
A Bayesian regularization-backpropagation
neural network model for peeling computations

Saipraneeth Gouravarajua, Jyotindra Narayana, Roger A. Sauera,b,c,d and Sachin Singh
Gautama∗

aDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039,
India

bAachen Institute for Advanced Study in Computational Engineering Science (AICES),
RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany

cDepartment of Mechanical Engineering, Indian Institute of Technology Kanpur, UP 208016, India
dFaculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza

11/12, 80-233 Gdańsk, Poland

Published† in The Journal of Adhesion, DOI: 10.1080/00218464.2021.2001335
Submitted on 29 June 2021; Revised on 15 October 2021; Accepted on 19 October 2021

Abstract

A Bayesian regularization-backpropagation neural network (BR-BPNN) model is employed to
predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and
tangential pull-off forces and the resultant force angle at detachment with the peeling angle.
K-fold cross validation is used to improve the effectiveness of the model. The input data is
taken from finite element (FE) peeling results. The neural network is trained with 75% of the
FE dataset. The remaining 25% are utilized to predict the peeling behavior. The training
performance is evaluated for every change in the number of hidden layer neurons to determine
the optimal network structure. The relative error is calculated to draw a clear comparison
between predicted and FE results. It is shown that the BR-BPNN model in conjunction with
the k-fold technique has significant potential to estimate the peeling behavior.

Keywords: machine learning, adhesion, peeling, artificial neural networks, Bayesian regular-
ization

1 Introduction

The study of peeling is essential in understanding the adhesion characteristics in many appli-
cations such as adhesive tapes, micro- and nano-electronics (Komvopoulos, 2003; Zhang et al.,
2009), coatings (Sexsmith and Troczynski, 1994), microfiber arrays (Majidi et al., 2006; Schu-
bert et al., 2007), wearable medical bands (Drotlef et al., 2017), and cell adhesion (Zhu, 2000).
Peeling problems have been used by many researchers to analyze multiscale adhesion in biolog-
ical adhesive pads such as in geckos, insects, and spiders (Persson and Gorb, 2003; Sauer, 2009;
Labonte and Federle, 2016; Federle and Labonte, 2019), where peeling is an important aspect
of detachment.

Peeling, particularly gecko spatula peeling, has been studied extensively using experimental (Au-
tumn et al., 2000; Autumn, 2002), analytical (Tian et al., 2006), and computational meth-
ods (Sauer, 2011b; Sauer and Holl, 2013; Gautam and Sauer, 2013, 2014; Agrawal and Gautam,

∗corresponding author, email: ssg@iitg.ac.in
†This pdf is the personal version of an article whose journal version is available at https://www.tandfonline.com

1

This is an Accepted Manuscript version of the following article, accepted for publication in JOURNAL OF ADHESION.
Postprint of: Gouravaraju S., Narayan J., Sauer R., Gautam S. S., A Bayesian regularization-backpropagation neural network model for peeling
computations JOURNAL OF ADHESION (2022), pp. 1-24, DOI: 10.1080/00218464.2021.2001335
It is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is
properly cited, and is not altered, transformed, or built upon in any way.

https://doi.org/10.1080/00218464.2021.2001335
https://www.tandfonline.com/doi/full/10.1080/00218464.2021.2001335
https://dx.doi.org/10.1080/00218464.2021.2001335
http://creativecommons.org/licenses/by-nc-nd/4.0/

2013). However, each of these methods comes with its specific limitations. Although experi-
mental methods provide insights into the gecko adhesive system, they are limited in resolution,
typically at seta level. To the authors’ best knowledge, there have been no experimental studies
that explored the adhesive and frictional behaviour at the spatula level owing to the difficulty
in isolating a single spatula. Most of the analytical models that study the peeling of gecko
spatulae, although they provide insights into the various aspects of the peeling behaviour, they
are limited by their inherent assumptions such as steady-state peeling, zero bending stiffness,
and linear material response. As such, most of the analytical models are unable to predict
the entire peel-off process, including the snap-off behaviour. This necessitates the use of a
numerical analysis tool like FEM. However, the computational cost can become very high due
to the nonlinear and small scale nature of molecular adhesion as well as the detailed spatula
microstructure. The high computational cost can be overcome by reduced models, such as beam
models (Sauer and Mergel, 2014), but the cost remains a major limitation of full continuum
models. Recently, Gouravaraju et al. (2021a,b) have studied the peeling behaviour of a single
gecko spatula. However, as mentioned above, the computational cost of the numerical model
is very high. As observed by some authors (Gu et al., 2018; Oishi and Yagawa, 2020; Kim
et al., 2020), the use of machine learning techniques such as artificial neural networks has the
potential to reduce these computational costs while retaining the accuracy of numerical meth-
ods. In particular, Gu et al. (2018) have shown that employing neural networks can significantly
reduce the high computational cost of FE simulations. To the best of the authors’ knowledge
there has been no study that employs machine learning techniques to analyze adhesive peeling
and specifically gecko spatula peeling. Therefore, in this work, a Bayesian regularization-based
backpropagation neural network (Argatov and Chai, 2019; MacKay, 1992; Burden and Win-
kler, 2008) is employed to predict the influence of the peeling angle on the peeling force of a
gecko spatula. The input data is obtained from the finite element simulations of Gouravaraju
et al. (2021a,b), who have used a quasi-continuum finite element model that captures friction
due to adhesion at the nanoscale (Sauer and Li, 2007; Mergel et al., 2021).

