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Abstract
An isothermal compressible single-phase fluid flow through a non-homogeneous granular body composed of densely packed 
overlapping spheres imitating rock under high pressure was numerically studied using two different approaches. The first 
approach called the full 3D CFD model used the finite volume method (FVM) to solve the Reynolds-averaged Navier–Stokes 
equations using Reynolds stress model (BSL) in the continuous domain between the granulates. The model was verified, 
based on experimental and numerical results from the literature. The second approach was a simplified coupled DEM-CFD 
model based on a fluid flow network. The main aim of the work was to develop a validation procedure for simplified cou-
pled DEM-CFD models due to the lack of experimental data for fluid flow characteristics in densely packed granules under 
extremely high-pressure conditions. First, a series of numerical simulations were performed for the fluid domain with the 
full 3D CFD model. The results of those simulations were next used to validate the 2D numerical results of the simplified 
coupled DEM-CFD model with respect to velocities, pressures, densities and flow rates. Almost the same pressure and den-
sity distributions and mass flow rates were obtained in both approaches. However, the fluid velocity was different due to the 
different fluid volumes in both fluid domains. The current simulation results constitute a reliable benchmark for validating 
other coupled 2D/3D DEM-CFD models that use a fluid flow network approach.
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List of symbols
A	� Cross-section area [m2]
At	� Total cross-section area (area of fluid and solid) 

[m2]
dP	� (Averaged) sphere diameter [m]
F1	� Blending function
h	� Height of the channel [m]
I	� Unit tensor
k	� Turbulent kinetic energy per unit mass [m2s-2]
K	� Permeability coefficient [m2]

KD	� Darcy permeability coefficient [m2]
KF	� Forchheimer permeability coefficient [m2]
L	� Characteristics length [m]
n	� Number of elements
P	� Fluid pressure [Pa]
Pk	� Shear production rate of turbulence [Kg 

m−1 s−3]
Pkb∕Pωb	� Buoyancy production term in k/ω-equation
Q	� Volumetric flow rate [m3/s]
R	� Sphere radius [m]
Re	� Reynolds number
Rek	� Permeability Reynolds number
Repart	� Particle Reynolds number
Repore	� Pore Reynolds number
Rech	� Reynolds number in channel
T	� Time [s]
U	� Average velocity component [m/s]
Us	� Superficial velocity [m/s]
u	� Average velocity component along OX axis 

[m/s]

 *	 J. Tejchman 
	 tejchmk@pg.gda.pl

	 R. Abdi 
	 rezvan.abdi@pg.edu.pl

	 M. Krzaczek 
	 marek.krzaczek@pg.edu.pl

1	 Faculty of Civil and Environmental Engineering, 
Gdansk University of Technology, Narutowicza 11/12, 
80‑233 Gdańsk, Poland

http://orcid.org/0000-0001-8263-3351
http://crossmark.crossref.org/dialog/?doi=10.1007/s10035-021-01179-2&domain=pdf


	 R. Abdi et al.

1 3

   15   Page 2 of 25

u
′	� Fluctuations of velocity component along OX 

axis [m/s]
v	� Average streamwise velocity component [m/s]
v
′	� Fluctuation of streamwise velocity [m/s]
��⃗V 	� Velocity vector [m/s]
Vch	� Average fluid velocity in the channel [m/s]
Vy	� Streamwise velocity [m/s]
Vy	� Pore average streamwise velocity [m/s]
vn,wall	� Velocity normal to surface [m/s]
w	� Average velocity component along OZ axis 

[m/s]
w

′	� Fluctuations of velocity along OZ axis [m/s]
x	� Distance along OX axis[m]
y	� Distance along OY axis[m]
z	� Distance along OZ axis [m]
�	� BSL model constant
�	� Forchheimer coefficient
�

′	� BSL model constant
�	� Dissipation rate of the turbulent kinetic energy 

[m2/s−3]
µ	� Dynamic viscosity [Pa s]
�t	� Eddy viscosity/turbulent viscosity [Pa s]
ν	� Kinematic viscosity [m2/s]
�	� Fluid density [kg/m3]
�	� Pore average fluid density [kg/m3]
��∕�k	� Turbulent Prandtl number in ω/k–equation
�wall	� Wall shear stress [Pa]
ϕ	� Volumetric porosity
�	� Turbulent frequency [1/s]

1  Introduction

There are several hydro-mechanical engineering problems 
[1–8] in which it is necessary to study physical phenom-
ena using the discrete element method (DEM) coupled 
with computational fluid dynamics (CFD). This coupling 
is of major importance for analyzing mesoscale fluid–solid 
interactions in porous heterogeneous materials (e.g. rock 
and concrete with porosities significantly below 10%) that 
strongly affect their global behaviour (particularly when dif-
ferent failure patterns appear). As compared with usual con-
tinuum methodologies, the coupled DEM-CFD approaches 
are more realistic since they allow for a direct simulation of 
the material meso-structure and thus are very useful for stud-
ies of mechanisms of the initiation, growth and formation of 
cracks and fractures.

Recently, several simplified coupled approaches combin-
ing the discrete element method (DEM) and computational 
fluid dynamics (CFD) (based on fluid flow networks) were 
formulated mainly in 2D conditions for describing hydro-
mechanical problems (e.g. hydraulic fracturing process in 

rocks [9–19]). They consider incompressible/compress-
ible laminar viscous fluid flow and interaction mechanisms 
between flowing fluid and particles with the so-called pore 
networks, called the pore-scale finite volumes that are built 
through a weighted Delaunay triangulation over the discrete 
element packing. The edges of triangles connect the gravity 
centers of discrete elements. The different numerical meth-
ods are applied to solve the governing equations of motion. 
The most common is a single-phase fluid flow model in 
pores and cracks/capillaries (full saturation); the only phase 
is a liquid. If numerical investigations consider the material 
behaviour with e.g. rock-like properties, other numerical 
methods such as FEM, FVM, LBM and SPH cannot be eas-
ily coupled to DEM that requires densely packed elements. 
This requires then extremely dense meshes due to both enor-
mous pressures and velocities in fluid or a complex fluid 
domain geometry (e.g. during a hydraulic fracturing process 
in rocks). Meso-structures of some engineering materials 
(e.g. rocks or concretes) possess a very low porosity that 
leads to a very high packing of discrete elements. Moreover, 
meso-scale processes are often unsteady (time-dependent) 
and characterized by pronounced changes in the geometry 
topology what contributes to frequent remeshing processes 
(even computing parallelization cannot solve this problem 
[20]). The very densely packed discrete domains cause the 
following issues for classical CFD models:

•	 Long time of the mesh generation.
•	 A huge number of elements/cells (tens of millions).
•	 Mesh generation may be impossible if discrete elements 

vary in size and significantly overlap.
•	 Automatic remeshing is not feasible in transient problems 

when the topology of the domain geometry changes.

An additional difficulty in using classic CFD models 
to study mesoscale phenomena in materials with very low 
porosity (10% and less) is the lack of experimental results 
(e.g. during hydraulic fracturing). In the practice, DEM-
CFD models can only be calibrated for the bulk permeability 
that is a material property to be experimentally determined. 
However, this does not guarantee that the fluid flow is real-
istically reproduced at the meso-level. Considering that the 
purpose of meso-scale investigations is to understand local 
physical phenomena affecting the material behavior at the 
macro-scale, this validation method may also be insufficient. 
Hence, the only method of validating the simplified DEM-
CFD model and the characteristics of fluid flow in the mate-
rial at the mesoscale is a comparison of calculation results 
with corresponding outcomes for a continuous domain 
between discrete elements (not reduced to a system of chan-
nels) with commonly used CFD models. While the overall 
trend of pressure distribution in the media is expected to be 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Comparative study of high‑pressure fluid flow in densely packed granules using a 3D CFD model…

1 3

Page 3 of 25     15 

almost linear, an incorrect DEM-CFD model may not even 
be able to reproduce this trend. Therefore, the validation 
of DEM-CFD models should be performed on very simple 
specimens with known macroscopic and mesoscopic fluid 
flow properties. The best practice is to prepare a specimen 
with a defined porosity with boundary conditions reproduc-
ing a one-dimensional fluid flow at the macro-scale. The 
specimen porosity must be as low as possible but still allow-
ing for mesh generating.

