0 [GHz]  lf ld wd r s sd o g 

5.3 3.5 24.3 4.67 1.15 7.60 5.10 4.70 5.31 1.77 

2.7 4.3 24.9 5.60 1.43 14.0 5.26 2.42 4.65 1.09 

3.6 2.2 23.7 5.19 1.10 11.6 4.68 2.40 4.59 0.86 

4.8 4.3 24.7 4.93 1.22 7.98 5.27 4.57 5.26 1.71 

 

 

3.2. Case II: Dual-Band Dipole Antenna 

For the second example, let us consider a dual-band uniplanar dipole antenna shown in 

Fig. 10 [74], is implemented on RO4350 substrate. The details on the antenna designable and 

fixed parameters, the antenna computational model, as well as the design objectives are given 

in Table 5. In this case, the objective space is defined by the operating frequencies of the 

antenna at the lower and upper band, f1 and f2, respectively. Note that the average upper-to-

lower bound ratio is around three with the maximum of seven for the last variable. 

 The proposed two-stage modeling framework has been validated in a similar way as for 

the first case study. The assumed number of random observables is Nr = 50, here, obtained 

using 230 EM simulations of the antenna structure. The surrogates were constructed for NB = 

50, 100, 200, 400, and 800 training samples. The benchmark methods are the same as in 

Section 3.1: kriging interpolation and RFB (both set up in the space X), as well as the nested 

kriging surrogate [64] with the thickness parameter of T = 0.1 (established in the domain XS). 

The nested kriging model utilizes ten reference designs, the cost of their acquisition is 930 EM 

simulations of the antenna using feature-based optimization [47]. This cost is added to the 

overall expenses pertinent to the surrogate model setup. 

 The numerical results are provided in Table 6 for the proposed and the benchmark 

methods. Figure 11 shows the inverse regression model for selected antenna parameters. A 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

comparison of EM-simulated and surrogate-predicted responses for selected test points can be 

found in Fig. 12. The results are consistent with those obtained in Section 3.1.  

On the one hand, the predictive power of the two-stage surrogate is significantly better 

than for the conventional models. On the other hand, it is comparable with the nested kriging 

for larger training data sets but considerably better for smaller ones (50 and 100 samples), 

which is due to exploiting the information contained in the random observables. Similarly as 

for the previous example, the computational cost of setting up the proposed model is much 

lower than for nested kriging because of not using any reference designs. The savings are as 

high as 72 percent for NB = 50, and 41 percent for NB = 800. 

 

Table 5. Case I: Dual-Band Dipole Antenna 

Parameters 

Substrate thickness h = 0.76 mm 

Substrate permittivity εr = 3.5 

Designable parameters x = [l1 l2 l3 w1 w2 w3]T 

Other parameters [mm] l0 = 30, w0 = 3, s0 = 0.15, o = 5 

Lower bounds  l = [29 5.0 17 0.2 1.5 0.5]T 

Upper bounds  u = [42 12 25 0.6 5.2 3.5]T 

Computational model ~100,000 cells 

Simulation time 60 s 

Design objective ranges 

Operating frequency (lower band) 2.0 GHz  f1  3.0 GHz 

Operating frequency (upper band) 4.0 GHz  f2  5.5 GHz 

 

 

 

Fig. 10. Dual-band dipole antenna geometry [74]. 
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                       (a)                                                    (b)                                                      (c) 

Fig. 11. Dual-band antenna: inverse regression model for selected antenna parameters: (a) l1, (b) l3, (c) w2. 

Inverse model surfaces and random observables shown using grey and blue circles, respectively. 

 

Fig. 12. Dual-band antenna: reflection characteristics at the selected test designs: EM model (—), and 

the proposed two-stage surrogate (o). The surrogate set up using NB = 400 training samples. 