The remainder of the paper is structured as follows: Section 2 discusses the adhesive friction
model and the peeling of the spatula. In section 3 a backpropagation neural network with
Bayesian regularization is presented. Section 4 discusses the implementation of the neural
network model. Results and discussion are presented in section 5. Finally, section 6 concludes
the paper.

2 Peeling using an adhesive friction model

In this section, the adhesive friction model of Mergel et al. (2021) and its application to gecko
spatula‡ peeling by Gouravaraju et al. (2021a,b) are briefly described.

The “Model EA” of Mergel et al. (2021) defines a sliding traction threshold Ts that is non-zero
even for tensile normal forces. This sliding threshold depends on the magnitude of the normal
traction Tn = ‖Tn‖ due to adhesion between the spatula and the substrate. Further, it is
assumed that the interfacial frictional forces act only up to a certain cut-off distance rc. Then
we have,

Ts(r) =


µf
Jc

[
Tn(r)− Tn(rc)

]
, r < rc,

0, r ≥ rc,
(1)

‡The nanoscale spatulae in geckos are very thin structures (approximately 5 − 10 nm thick) with a width of
around 200 nm that can be modeled effectively as a thin strip (Tian et al., 2006; Pesika et al., 2007; Peng et al.,
2010; Sauer, 2011b).

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

where Jc is the local contact surface stretch (= 1 for rigid substrates), µf is the friction coefficient,
and r denotes the distance to the substrate surface.

The normal traction Tn is obtained from the variation of the total adhesion potential, which is
the summation of individual adhesion potentials acting between the molecules of the substrate
and the spatula, and is given as (Sauer and Wriggers, 2009)

Tn =
A

2πr30

[
1

45

(r0
r

)9
− 1

3

(r0
r

)3]
ns , (2)

where r0 is the equilibrium distance of the Lennard-Jones potential, A is Hamaker’s constant,
and ns is the normal to the substrate.

Similar to Coulomb’s friction model, the magnitude of frictional traction Tf is governed by

‖Tf‖

{
< Ts for sticking,

= Ts for sliding,
(3)

and is computed using a predictor-corrector algorithm (Gouravaraju et al., 2021a). A Neo-
Hookean material model is employed to model the spatula response (Bonet and Wood, 2008).
For further details on the application of the adhesive friction model, we refer to Gouravaraju
et al. (2021a).

The spatula is modeled as a thin two-dimensional strip as shown in Fig. 1. A displacement ū
is applied to the spatula shaft at an angle called the peeling angle θp. Nonlinear finite element
analysis is employed to solve the resulting mechanical boundary value problem given by the
nonlinear equation

f(u) := fint + fc = 0 , (4)

where fint and fc are the global internal and contact force vectors. The spatula is divided
into 240 × 12 finite elements along x and y directions, respectively. To accurately capture
the nonlinear contact tractions (see Eqs. (1) and (2)), a local enrichment strategy proposed
by Sauer (2011a) is employed. In this strategy, the contact surface is discretized using fourth-
order Lagrange polynomials while the bulk is discretized using the standard linear Lagrange
polynomials. Plane strain conditions are assumed.

Figure 1: Peeling of a deformable strip from a rigid substrate. The strip is adhering on 75% of the
surface.

Although the detailed results of the FE simulation can be found in Gouravaraju et al. (2021a,b),
for the sake of completeness, we briefly discuss the peeling process through a representative
force-displacement plot. The entire peeling of the spatula can be divided into two phases based
on the evolution of the normal and tangential pull-off forces shown in Fig. 2. In the first phase
(from displacement ū0 to ūmax), the spatula continuously undergoes stretching due to the fact
that it is in a state of partial sliding/sticking near the peeling front. Thus, it accumulates strain
energy. At ūmax the spatula is stretched to the maximum as the pull-off forces reach a maximum
value. During the second phase (from ūmax to ūdet) the spatula fully slides on the substrate.
As a result, the spatula relaxes and releases the accumulated energy until it detaches from the
substrate spontaneously at ūdet. Similar peeling curves are obtained for other peeling angles.