The main research goal is to propose a validation procedure 
for simplified 2D fluid flow models coupled with DEM. The 
validation procedure is presented with our coupled 2D DEM-
CFD approach that was formulated and used for describing 
a hydraulic fracturing process in rocks [21, 22]. It simplifies 
the flow of fluid in a continuous domain under isothermal and 
high-pressure conditions to laminar flow through a virtual pore 
network composed of channels between granulates (VPN). It 
considers the solid domain (discrete elements) and the fluid 
domain at the same time. It was significantly improved as com-
pared to the existing fluid flow network models [9–19]. The 
approach improvements focused on the detailed tracking of 
liquid and gas fractions in pores and fractures depending on 
their different geometry, size, and position under isothermal 
conditions [21]. In addition, our approach was extended to 
multiphase fluid flow [22]. The coupled DEM-CFD approach 
was developed by the authors and implemented into the open-
source DEM program YADE [23, 24]. The approach was 
directly compared with numerical simulation results of fluid 
flow in a continuous 3D domain between very densely packed 
and overlapping spheres (imitating a rock specimen) under 
high pressures (ca. 70 MPa) on isothermal conditions, based 
on the Reynolds Averaged Navier–Stokes equations using the 
Reynolds Stress Baseline (BSL) turbulence model (hereinaf-
ter referred to as the full CFD 3D model). In this model, the 
fluid domain between discrete elements was considered only. 
The full CFD simulations of fluid flow were carried out with 
the commercial software ANSYS CFX [25]. The full CFD 
approach was validated with an experiment [26] and its numer-
ical simulation [27]. The velocities, pressures, mass flow rates, 
and densities in a non-homogeneous densely packed domain 
with the same geometry and permeability were directly com-
pared for both the approaches able to simulate fluid flow. No 
fractures were taken into account in a deforming non-homoge-
neous granular specimen (they will be considered in the next 
research step). The current simulation results constitute a relia-
ble benchmark for validating other coupled 2D/3D DEM-CFD 
models that use a fluid flow network composed of channels in 
a domain between spheres (such a benchmark calculation has 
not yet been demonstrated in the literature). Another goal of 
our present investigations is to compare the calculation time 
in 2D and 3D simulations to present a numerical model with 
a feasible computation effort.

The paper is arranged as follows. After Introduction 
(Sect. 1), the fluid flow models using the full 3D CFD and 
simplified 2D DEM/CFD are described in Sects. 2 and 3. 
The numerical validation of the fluid flow model using the 
full 3D CFD in a continuous domain between spheres, based 
on an experiment and its numerical simulation, is discussed 
in Sect. 4. Section 5 reports on comparative numerical study 
results of the fluid flow in a densely packed granular speci-
men imitating rock using both the full CFD and simplified 
DEM-CFD approach. Finally, some concluding remarks are 
summarized in Sect. 6.

2 � Full CFD model of fluid flow in continuous 
3D domain between spheres

Turbulent compressible single-phase fluid flow through 
a heterogeneous very dense packing of fixed granules 
(imitating a rock specimen) was numerically studied 
under isothermal conditions. Although spherical parti-
cles with the same diameter were used, the final shape of 
each particle was not spherical due to overlaps between 
them. It was also assumed that there was no mass source 
or external body force in the fluid domain. Gravitational 
forces were neglected. An unsteady turbulent model was 
assumed. The results were presented at the equilibrium 
state.

In fluid mechanics, governing equations are derived 
from conservation laws: conservation of mass, momentum, 
and energy. The conservation of energy equation is not 
considered in this study due to isothermal conditions. The 
mass conservation equation known also as the continuity 
equation is given by

where ρ is the fluid density, t is the time and V  is the veloc-
ity. The first term presents the density variation in time in a 
control volume and the second term presents the mass flow 
rate from one surface to the other surface of the control vol-
ume. The density varied according to a barotropic model, 
defined as

where �0 is the density for the reference pressure, P0 is 
the reference pressure and C is the fluid compressibility 
for water at 70 ◦C ( �0 = 977.36 kg/m3, P0=0.1 MPa and 
C = 4e−10 1/Pa). The momentum conservation equation for 
compressible flow is

(1)
��

�t
+ ∇ ∙ (�V) = 0

(2)� = �0(1 + C(P − P0))

(3)�
(

�V

�t
+ V .∇V

)

= −∇P + �∇2V+
1

3
�∇(∇.V)
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where P is the fluid pressure and � is the dynamic vis-
cosity. Equation  3 describes the momentum transport 
under assumed conditions for both laminar and turbulent 
flow regimes. For distinguishing a dominant flow regime, 
the Reynolds number Re is used that defines the ratio of 
inertial forces to viscous forces

where L is the characteristic length scale. However, when a 
fluid flows through a porous medium, Re is usually related to 
the average particle diameter and porosity [28]. If a porous 
structure is reproduced by an infinite number of square bars/
tubes, the Reynolds number Repore is used based on the pore 
size [29]. In the case of DEM, the material structure is repro-
duced by discrete elements, e.g. spheres, and the following 
definition of the Reynolds number Repart is usually used [30]

where Dp is the average particle diameter, ϕ denotes the 
porosity (� =

volumeoffluid

totalvolume
) , � is the dynamic fluid viscosity,Vy 

is the pore average streamwise velocity and Us denotes the 
superficial velocity (Us = Q/At, where Q and At are the volu-
metric flow rate and total bed cross-sectional area, respec-
tively). The high-velocity flow in porous media leads to 
microscopic (pore level) turbulences [31, 32]. Highly chaotic 
structures usually develop when Repart > 120 [30] or 
Repore > 300 [32]. The mean diameter of spheres is used as a 
characteristic length in the particle Reynolds number and the 
mean pore size is used in the studies of porous media com-
posed of tubes. The Re number can be also defined as the 
permeability Reynolds number Rek =

�Us
√

KD

�
 , where KD 

denotes Darcy’s permeability coefficient. This Re number, 
Rek, has no physical meaning and it should not be confused 
with the ratio between inertia and viscous forces (Eq. 4) 
[31]. The permeability coefficient KD is measured using 
Darcy’s law that constitutes a linear relationship between the 
fluid velocity and pressure drop:

where ∇P is the pressure drop over a given distance. Darcy's 
law is solely valid up to the creep flow limit with Rek < 0.1 
[28, 31] (the pressure drop within the medium is solely 
due to the microscopic viscous drag). As the flow velocity 
increases, a correction term known as the Forchheimer term 
is added to Darcy’s law to consider the drag due to both 
inertial effects inside pores and turbulent dissipation [32]:

(4)Re =
�VL

�

(5)Repart =
�UsDP

��
=

�VyDP

�

(6)−∇P =
�US

KD

where KF is the Forchheimer permeability coefficient that 
is close to but not the same as KD [33]. The flow in porous 
media has two main differences from the free-stream tur-
bulent flow: the size of eddies is limited by pore size and 
additional drag is caused by a porous solid matrix [32].

The turbulent flow was analyzed in the current paper 
with the Baseline (BSL) Reynolds Stress model that 
solves two transport equations: one for the turbulent 
kinetic energy k and one for the turbulent frequency � 
[25]. The BSL model is based on the ω-equation which 
precisely describes the fluid behaviour near walls. In BSL, 
an equation for the transport of all components of Reyn-
olds stresses tensor is used without the eddy viscosity 
hypothesis [25]. The Reynolds Stress model directly intro-
duces the ‘Reynolds stresses’ terms that are computation-
ally expensive due to six additional equations. The BSL 
model is better suited to complex flows such as fluid flow 
in specimens used in this study. This is due to a precise 
model of the turbulence production terms ( Pk , Pkb and P�b 
in Eqs.8 and 9) and the model of stress anisotropy [25]. 
The BSL model couples the k − � and k − � models. BSL 
is a transformation of the k − � model in the outer region 
to the k − � model near the surface. The final form of the 
k − � formulation is given by both the k-equation:

and the �-equation:

where � is the turbulent frequency, k denotes the turbulent 
kinetic energy (defined as 0.5 ( u�

u
�
+ v

�
v
�
+ w

�
w

�  ), where 
u

′

, v
′

,w
′ are the velocity fluctuations in the OX, OY and OZ 

direction, Pk is the production rate of turbulence (turbu-
lence due to viscous forces), Pkb and P�b are the buoyancy 
production terms that represent the influence of buoyancy 
forces on kinetic energy and frequency, respectively and 
σω2 is the turbulent Prandtl number in the �-region. U is 
the average velocity component, F1 is the blending function 