 

 
                                             (a)                                                                                      (b) 

 
                                             (c)                                                                                      (d) 

Fig. 13. Dual-band dipole antenna: EM-simulated reflection responses at the initial design () obtained 

using the inverse regression model, as well as surrogate (o) and EM-simulated response (—) at the design 

obtained by optimizing the proposed two-stage surrogate set up using NB = 800 training samples. The 

designs obtained for the following objective vectors: (a) f1 = 2.45 GHz, f2 = 5.3 GHz, (b) f1 = 3.0 GHz, 

f2 = 5.0 GHz, (c) f1 = 2.45 GHz, f2 = 4.5 GHz, (d) f1 = 2.7 GHz, f2 = 5.0 GHz. The vertical lines denote the 

target operating frequencies. 
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Table 6. Dual-band dipole antenna of Fig. 10: Modeling results and benchmarking 

Number of 

training 

samples 

Modeling technique 

Kriging RBF Nested kriging [64] 
Two-stage surrogate 

(this work) 

Modeling 

error 

Model setup 

cost 

Modeling 

error 

Model setup 

cost 

Modeling 

error 

Model setup 

cost$ 

Modeling 

error 

Model setup 

cost 

50 21.7 % 50 24.9 % 50 9.9 % 980 7.3 % 280 

100 17.3 % 100 19.8 % 100 6.4 % 1,030 5.1 % 330 

200 12.6 % 200 14.3 % 200 4.4 % 1,130 3.8 % 430 

400 9.3 % 400 10.5 % 400 3.8 % 1,330 3.1 % 630 

800 7.2 % 800 8.7 % 800 3.4 % 1,730 2.5 % 1,030 
$The cost includes acquisition of the reference designs, which is 930 EM simulations of the antenna when using feature-based optimization [47] 
as listed in the table. Conventional (minimax) optimization required 1,201 simulations. 
#The cost includes generation of random observables, here, 230 simulations in total to yield Nr = 50 accepted samples. 

 

 

To verify the design utility of the model, it has been employed to parameter tuning of 

the antenna for several pairs of target operating frequencies, as indicated in Table 6 and Fig. 13. 

It can be observed that the resonant frequencies of the antenna are properly allocated in all 

considered cases, and the initial design produced using the inverse regression model is of good 

quality, which makes local search sufficient to successfully conclude the optimization process. 

Furthermore, the agreement between the surrogate-predicted and EM-simulated antenna 

characteristics at the final designs is excellent. 

3.3. Case III: Quasi-Yagi Antenna 

The third example is a quasi-Yagi antenna with a parabolic reflector [75], shown in 

Fig. 14. Table 8 gives the details on the antenna design variables, its computational model, as 

well as the design objective ranges. The feed line width W1 is computed for a given substrate 

permittivity to ensure 50-ohm input impedance. The computational model is implemented in 

CST Microwave Studio. Just as for the first case study (Section 3.1), the permittivity is a part 

of the objective space F. The surrogate model is to represent the antenna reflection and realized 

gain characteristics over F. Note that the dimensionality of X is ten, which makes this case the 

most challenging from the point of view of surrogate modeling. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 7. Dual-band dipole antenna: Optimization results using the proposed two-stage surrogate 

Target operating conditions Geometry parameter values [mm] 

f1 [GHz] f2 [GHz] l1 l2 l3 w1 w2 w3 

2.45 5.30 30.7 3.91 0.45 0.86 3.15 2.28 

3.00 5.00 26.0 4.37 0.61 0.96 2.95 0.98 

2.45 4.50 30.3 4.00 0.57 0.92 3.08 1.84 

2.70 5.00 28.4 3.98 0.54 0.89 2.96 1.54 

 

Table 8. Case I: Quasi-Yagi antenna 

Parameters 

Substrate thickness h = 1.5 mm 

Designable parameters x = [W L Lm Lp Sd Sr W2 Wa Wd g]T 

Lower bounds  l = [22.0 3.5 0.3 6.5 3.0 0.5 3.5 0.2]T 

Upper bounds  u = [27.0 8.0 2.3 16.0 7.0 5.5 6.0 2.3]T 

Computational model ~300,000 cells 

Simulation time 90 s 

Design objective ranges 

Substrate permittivity 2.0  r  5.0 

Operating frequency 2.5 GHz  f0  6.5 GHz 

 