(7)−∇P =
μUS

KF

+ ��Us
2

(8)

�

�t
(�k) +

�

�xj

(

�Ujk
)

= Pk + Pkb − �
�

�k� +
�

�xj

[(

� +
�t

�k

)

�(k)

�xj

]

(9)

�

�t
(��) +

�

�xj

(

�Uj�
)

= �
�

k
Pk + Pωb − ���2

+
�

�xj

[(

� +
�t

��

)

�(�)

�xj

]

+
(

1 − F
1

)

2�
1

��2�

�(k)

�xj

�(�)

�xj
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equal to 1 near the surface; it decreases down to 0 outside 
the boundary layer,�t is the eddy viscosity or turbulent vis-
cosity (defined as �t =

�k

�
 ) and � ′ denotes the model con-

stant ( � ′=0.09). The turbulent Prandtl number �k and �� 
and the coefficients � and � are mixed between values from 
two sets of constants, corresponding to the constants for 
the �—based model and the constants for �—based model 
transformed to the �—formulation [25]. The constants 
are �k1 = 2, ��1 = 2, �1 = 0.075, �1 = 0.553 for the Reyn-
olds stress—the �-turbulence model in the �-region and 
�k2 = 1, ��2 = 1∕0.856, �2 = 0.0828, �2 = 0.44 for the Reyn-
olds stress—the �-turbulence model in the �-region [25].

3 � Virtual pore network model of coupled 
DEM‑CFD

The DEM-CFD model couples the discrete element method 
in a discrete domain with computational fluid dynamics in 
a continuous domain. DEM directly simulates the material 
meso-structure and thus is suitable for comprehensive stud-
ies of mechanisms of the initiation, growth and formation of 
localized zones, cracks and fractures at the meso-scale that 
greatly affect the macroscopic behaviour of frictional-cohe-
sive materials [34, 35]. It easily represents discontinuities 
caused by fracturing or fragmentation. The ease of access to 
information at the particle scale makes DEM a very useful 
tool to study the dynamics of systems composed of particles. 
The DEM disadvantage is a huge computational cost. The 
DEM calculations were performed with the three-dimen-
sional spherical explicit discrete element open code YADE 
[23, 24], allowing a small overlap to be formed between 
two contacted bodies (soft-particle model). An arbitrary 
micro-porosity can be achieved in DEM since the particles 
may overlap. The DEM model used is briefly summarized 
in Appendix ‘A’.

The general concept of a fluid flow algorithm using DEM 
was adopted from Cundall [36], Hazzard et al. [37], and Al-
Busaidi et al. [38]. In this concept, fluid flow was simulated 
by assuming that each particle contact was an artificial flow 
channel (between two parallel plates in 2D or along a duct in 
3D) and those artificial channels connected real reservoirs in 
particulate media (pores, fractures, and pre-existing cracks) 
that stored fluid pressures. Thus, the pressure in reservoirs 
depended both on the mass transported along channels from/
to other reservoirs and the volume changes of reservoirs. 
Since the volume of reservoirs changed due to the material 
deformation (described by discrete elements in DEM), the 
fluid density had to also change (the fluid in reservoirs must 
be compressible). Thus, the fluid moved in channels while 
the reservoirs solely stored pressure. The artificial chan-
nels created a fluid flow network. The fluid flow in artificial 

channels was characterized by a simplified laminar flow 
of the incompressible fluid instead of a compressible fluid 
model in real reservoirs. However, the spatially constant 
density of the fluid in channels might change in time due to 
density changes in reservoirs.

The original system consisted of two coexisting domains: 
3D discrete domain (spheres) and 2D fluid domain. The 
gravity centers of spheres were located on the XOY speci-
men mid-plane. To create a two-dimensional fluid domain, 
spherical 3D particles were projected onto the mid-plane 
domain. Next, a remeshing procedure discretized the over-
lapping circles (projected spheres), determined the contact 
segments and deleted the overlapping areas [21]. All dis-
cretized pores between discrete elements called here virtual 
pores (VP), created a virtual pore network (VPN) to pre-
cisely reproduce their changing geometry (shape, area, and 
location). The displacements of spheres in the perpendicular 
direction OZ and the rotations around the axes OX and OY 
were fixed.

The vertices of triangles were located on circle circum-
ferences. The gravity centres of grid triangles (VPs) were 
connected by channels composed of two parallel plates 
that created a fluid flow network. The isolated pores in 
2D were not isolated in 3D. The virtual (artificial) chan-
nels were introduced in the 2D fluid flow network to 
reproduce real flow in 3D. They were located between 
spheres in contact and connected the isolated pores. 
Hence, two types of channels were introduced (Fig. 1): 
(1) the channels between spheres in contact and connect-
ing the isolated pores (the so-called virtual channels S2S) 
(Fig. 1a) and (2) the channels connecting grid triangles in 
pores (T2T) (Fig. 1b). The channels ‘T2T’ and ‘S2S’ con-
nected the gravity centres of triangles and created a fluid 
flow network (VPN) (Fig. 2). The hydraulic aperture h of 
virtual channels (S2S) was related to the normal stress by 
a slightly modified empirical formula of Hökmark et al. 
[40]. The hydraulic aperture of the channel type T2T was 
directly related to the geometry of adjacent triangles. In 
general, all particles could move during simulations due 
to the applied fluid pressure. Consequently, the contact 
stresses and the overlap areas changed. The fluid flow 
network was then modified. If particle bonds were not 
broken, the calculations were carried out with ‘T2T’ and 
‘S2S’. If bonds were broken, the virtual channels ‘S2S’ 
that connected two separated pores by overlapping parti-
cles were replaced by the channels ‘T2T’. The new fluid 
flow network was generated by a remeshing procedure 
for actual particle positions. The geometric criterion was 
used to trigger the remeshing procedure that was switched 
on if the sum of the particle radii was less than the dis-
tance between the particle centers of gravity.

The fluid moved through channels through a thin layer 
separated by two parallel plates close to each other. Virtual 
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pores accumulated pressure and stored density. The fluid 
density change in VPs was related to the mass change that 
resulted in pressure variations. The equation of momentum 
conservation was thus neglected in triangles but the mass 
was still conserved in the entire volume of triangles. The 
equations of state and continuity were employed to compute 
the density of fluid stored in VPs. The fluid flow in channels 
was estimated by solving continuity and momentum equa-
tions for the laminar flow of incompressible fluid.

For single-phase flow, the mass flow rate in the channels 
was estimated, based on the Poiseuille flow law [39], derived 
from the classical Reynolds lubrication theory [41]:

where Mx—the mass fluid flow rate (per unit length) 
across the film thickness in the x-direction [kg/(m s)], h—
the hydraulic channel aperture (its perpendicular width) 
[m], ρ—the fluid density [kg/m3], t—the time [s], μ—the 
dynamic fluid (liquid or gas) viscosity [Pa s] and P—the 
fluid pressure [Pa]. The channel length was assumed to be 
equal to the distance between the gravity centres of adjacent 
grid triangles.

The mass conservation equation was employed for fluid 
in virtual pores. By assumption, there was no internal mass 
source and the grid velocity was neglected. A linear relation-
ship between the density and pressure was chosen for the 
fluid. The new pressure was computed from

where V—the volume of VP, [m3], K—the fluid bulk modu-
lus [Pa], qj—the volumetric flow rate of the fluid [m3/s], 
k—the number of VP edges (for 2D problems it is equal to 3) 
and V̇—the time derivative of the virtual pore volume [m3/s].

The numerical algorithm was divided into 3 main stages 
([21, 22]):

a)	 Computing the mass flow rate for fluid flowing in chan-
nels surrounding VPs,

b)	 Computing density by employing the equation of state,
c)	 Computing pressure in VPs by employing the continuity 

equation and equation of state.