W1

W2

W1

Sr

Lm

W2

W1

g
Wa

Sr

Lm

W1

Wd

W

L

Lp

Sr Metal via

 
                                                     (a)                                                       (b) 

Fig. 14. Quasi-Yagi antenna geometry [75]: (a) top layer, (b) bottom layer. 

 

   
                       (a)                                                    (b)                                                      (c) 

Fig. 15. Quasi-Yagi antenna: inverse regression model for selected antenna parameters: (a) Lm, (b) W, 

(c) Wd. Inverse model surfaces and random observables shown using grey and blue circles, respectively. 
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Table 9. Quasi-Yagi antenna of Fig. 14: Modeling results and benchmarking 

Number of 

training 

samples 

Modeling technique 

Kriging RBF Nested kriging [64] 
Two-stage surrogate 

(this work) 

Modeling 

error 

Model setup 

cost 

Modeling 

error 

Model setup 

cost 

Modeling 

error 

Model setup 

cost$ 

Modeling 

error 

Model setup 

cost 

50 61.4 % 50 65.3 % 50 17.9 % 1,949 10.8 % 242 

100 50.7 % 100 51.8 % 100 13.3 % 1,999 8.4 % 292 

200 39.8 % 200 43.2 % 200 7.5 % 2,099 7.1 % 392 

400 32.8 % 400 37.1 % 400 5.4 % 2,299 5.9 % 592 

800 31.8 % 800 33.6 % 800 4.5 % 2,699 5.0 % 992 
$The cost includes acquisition of the reference designs, which is 1,899 EM simulations of the antenna. 
#The cost includes generation of random observables, here, 192 simulations in total to yield Nr = 50 accepted samples. 

  

                                   

The experimental setup is the same as for the first two problems. We use Nr = 50 random 

observables which are obtained using 192 EM simulations of the antenna structure. The 

surrogates were constructed for NB = 50, 100, 200, 400, and 800 training samples. The 

benchmark methods include kriging interpolation and RBF (both set up in the space X), and 

the nested kriging surrogate with the thickness parameter of T = 0.05 (in the domain XS). The 

nested kriging model utilizes eight reference designs, the cost of their acquisition is 1,899 EM 

simulations of the antenna. This cost is much higher than for the previous examples due to 

problem dimensionality as well as more involved formulation of the optimization task [76].  

 Table 9 shows the numerical results for the two-stage surrogate and the benchmark 

techniques. Visualization of the inverse regression model for selected antenna parameters can 

be found in Fig. 15, whereas Fig. 16 shows a comparison of EM-simulated and surrogate-

predicted responses for selected test points. The results indicate that the predictive power of 

the two-stage surrogate is considerably better than for the conventional models, and it is 

comparable with the nested kriging for training data set of 200 samples and larger, but it is 

superior for NB = 50 and 100. The aforementioned performance is consistent with the previous 

verification cases discussed in Sections 3.1 and 3.2. However, for this antenna, the 

computational savings with respect to nested kriging are even more pronounced due to high 
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cost of reference design acquisition for the latter (1,899 EM simulations). For example, the cost 

reduction of the surrogate model setup is 88 percent for NB = 50, and 63 percent for NB = 800. 

The design utility of the model has been demonstrated by optimizing the antenna for 

the target operating frequency f0 assuming a given substrate permittivity r (both within the 

assumed objective space). The optimization process aimed at ensuring at least eight-percent 

fractional bandwidth (symmetric w.r.t. f0) and maximizing the average realized gain within the 

same bandwidth. The results are shown in Table 10 and Fig. 17. It can be noticed that the 

operating bandwidth of the antenna is well controlled, and the inverse regression model yields 

good initial designs for further tuning. Also, the agreement between the EM-simulated antenna 

responses and the predictions of the two-stage surrogate is excellent.  