This algorithm was repeated for each VP in VPN using 
an explicit formulation (Fig. 3). The discretization algo-
rithm was based on the alpha-shape theory [42] and the 
Delaunay triangulation. The grid remeshing was automati-
cally performed when the topological properties of the 
grid geometry changed [21]. The computational results 
(e.g. pressures) were accurately transformed from the old 

(10)Mx = �
h3

12�

�P

�x

(11)∫
V

𝜕P

𝜕t
dV = K

(

k
∑

j=1

(

qj
)

− V̇

)

grid to the new one, by assuming that the mass was a topo-
logical invariant. The coupling scheme of DEM with CFD 
(described in detail in [21]) involved two sets of discrete 
equations to be solved: the flow rule defined for all VPs 
and the law of motion in DEM for all discrete elements. 
The two-way coupling scheme was based on a transfer of 
pressure and shear stress forces from CFD to DEM and 
the time derivative of VP volumes from DEM to CFD 
[21]. The pressure and shear forces from the fluid caused 
sphere displacements in DEM that changed coordinates 
and volumes of triangles in VPN. The time derivative of 
the VP volume was computed in DEM and then trans-
ferred to CFD (Eq. 11). As a result, the volume change in 
DEM affected the pressure change in the fluid. The fluid 
pressures in VPs and ‘S2S’ channels were subsequently 
converted into the forces acting on spheres. The pres-
sures in VPs and shear stresses in ‘S2S’ channels were 
calculated by CFD in each time step and transferred from 
CFD to DEM. They were used to compute fluid forces that 
were added to contact forces before the time integration 
to update the displacements of each discrete element. The 
shear stresses in ‘T2T’ channels were also converted into 
forces acting on spheres.

In the DEM-CFD approach, the density of the Delau-
nay triangulation grid depends on the number of segments 
into which the circle (sphere cross-section) is divided. 
Consequently, the number of channels in the fluid flow 
network depends on the number of divisions. The grid-
dependency tests were performed. For a division number 
greater than or equal to 12, the results changed by less than 
5%. Thus, a division number equal to 12 was assumed in 
all simulations.

The pure CFD was calibrated with the aid of permeabil-
ity laboratory tests on rock specimens [22]. The following 
material constants were needed for the CFD simulations: 
reference pressure P0 , fluid density �0 for the reference pres-
sure P0 , fluid bulk modulus K =

1

C
 , dynamic viscosity of the 

liquid μ. The inverse of the bulk modulus of the fluid gave a 
fluid compressibility C. From one layer of spheres used in a 
2D problem, it is easy to extend the model into 3D calcula-
tions. All numerical parameters may be used without the 
necessity of re-calibration.

4 � Validation of full CFD model

4.1 � Experiment

Initially, to validate our full CFD model, the experimental 
results by Suekane et al. [26] on a packed bed of spheres 
were used for comparative purposes (spheres were fixed and 
arranged at each corner of the cube). A special apparatus 
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was constructed to measure the velocities of the fluid propa-
gating through voids of a packed specimen (Fig. 4). The 
velocities were measured with the magnetic resonance imag-
ing (MRI) technique. The experimental apparatus included 
a flow channel aligned vertically inside the MRI system. 

The diameter of the channel was d = 50 mm. The fluid chan-
nel was composed of 5 unit cells of the same size. Each 
unit cell 28 × 28 × 28 mm3 had a cubic shape and contained 
eight fixed 1/8 spheres with a diameter DP = 28 mm. The 
spheres were placed in two layers with four 1/8 spheres. The 

Fig. 1   Fluid flow network in 
rock matrix with triangular dis-
cretization of pores (in blue): A 
channel type ‘S2S’ (red colour) 
and B channel type ‘T2T’ (red 
colour) [21, 22]

Fig. 2   Fluid flow network in 
rock matrix (A—zoomed area)
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volumetric porosity ϕ of the unit cell was ϕ = 47.6%. The 
circulating fluid was water supplied from a reservoir with 
a constant pressure to keep the flow rate constant. Three 
components of the fluid velocity vectors in the 3D void space 
were directly visualized. The y-component of the fluid veloc-
ity was registered in the fourth unit cell at y = 0 (Fig. 4) for 
five different Repart numbers from the inertial flow region 
to the unsteady laminar flow region. The velocities were 
presented along the x-axis (blue line in Fig. 4). The phase 
encoding method was used [43] to find the velocity distri-
bution in a specimen cross-section. The Reynolds numbers 
Repart for the streamwise velocity for five arbitrarily chosen 
particles were: 12.17, 28.88, 59.78, 105.5, and 204.74. The 
dominant flow regime for Repart = 204.74 was reported to be 
laminar ([27, 44–46]).

For the value of Repart = 12.17, the fluid velocity 
decreased with the increasing area of cross-section normal 
to the main flow direction (the local geometry significantly 
influenced the flow). The water flowed over the surfaces of 
spheres like a creeping flow in which viscous forces were 
dominant. When increasing Repart, the local geometry was 
not the only factor affecting the velocity variation due to an 
increasing influence of inertia forces over viscous forces. 
With the high value of Repart (e.g. 204.74), where the inertial 
forces were dominant, the fluid moved through the pores like 
a jet without a velocity change. The maximum velocity in 
the center of pores increased with a growth of Repart even 
four times as compared to the average velocity in pores. The 
velocity profile was always parabolic.

4.2 � Numerical results

Our numerical results were also compared with similar 
numerical simulations of the experiment [26] performed by 
Gunjal et al. [27] with the commercial software ANSYS 
Fluent. Unstructured tetrahedral grids were assumed in their 
study to simulate incompressible laminar flow through a 
packed bed of fixed spheres [27]. A turbulent regime with 
the standard k-� model for the Repart numbers between 1000 
and 2000 was considered in their study. The model was used 
to study fluid flow over a wide range of particle Reynolds 
numbers (12-2000) for different packing arrangements. A 
unit cell (in red colour in Fig. 5) was composed of eight 1/8 
spheres. Translational periodic boundary conditions were 
assumed with the pressure drop to be periodic at all unit cell 
faces. A semi-implicit method for a pressure-linked equation 
(SIMPLE) algorithm was used for correcting a pressure gra-
dient based on the difference between the target mass flow 
rate and the actual one. Symmetry boundary conditions were 
imposed on all vertical faces bounding the fluid domain. 
The velocity and all gradients normal to the faces were set 
to zero. No-slip boundary conditions were applied on the 
surfaces of spheres [27].

In our simulation on lateral surfaces of the specimen, 
symmetry boundary conditions were chosen with the veloc-
ity normal to the surface, and all other normal gradients were 
set to zero. The velocity component parallel to the wall was 
computed only. In the inlet and outlet, periodic boundary 
conditions with a defined mass flow rate were chosen. On 
the sphere surfaces, no-slip conditions were defined where 
the fluid velocity was set to zero. The water entered the inlet 
at 70 ℃. The properties of water (with a proppant) were as 
follows: the dynamic viscosity 0.000406 Pa·s and the density 
977.36 kg/m3. An unstructured tetrahedral mesh was also 
used to discretize the fluid domain. A very dense mesh was 
assumed in the vicinity of spheres, to capture high-velocity 
gradients and related high shear stresses. The mesh depend-
ency test was carried out by measuring the pore average 
streamwise velocity Vy in the unit cell against the number 
of elements (Fig. 6). The streamwise velocity converged for 
the number of elements greater than one million (Fig. 6) and 
the mesh setting corresponding to one million elements was 
adopted for simulations.

Two numerical validation scenarios were considered 
on the cubic experiment specimen composed of eight 
1/8-spheres with a diameter of 28 mm diameters (Fig. 5). 
The first scenario compared the calculated fluid velocities 
with the experimental [26] and the numerical results [27]. 
The second scenario compared the permeability results 
using the two most common equations: Carman-Kozeny 
(Eq. 12) and van der Hoef (Eq. 13). FVM was adopted to 
solve governing equations. The discrete system of line-
arized equations was solved using the algebraic multi-grid 
method by means of the incomplete lower upper (ILU) 
factorization technique. Hydrodynamic equations for u, 
v, w and p were solved as a single system by a coupled 
solver of ANSYS CFX [25]. A high-resolution scheme 
was used for the advection term. Pressure and velocity 
were coupled with a high-resolution scheme derived from 
the discretization algorithm developed by Rhie and Chow 
[47] and modified by Majumdar [48].

Figure 7a presents the dimensionless y-component of 
fluid velocities for Repart = 204.74 at y = 0 along the dimen-
sionless x-value (blue line in Fig. 4). The distribution of 
the dimensionless y-component of velocity was parabolic 
and matched well with both the experimental [26] and 
numerical ones [27]. The dimensionless y-component 
of the fluid velocity at the center of the unit cell for five 
different values of the particle Reynolds number Repart is 
shown in Fig. 7b. The velocity variations are parabolic 
with increasing Repart. Good accordance of our numeri-
cal results with the experimental [26] and numerical ones 
[26] was obtained except for the result Repart = 12.17. Gun-
jal et al. [26] discussed in detail the possible causes of 
discrepancies between the results obtained in the experi-
ment and those obtained in numerical simulations with 
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Fig. 3   DEM-CFD coupling 
schema ( �⃗FP,j—force converted 
from pressure in VP, �⃗FS,j—force 
converted from shear stress in 
channels, ΔVn

i
—volume change 

in VP and n—time increment)
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Repart = 12.17. They came to the conclusion that the dis-
crepancies were not related to numerical errors but to 
measurement inaccuracies in the experiment since a steady 
flow at a very low flow rate was difficult to maintain, and 
the greatest scattering of the experimental results was 
there for Repart = 12.17.

In the second validation scenario, the diameter of the 
beads at each corner of the unit cell ranged from 0.006 m 
to 0.038 m to get different porosities ϕ. The Darcy per-
meability coefficient KD was computed for each porosity 
from Eq. 6. To compute the Darcy permeability, the small 
pressure difference between inlet and outlet was imposed 
in such a way that the Rek < 0.1. The results were compared 
with the Carman-Kozeny equation (derived semi-empir-
ically) (Eq. 12) [49–51] and the van der Hoef equation 
(derived from lattice Boltzmann methods) for spherical 
particles (Eq. 12) [52]:

(12)KD =
DP

2

180

�3

(1 − �)2

Figure 8 presents a comparison of the dimensionless per-
meability KD/D2 according to our simulation (Eq. 6), the 
Carman-Kozeny equation (Eq. 12) and the van der Hoef 
equation (Eq. 13) for Rek < 0.1. Equation 13 is valid in the 
porosity range 0.35<𝜙 < 0.99. To determine the average 
diameter for semi-spherical particles, the Sauter mean diam-
eter [51] was assumed, defined as the diameter of a sphere of 
the same surface area/volume as a particle of interest. The 
calculated dimensionless permeability in Fig. 8 non-linearly 
increases with growing porosity. The numerical result is in 
good agreement with Eq. 12 in the range 0.30<𝜙 < 0.77 and 
with Eq. 13 in the entire porosity validity range (Fig. 8). The 
differences between the simulation results (Eq. 6) and the 
results of Eq. 12 for � ≤ 0.30 result from the overlapping of 
spheres whose shape was not perfectly spherical. For porosi-
ties higher than 0.85, Eq. 12 needs a correction factor.

(13)

KD = D2
P

�

180
(1 − �)2

�3
+ 18�(1 − �)

�

1 + 1.5
√

1 − �
�

�−1

Fig. 4   Experimental apparatus connected to MRI system used by Suekane et al. [26]
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5 � Fluid flow in densely packed spheres

The validated full CFD model was compared with our 2D 
coupled DEM-CFD approach [21, 22], based on a fluid flow 
network between granulates. The validation was performed 
under conditions typical for a hydraulic fracturing process. 
However, the hydraulic fractures were omitted in numerical 
simulations yet.

5.1 � Specimen

The fluid flow characteristic was tested in a specimen con-
sisting of 1.0 mm diameter spheres (Fig. 9). Some of the 
spheres overlapped one another. The designed specimen 
imitated a rock specimen. Discrete elements (spheres) were 
arranged in one layer in such a way that their centers of 
gravity were located in the specimen midplane. As a result, 
the specimen had one layer of dense packing of spheres with 
considerable overlaps of a maximum of 0.3 mm (Fig. 10b). 

The size of the specimen was 10 × 10 × 1 mm3 and the 
total fluid volume was 3.378e−8 m3. A small specimen was 
assumed to significantly shorten the computation time, 
particularly with the full 3D CFD model (see Sect. 5.4). 
The specimen was composed of 131 spheres in a random 
arrangement. Other researchers who studied fluid flow in 
dense sphere systems, did not consider overlaps of spheres 
(e.g. [33, 50, 54–56]) due to meshing problems. Very high 
pressures (up to 70 MPa) were chosen to reproduce the 
nature of a hydraulic fracturing process.

The same sphere arrangement was used in both speci-
mens. However, the specimen for simulations with the full 
CFD model solely contained the fluid domain with the fluid 
flowing around spheres that were initially used to create a 
model geometry of the fluid domain and then removed. The 
specimen for coupled DEM-CFD simulations was com-
posed of both spheres (3D discrete domain) and fluid (2D 
continuous domain) (thus, two domains coexisted: the 3D 
discrete domain (sphere) and the 2D fluid domain located 
in the specimen mid-plane). The porosity was defined as the 
ratio of the fluid volume (void volume) to the total specimen 
volume (spheres volume and fluid volume) for both mod-
els. However, due to the two-dimensional nature of the fluid 
domain in the coupled DEM-CFD model, the fluid volume 
was differently computed. In the coupled DEM-CFD model, 
the spheres were interpreted as cylinders, i.e. as circles in 
the specimen mid-plane. The volume of cylinders is larger 
than that of spheres. Hence, the fluid volume in 2D was 
smaller than in 3D. This fact resulted in a different porosity 
in both models. The porosity of the DEM-CFD specimen 
was 13.864% while the porosity of the full CFD specimen 
was �=34% and was higher than a typical one for rocks (e.g. 
the porosity of shales is typically less than 5%). Design-
ing a lower porosity of the full CFD specimen was prob-
lematic regarding mesh generation (too many cells and too 
poor mesh quality). Even so, the fluid domain geometry was 

Fig. 5   Geometry of unit cell 
assumed in CFD simulations 
[27] (unit cell is marked in red)

Fig. 6   Pore average streamwise velocity versus number of elements n 
for particle Reynolds number Repart = 204.74 (full CFD model)
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very complex due to overlapping spheres. Both the models 
could be compared for different porosities if the permeability 
was the same. Therefore, the coupled DEM-CFD model was 
calibrated to achieve the same permeability as the calculated 

one for the full CFD model. The 2D DEM-CFD model cali-
bration procedure was based on the fact that in numerical 
simulations the height of the virtual channels (type S2S) 
was fitted to the target permeability. In spite of different 

Fig. 7   Dimensionless stream-
wise flow velocities Vy/Vy 
in full CFD simulations as 
compared to experiment [26] 
(A) and numerical result in [24] 
(B): a for Repart = 204.74 at 
centre of unit cell (y = 0) along 
dimensionless x-value (R is the 
spheres radius) and b for 5 dif-
ferent Repart numbers at origin 
of unit cell

Fig. 8   Dimensionless perme-
ability KD/D2 against porosity 
ϕ from full CFD simulations 
compared with Carman-Kozeny 
equation (A) and van der Hoef 
equation (B)
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porosities, the 2D DEM-CFD model was able to accurately 
model fluid flow in pores. The fluid flow network in the 2D 
DEM-CFD model is shown in Fig. 10a.