 

Table 10. Quasi-Yagi antenna: Optimization results using the proposed two-stage surrogate 

Target operating 
conditions 

Geometry parameter values [mm] 

f0 [GHz] r W L Lm Lp Sd Sr W2 Wa Wd g 

3.6 3.0 118.4 71.8 22.4 22.3 13.5 13.7 3.96 13.3 23.7 0.69 

4.1 3.0 118.5 71.8 22.9 22.3 14.1 13.3 3.72 11.2 21.8 0.68 

2.7 4.4 114.3 66.3 19.4 21.4 13.8 16.6 3.96 16.6 28.6 0.83 

4.2 4.4 117.2 65.0 24.0 22.4 15.8 12.4 3.86 8.22 18.8 0.69 

 

 
Fig. 16. Quasi-Yagi antenna: reflection (top) and realized gain (bottom) characteristics at the selected 

test designs: EM model (—), and the proposed two-stage surrogate (o). The surrogate set up using NB = 

400 training samples. 
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                                             (a)                                                                                      (b) 

 
                                             (c)                                                                                      (d) 

Fig. 17. Quasi-Yagi antenna: EM-simulated reflection responses at the initial design () obtained using 

the inverse regression model, as well as surrogate (o) and EM-simulated response (—) at the design 

obtained by optimizing the proposed two-stage surrogate set up using NB = 800 training samples. The 

designs obtained for the following objective vectors: (a) f0 = 3.6 GHz, r = 3.0, (b) f0 = 4.1 GHz, r = 

3.0, (c) f0 = 2.7 GHz, r = 4.4, (d) f0 = 4.2 GHz, r = 4.4.  Vertical lines denote the target operating band 

of the antenna. Reflection and realized gain characteristics shown using black and gray lines, 

respectively. 

 

 

4. Conclusion 

 The paper proposed a novel approach to low-cost surrogate modeling of antenna 

structures. Our two-stage knowledge-based methodology capitalizes on the performance-

driven modeling concept. The confined domain of the final surrogate is defined using an 

auxiliary inverse regression model. At this stage of the modeling process, unlike the traditional 

constrained modeling methods, the procedure presented here does not require any pre-

optimized reference designs. Instead, the inverse model is rendered based on a problem-

specific knowledge in the form of a set of random observables generated within the assumed 

parameter space. This has a profound effect on the computational cost of the surrogate model 

setup, which is reduced by up to eighty percent, as compared to the nested kriging framework, 

the recent performance-driven approach. As demonstrated using three antenna examples, the 
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proposed technique ensures superior predictive power of the surrogate while using limited 

numbers of training data samples. The accuracy-related advantages are particularly pronounced 

for smaller data sets as the random observables are also taken into account for model 

identification. The knowledge-based definition of the confined domain also provides means for 

straightforward uniform sampling as well as model optimization. Finally, the definition of the 

model domain permits a convenient determination of its lateral size by exploiting to an even 

larger extent the knowledge about the system under design, which has been a non-trivial 

problem for the previous performance-driven modeling approaches. Design utility of the two-

stage approach has been corroborated through application case studies (antenna optimization). 

The future work will include investigation of the scalability properties for high-

dimensional parameter spaces (beyond ten parameters), as well as the incorporation of response 

feature technology (i.e., handling the modeling task at the level of the system response features 

or characteristic points, rather than the frequency characteristics in their entirety), which should 

lead to further computational savings. Furthermore, dimensionality reduction methods 

(primarily based on spectral analysis of the observable set) will be employed to span the model 

domain along the most important directions only and achieve additional cost reduction and 

predictive power improvements. Finally, the presented technique will be applied to construct 

replacement models of other types of high-frequency components. 
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