5.2 � Initial and boundary conditions

The boundary conditions in the fluid domain of the full 3D 
CFD model are presented in Fig. 11. The turbulent, com-
pressible fluid propagated through the rock specimen driven 
by a pressure drop between the inlet and outlet. The inlet 
and outlet boundary conditions were defined as ‘opening, 
i.e. the fluid could flow through the boundary wall in both 
directions. The total inlet pressure was equal to 70 MPa and 
the average static pressure was defined at the outlet in such 
a way that the total outlet pressure was 30 MPa (the pres-
sure difference was 40 MPa). In the outlet, the average static 
pressure over the entire outlet was specified in this way that 
the outlet pressure profile might vary but the average value 
was constrained to a specified value. At both the inlet and 
outlet, turbulence intensity defined as I = u ́/u (u ́—the root-
mean-square of the turbulent velocity fluctuations and u—
the mean velocity), was I = 5%. The turbulence intensity is a 
factor that shows velocity fluctuations and it can be used to 
determine a flow regime. Generally, a turbulence intensity 
of 1% or less corresponds to low intensity and greater than 
10% corresponds to high intensity. At lateral surfaces of the 
specimen, free slip boundary conditions were defined with 
the velocity normal to the surface and wall shear stresses 
set to zero (i.e., vn,wall = �wall = 0 ) to reproduce fluid flow 
close to unidirectional one at the macro-level and thus to 
facilitate the comparison. Only the velocity component 
parallel to the wall was computed. At the sphere surfaces 
and the domain corners, a no-slip condition was used. All 
the spheres were fixed and the water of 70℃ entered the 

inlet boundary. The material properties were as follows: 
the dynamic viscosity was μ = 0.000406 Pa·s and the refer-
ence density was 977.36 kg/m3. The reference pressure was 
set to 0.1 MPa in all simulations. The initial velocity was 
0 m/s and the initial static pressure was 30 MPa in the fluid 
domain. The pressure difference of 40 MPa between the inlet 
and outlet resulted in a mass flow rate of 0.183 kg/s through 
the specimen. A fully implicit scheme was applied to a gen-
eral discrete approximation of transient terms. Unsteady 
calculations were performed using a physical time step of 
Δt = 2·10–6 s. The second-order backward Euler scheme was 
used for transient simulations. The convergence criterion at 
every time step was the maximum RMS value of the dimen-
sionless velocity and pressure residuals or the maximum 
limit of 100 sub-iterations. The maximum RMS value was 
set to 1·10–6 to ensure adequate damping of errors through-
out the entire domain. The average values of about 100 sub-
iterations were used to converge the solution per the physical 
time step. Each simulation was continued until a steady state 
was reached. In the DEM-CFD model, an adaptive method 
was employed to determine a physical time step that varied 
in the range from 2·10–8 up to 2·10–7.

In the full CFD model, a very dense element mesh 
was used near surfaces of spheres to tackle high-velocity 
gradients in the boundary layer region. Usually, two main 
methods are applied for generating this type of meshes. 
For simple geometries like flow through spheres located 
at a certain distance from each other, thin layers of ani-
sotropic prismatic or hexahedral elements near no-slip 
boundaries may be used to resolve sharp gradients in the 
wall-normal direction ([57, 58]). A coarser structured/
unstructured mesh may also be used in other domain 
regions far from surfaces of spheres to decrease the com-
putational time. However, it is not an efficient meshing 

Fig. 9   Granular rock specimen 
composed of 131 spheres used 
in numerical simulations
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method in a dense and random packing of spheres located 
in an asymmetric arrangement with considerable over-
laps. Those overlaps create several small regions and 
holes with acute angles between the adjacent spheres. For 
meshing this domain, a dense unstructured grid is used 
near all surfaces of spheres to efficiently cover boundary 
layers. Finally, sufficiently small unstructured linear tet-
rahedron elements were chosen for meshing the complex 
geometry. The element size was between 2.7·10–5 m and 

5.4·10–5 m with a growth rate of 1.2. A close-up view of 
the mesh distribution on spheres’ surfaces and the mid-
plane is shown in Fig. 12. Small white spots on spheres in 
Fig. 12 are related to contacts between lateral slip walls 
and sphere surfaces (what may be seen in Fig. 11).

The same initial and boundary conditions for the fluid 
domain were defined in the coupled DEM-CFD model. 
The spheres in the DEM were fixed towards the axis OZ 
only. The cohesion assumed in DEM was high enough to 
significantly reduce the displacement of spheres. There-
fore, the position of the spheres at the beginning and end 
of the simulations was almost the same.

5.3 � Numerical results of full 3D CFD simulations

The commercial software ANSYS CFX [25] was solely used 
to simulate fluid flow in the continuous fluid domain. The 
spheres were initially applied for creating a model geometry 
of the fluid domain and next removed. For comparison pur-
poses, the fluid flow contours in the full CFD model were 
presented in the specimen midplane. The change of calcu-
lation results in time was shown for 5 measurement points 
(Fig. 10b) whose coordinates were given in Table 2.

Fig. 10   Granular rock specimen of Fig. 9: a 2D fluid flow network in 
DEM-CFD model and b 2D mid-plane with locations of 5 measure-
ment points

Fig. 11   Boundary conditions of granular rock specimen of Fig. 9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Comparative study of high‑pressure fluid flow in densely packed granules using a 3D CFD model…

1 3

Page 15 of 25     15 

A mesh dependency test for a turbulent flow regime of the 
full 3D CFD model was initially carried out by determining 
the pore average streamwise velocity Vy against the number 
of elements (Fig. 13). The velocity converged when the ele-
ment number was greater than 13 million. An increase of the 
element number up to 15 million caused an effect of 1.0% 
only on the final average pore streamwise velocity. Thus, 
the mesh assembled of 15 million elements was used in this 
study. The transient simulation reached an equilibrium state 
after 0.07 ms in the full 3D CFD model, based on the mass 
flow rate at the outlet boundary (Fig. 14). Such a dense mesh 
was used to perform only one simulation. It is obvious that 
simulation of a varying geometry process like hydraulic 
fracturing with commonly used numerical methods such as 
FVM, LBM, SPH, etc. are not almost feasible due to the 
extremely long computational time related to a remeshing 
process. Hence, the model of the fluid flow network (e.g. 
[11, 13, 21, 22]) constitutes an effective method to overcome 
those time problems.

The 3D streamlines representing the velocity in the full 
CFD model are shown in Fig. 15. The flow accelerated at the 
upstream surfaces of the spheres due to the reduction of the 
cross-sectional area in the main flow direction and slowed 
down at the downstream surfaces of the spheres. The inter-
action of streamlines in some regions caused a generation 
of swirling flow (e.g., bottom right corner of the specimen 
Fig. 15). In those regions, the flow direction changed and 
rotated around the axis along which it moved under the influ-
ence of angular momentum. The streamlines were directed 
in a negative y-direction in some regions.

Figure 16 shows the total pressure distribution in the 3D 
domain using the full CFD model. The boundary condition 
imposed the pressure of 70 MPa in the inlet and 30 MPa in 

the outlet. The average total pressure over the entire fluid 
domain was 50 MPa. The pressure increased at the front 
and both sides of the sphere bounds and decreased at the 
backside. The presentation of contours on a 2D mid-plane 
was obscure due to the high porosity (Fig. 10b). Therefore, 
to compare more precisely the results, the 2D contours were 
plotted in Statistica with the spheres were removed from 
the plot. In addition, the variability of the variables was 
smoothed using the distance-weighted LS method to obtain 
consistent isolines.

5.4 � Comparison of numerical results between full 
CFD model and DEM‑CFD model

In general, in the DEM-CFD model, bonds between parti-
cles may be broken during simulations (Appendix ‘A’). They 
were not broken in a deforming non-homogeneous granular 
specimen considered here since fractures were not taken into 
account yet (Sect. 1). However, the contact stresses changed 
during simulations that resulted in a change of the channel 
height in the fluid flow network and in a change of virtual 
pore volumes. Consequently, the fluid flow characteristics 
varied during the simulation until it reached an equilibrium 
state (Sect. 3).

Figure 17 compares the pressure distribution at the mid-
plane in the full CFD model (Fig. 17a) with the pressure 
contours obtained in simulations with the coupled DEM-
CFD model (Fig. 17b) after reaching the equilibrium state. 
Both models provide the same pressure distribution. Due 
to a non-symmetric arrangement of spheres, the pressure 
isolines, especially in Fig. 17b, are not straight horizon-
tal lines. The isolines in Fig. 17a are similar in the entire 
domain while in Fig. 17b they are close to each other near 

Fig. 12   View on unstructured tetrahedral mesh (with zoom) assumed in granular rock specimen
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the inlet (and outlet) and the distance between them gradu-
ally increases, particularly at the left side of the specimen. 
The overall flow resistance due to shear stresses remains at 
the same level in the full CFD model while it is higher in 
the region near the inlet and outlet in the DEM-CFD model. 
It should be noted that the fluid flow network in the DEM-
CFD model is not orthogonal. Significant discrepancies in 
the pressure distribution may, thus, indicate shortcomings 
in DEM-CFD models.

The evolution of the total pressure in time is presented in 
Fig. 18 for 5 points of Fig. 10b. There exists a good agree-
ment between the final steady-state results at those 5 points. 
The full CFD model simulation reached the equilibrium state 
after 0.07 ms. However, the coupled DEM-CFD simulation 
reached this state after 0.00025 ms. The water volume in the 
fluid domain for the full CFD model was 3.478e−8 m3 while 
the water volume for the fluid flow network model was solely 
6.89e−12 m3. This difference in the water volume strongly 
influenced the inertia forces in the DEM-CFD model and 
consequently the fluid velocity. The fluid flow in channels in 
the DEM-CFD model was 2D laminar without disturbances 
whereas in the full CFD model, it was the 3D flow with 

vortices and disturbances. Therefore, the CFD-DEM model 
reached the equilibrium state 280 times faster.

Figure 19 demonstrates the density distribution in the 
full CFD model that is similar to the pressure distribution 
(Fig. 16) since the density solely varies with pressure varia-
tions in our barotropic model. Near the inlet where the maxi-
mum pressure and consequently maximum density change 
existed, the density solely grew by 2.85% as compared to the 
reference density of 977.36 kg/m3.

To investigate the accuracy of the barotropic equation of 
state, another simulation of the 131 spheres sample with the 
full CFD model was performed based on the IAPWS mate-
rial library. Table 1 shows the density variation, pore aver-
age density, streamwise velocity on the outlet boundary, and 
pore average streamwise velocity for both the barotropic and 
IAPWS model. In addition, the results for an incompress-
ible model were also attached. There are small differences 
between the range of density variations and pore average 
densities in the two compressible models. Both the models 
share the same final Vy at the outlet as well as Vy . The val-
ues are almost the same as compared with an incompressible 
model. Hence, the density variations are not significant and 
the flow can be described using the incompressible fluid 
model in a considered pressure range.

The density distribution at the mid-plane of the full CFD 
model (Fig. 20a) was compared with the density distribution 
of the coupled DEM-CFD approach (Fig. 20b). Both the 
models resulted in the same density distribution which cor-
responded to the 2D pressure distribution (Fig. 17). The only 
difference is in the density isoline location (Fig. 20). They 
are far away from each other as compared with the pressure 
isolines (Fig. 17). The discrepancy in the pattern of the fluid 
density isolines results from a greater concentration of dis-
crete elements on the right side of the specimen. Through 
calibrating the DEM-CFD model, the mass flow rate in this 
region is almost the same for both models. Consequently, the 
pressure distribution is also almost the same. However, the 
fluid velocity is significantly different that can lead to small 
density differences between the models.

Fig. 13   Mesh dependency test for granular rock specimen including 
131 spheres using full CFD (pore average streamwise velocity Vy ver-
sus number of elements n)

Fig. 14   Calculated evolution of 
mass flow rate ṁ at outlet with 
time t using full CFD in granu-
lar rock specimen including 131 
spheres
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The density variation in time in 5 measurement points 
(Fig. 10b) is demonstrated in Fig. 21 for two approaches: 
full CFD and simplified DEM-CFD. The density variation 
is similar at all points independently of the approach.

The 3D streamwise velocity distribution based on the 
calculation results of the full CFD model is demonstrated in 

Fig. 22. High fluid velocities occurred close to lateral walls 
where the slip boundary condition was applied, reaching a 
maximum value of 205 m/s. The negative velocities were 
observed in some areas in the contour plot. The pressure dif-
ference between the inlet and outlet resulted in the average 
streamwise velocity of 20.65 m/s at the inlet/outlet boundary 
surface. Usually, the velocity inside porous media is pre-
sented in the form of superficial velocity Us. This velocity 
which is the average value of the streamwise velocity in the 
total specimen volume (i.e., fluid and spheres) showed a con-
stant velocity all around the domain (Us was 18.12 m/s in the 
granular rock specimen).

The Rek and Repart numbers in the full 3D CFD model 
were calculated as 1480 and 15,784 for the average volume 
density of 996 kg/m3. Due to overlaps, the final shape of the 
particles was not spherical and the Sauter mean diameter 
[53] was used to obtain an average diameter for all spheres. 
The Sauter mean diameter of all 131 spheres was 1.22 mm 
and this value was used to evaluate the value of Repart . Since 
the fluid in the coupled DEM-CFD model flew in narrow 
channels, the velocity range was totally different as com-
pared with the full CFD model. The fluid moved much 
faster along the channels of the fluid flow network to achieve 
the same mass flow rate as in the full CFD model. The 

Fig. 15   Calculated fluid flow streamlines in 3D granular rock speci-
men including 131 spheres using full CFD (lines represent velocity 
magnitude)

Fig. 16   Calculated total pressure distribution in 3D granular rock 
specimen using full CFD
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streamwise velocity reached even the velocity of 1489 m/s 
in some virtual channels of type ‘S2S’ in the DEM-CFD 
model while the maximum velocity in the full CFD model 
was solely 153 m/s.

In the 2D DEM-CFD model, the maximum fluid veloc-
ity (1489 m/s) was 10 times higher than in the 3D full CFD 
model (153 m/s) and the Reynolds number was 10 times 
lower (1671) than in the full CFD model (15,784). The fluid 
flow still remained in a laminar flow regime while the fluid 
flow was turbulent in the full CFD model. This difference is 
due to a different formulation of two models; the full CFD 
model realistically reproduced the fluid domain geometry 
while the fluid domain was simplified in the DEM-CFD 
model by applying a fluid flow network composed of simple 
low-height channels. This resulted in a difference in the fluid 
volume and specimen porosity. The specimen porosity was 
34% (full CFD) and 13.864% (DEM-CFD). The specimen 
porosity in the 3D full CFD model was almost the small-
est one due to mesh generation problems while the speci-
men porosity in the DEM-CFD model was the highest to 
preserve the laminar flow. Increasing the specimen porosity 
in the DEM-CFD model may lead to the Reynolds number 
exceeding the laminar flow limit and thus contributing to 
the model incorrectness (the model calibration is limited by 
the critical Reynolds number for laminar flow in channels). 
In the DEM-CFD model, the fluid velocity, Reynolds num-
ber and permeability are strongly affected by the channels' 
height. Therefore, the channels' height is used to calibrate 
the DEM-CFD model for the assumed permeability. Conse-
quently, increasing the assumed permeability (for the greater 
specimen porosity) requires a growth of the channels’ height 
that causes an increase in the fluid velocity. To overcome this 
shortcoming of the DEM-CFD model, the fluid flow model 
should be modified to be closer to the full CFD model.

The Reynolds number Re in the DEM-CFD approach 
was computed in the channels using equation Rech =

�Vchh

�
 , 

Fig. 17   Calculated total pressure distribution in granular rock speci-
men: a full CFD model and b simplified coupled DEM-CFD model

Fig. 18   Calculated evolution of total pressure p in time t at 5 specified points of granular rock specimen (Fig. 10b): (continuous line) results with 
full CFD model and (dashed line) results with coupled DEM-CFD model
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where ρ is the fluid density, Vch is the average fluid veloc-
ity in the channel, h is the channel height and μ is the 
dynamic viscosity. The maximum value of Re in the DEM-
CFD approach was 1671 in the ‘S2S’ channel with a height 
of 4.57·10–7 m and fluid velocity of 1489.0 m/s, while in 
the full CFD approach, the value of Repart was 15,784. 
Even though the fluid velocity was much higher in the 
DEM-CFD approach, the Reynolds number was lower 
since the channel height was very small (4.57·10–7 m). The 
calculated pressures and densities at 5 measuring points in 
Fig.  10b are summarized in Table 2 for the full CFD 
approach and the coupled DEM-CFD approach.

The vorticity is the quantity that shows the rotation of a 
fluid flow direction. Figure 23 presents the 3D out-of-plane 
streamwise vorticity distribution in the full CFD model 
with a clockwise rotation corresponding to positive vorti-
city. Some eddies in a 2D vertical mid-plane are shown in 
Fig. 24. Alternating right and left rotation regions appeared 
at the left and right sides of each sphere. The regions of 
concentrated vortices were located in the shear (boundary) 
layer of each sphere. Interaction between the shear layers 
generated eddies of various sizes in the specimen.

For very low pressures, the flow disturbances and tur-
bulent kinetic energy immediately dissipated and flow 
remained laminar. The laminar model was used for very 
low pressures to find Darcy’s permeability in a creeping 
flow regime. To evaluate permeability using Darcy’s law, 
the pressure drop between the inlet and outlet was reduced 

Fig. 19   Calculated density distribution in 3D granular rock specimen 
using full CFD

Table 1   Comparison between barotropic, IAPWS and incompressible 
model regarding density variation, pore average density, streamwise 
velocity at outlet boundary and pore average streamwise velocity

Full CFD �[
kg

m3
](range) �[

kg

m3
] Vy(outlet) [m/s] Vy[m/s]

Barotropic model 981–1005 995.973 20.679 52.4258
IAPWS model 977.7–1015 1001.47 20.7362 52.5787
Incompressible 

model
977.36 977.36 20.8524 53.1807

Fig. 20   Calculated density distribution in granular rock specimen: a 
full CFD model and b coupled DEM-CFD model
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below 3 Pa where Rek < 0.1. The calculated permeability 
based on Darcy’s law was 1.24·10–9 m2 in the full CFD 
model. The permeability calculated, based on the Sauter 
mean diameter in Eqs. 12 and 13 was 0.78·10–9  m2 and 
0.77·10–9 m2, respectively. The permeability in the DEM-
CFD approach was similar as in the full CFD model, i.e., 
1.09e−9 m2. This means that the average mass flow rate in the 
specimen was almost the same for both approaches.

The fluid flow characteristics depend on two important 
fluid properties: viscosity and density. In turbulent flow, it 
also depends on other parameters, depending on the tur-
bulence model used. The other calculations showed that 
a viscosity increase caused a slight reduction in the pore 
average streamwise velocity. The density change had a more 
pronounced effect on the pore average streamwise velocity 
than the dynamic viscosity. In addition, the slope of density 
changes was sharper for smaller densities.

Comparing the performance of both approaches, for the 
full CFD model, the time to generate the mesh was about 
1 h using 18 computer cores and the computation time was 
about 60 h using 144 computer cores. In the simplified cou-
pled DEM-CFD approach, the total time for the automatic 
fluid flow network generation and calculations was about 
52 h using 1 computer core. Thus, the coupled simplified 
DEM-CFD simulations are feasible with regard to time in 
contrast to full CFD calculations.

6 � Conclusions

Single-phase fluid flow through granular body composed 
of fixed densely packed overlapping spheres imitating a 
non-homogeneous rock specimen under high pressures 
in isothermal conditions was numerically analyzed using 
the 3D full CFD model in a continuous domain between 
spheres. The numerical CFD results were compared with the 

corresponding results of a simplified coupled 2D DEM-CFD 
approach using a virtual pore network in a domain between 
spheres that was composed of channels. The following con-
clusions may be offered:

•	 Both the numerical approaches provided almost the same 
pressures, densities and mass flow rates. However, the 
maximum flow velocity in the DEM-CFD model was 
about 10 times higher than in the full 3D CFD model 
to transport enough mass for achieving the same mass 
flow rate. Velocity differences were due to different water 
amounts in the 3D specimen (water flow in the entire 
continuous domain between spheres) and 2D (water flow 
in the fluid flow network between spheres only). Thus, 
the simplified coupled DEM-CFD approach may be used 
in hydro-mechanical simulations.

•	 At the considered pressure difference (40 MPa) and tem-
perature (70℃), the changes in density were insignificant 
and water might be assumed to be incompressible in both 
models.

•	 Due to the lack of experimental tests for high-pressure flow 
at the meso-scale, the presented procedure in Sect. 5 may 
be applied to validate indirectly any 2D/3D DEM-CFD 
models, based on the concept of a fluid flow network.

•	 The performance of the 2D DEM-CFD model was signif-
icantly faster (52 h using 1 core) as compared to the full 
3D CFD model in a continuous domain between spheres 
(60 h on 144 cores).

Appendix ‘A’

In DEM, particles interact with each other during trans-
lational and rotational motions through a contact law and 
Newton’s 2nd law of motion using an explicit time-stepping 
scheme. A cohesive bond is assumed at the grain contact 

Fig. 21   Calculated evolution of densities ρ in time t at 5 specified points of granular rock specimen (Fig. 10b): (continuous line) results with full 
CFD model and (dashed line) results with fully coupled DEM-CFD model
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Fig. 22   Calculated velocity streamwise distribution in granular rock specimen from full CFD model a 3D and b 2D streamwise cross section at 
different levels of specimen
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exhibiting brittle failure under the critical normal tensile 
load. The DEM model for cohesive-frictional materials is 
described in detail in [21, 22, 34, 35]. It can be summarized 
as follows (Eqs. A1-A7, Fig. 25) :

(A1)�⃗Fn = KnU
��⃗N

(A2)�⃗Fs =
�⃗Fs,prev + K

s
Δ �⃗Xs

(A3)Kn = Ec

2RARB

RA + RB

and Ks = vcEc

2RARB

RA + RB

(A4)
F⃗s − Fs

max
− F⃗n × tan𝜇c ≤ 0 (before contact breakage)

(A5)F⃗s − F⃗n × tan𝜇c ≤ 0 (after contact breakage)

Table 2   Comparison of 
pressures and densities between 
full CFD and coupled DEM-
CFD at 5 specified points of 
Fig. 10b

Point number Coordinate [mm] P [MPa] �[
kg

m3
]

x y z Full CFD DEM-CFD Full CFD DEM-CFD

1 0.005165 0.0015 0 64.2 55.1 1000 998.8
2 0.002289 0.005157 0 51.2 50.9 997 997.2
3 0.00385 0.008126 0 37.5 43.7 992 994.4
4 0.005389 0.00425 0 52.3 50.4 998 997.0
5 0.008168 0.00547 0 48.0 45.0 996 994.9

Fig. 23   Out-of-plane vorticity component [s−1] in 3D granular rock 
specimen using full CFD model

Fig. 24   Velocity vector [m s−1] 
in 2D cross-section of granular 
rock specimen using full CFD 
model
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where �⃗Fn—the normal contact force, U—the overlap 
between discrete elements, ��⃗N—the unit normal vector at 
each contact point, �⃗Fs—the tangential contact force, �⃗Fs,prev

—the tangential contact force from the previous iteration, �⃗Xs

—the relative tangential displacement increment, Kn—the 
normal contact stiffness, Ks—the tangential contact stiffness, 
Ec—Young’s modulus of the particle contact, νc—the Pois-
son’s ratio of particle contact, R—the particle radius, RA and 
RB—the contacting particle radii μc—the Coulomb inter-
particle friction angle, Fs

max
—the critical cohesive contact 

force, Fn
min

—the minimum tensile force, Cc—the cohesive 
contact stress (maximum shear stress at pressure equal to 
zero) and Tc—the tensile normal contact stress, �⃗F

k

damp
—the 

damped contact force, �⃗F
k and �⃗vk

p
—the kth components of 

the residual force and translational particle velocity vp and 
αd—the positive damping coefficient smaller than 1 (sgn(•) 
returns the sign of the kth component of velocity). Five main 
local material parameters are required for DEM simulations: 
Ec, υc, μc, Cc and Tc. In addition, the particle radii R, parti-
cle mass density ρc and damping parameters αd have to be 
known. In general, the material constants are identified in 
DEM with the aid of simple laboratory tests on the mate-
rial (uniaxial compression, uniaxial tension, shear, biaxial 
compression) [21, 22, 34]. The calculations were carried out 

(A6)Fs
max

= CcR
2 and Fn

min
= TcR

2

(A7)F⃗k
damp

= F⃗k − 𝛼d ⋅ sgn
(

v⃗k
p

)

F⃗k

with the following constants [21]: Ec = 3.36 GPa, υc = 0.3, 
Cc = 170 MPa, Tc = 34 MPa, μc = 18°, ρc = 2600 kg/m3 and 
αd = 0.10.
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Fig. 25   Mechanical response 
of DEM: a tangential contact 
model, b normal contact model, 
c loading and unloading path in 
tangential contact model and d 
modified Mohr–Coulomb model 
[23, 24]
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