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure 2: Evolution of normal (Fn) and tangential (Ft) pull-off forces with the applied displacement ū
for peeling angle θp = 45◦.

In this study, the focus is on three aspects of the peeling process, viz. the maximum normal
pull-off force Fmax

n , the maximum tangential pull-off force Fmax
t , and the resultant force angle

α = arctan(Fn/Ft) at detachment. It has been shown that depending on the peeling angle
θp, the maximum pull-off forces Fmax

n and Fmax
t , the corresponding displacement ūmax and the

detachment displacement ūdet vary considerably (Gouravaraju et al., 2021a). On the other hand,
it has been observed (Gouravaraju et al., 2021a,b) that the resultant force angle at detachment
αdet remains the same irrespective of the peeling angle (see Table B1 in Appendix B).

Remark 1 : Note that the geometrical and material parameters are fixed for the case of gecko
spatula peeling, see Gouravaraju et al. (2021a,b). Hence, the effect of variation of these param-
eters is not considered. However, the effect of the geometrical or physical parameters can be
incorporated by generating additional FE data and retraining the proposed network with the
additional parameters added as input.

3 Bayesian regularization-backpropagation neural network (BR-
BPNN)

In this section, a backpropagation neural network (BPNN) along with the Bayesian regulariza-
tion learning algorithm is described. The background theory on BPNN along with the Bayesian
regularization is given in Appendix A. A more detailed discussion can be found in Demuth et al.
(2014). BR-BPNN is utilized to achieve better generalization and minimal over-fitting for the
trained networks (MacKay, 1992; Burden and Winkler, 2008).

Consider a neural network with training dataset D having nt input and target vector pairs in
the network model, i.e

D =
{

(u1, to1) , (u2, to2) , . . . ,
(
unt , tont

)}
. (5)

For each input (u) to the network, the difference between target output (to) and predicted
output (ao) is computed as error e. In order to evaluate the performance of the network,

4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

i.e. how well the neural network is fitting the test data, a quantitative measure is needed.
This measure is called performance index of the network and is used to optimize the network
parameters. The standard performance index F (w̄) is governed by the sum of the squared
errors (SSE)

F (w̄) = ED =

nt∑
i=1

(ei)
2 =

nt∑
i=1

(toi − aoi)
T (toi − aoi) , (6)

where w̄ denotes the vector of size K containing all the weights and biases of the network.

In order to generalize the neural network, the performance index of Eq. (6) is modified us-
ing a regularization method. A penalty term (µ/ν)Ew is added to the performance index
F (w̄) (Tikhonov, 1963),

F
(
w̄
)

= µw̄T w̄ + νED = µEw + νED , (7)

where µ and ν are the regularization parameters and Ew represents the sum of the squared
network weights (SSW).

Finding the optimum values for µ and ν is a challenging task, as their comparative values set up
the basis for the training error. If µ � ν, smaller errors are generated, while if µ � ν, there
should be reduced weight size at the cost of network errors (Kayri, 2016). For the purpose of
finding the optimum regularization parameters, a Bayesian regularization method is employed.

Considering the network weights w̄ as random variables, the aim is to choose the weights that
maximize the posterior probability distribution of the weights P

(
w̄|D,µ, ν,MN

)
given a certain

data D. According to Bayes’ rule (MacKay, 1992), the posterior distribution of the weights
depends on the likelihood function P

(
D|w̄, ν,MN

)
, the prior density P

(
w̄|µ,MN

)
, and the

normalization factor P
(
D|µ, ν,MN

)
for a particular neural network model MN and can be

evaluated from

P
(
w̄|D,µ, ν,MN

)
=
P
(
D|w̄, ν,MN

)
P
(
w̄|µ,MN

)
P
(
D|µ, ν,MN

) . (8)

Considering that the noise in the training set has a Gaussian distribution, the likelihood function
is given by

P
(
D|w̄, ν,MN

)
=

exp
(
− νED

)
ZD

(
ν
) , (9)

where ZD =
(
π/ν

)Q/2
and Q = nt ×Nnl .

Similarly, assuming a Gaussian distribution for the network weights, the prior probability den-
sity P

(
w̄|µ,MN

)
is given as

P
(
w̄|µ,MN

)
=

exp
(
− µEw

)
Zw

(
µ
) , (10)

where Zw =
(
π/α

)K/2
.

The posterior probability with the network weights w̄ can then be expressed as (Kayri, 2016)

P
(
w̄|D,µ, ν,MN

)
=

exp
(
− µEw − νED

)
ZF

(
µ, ν

) =
exp
(
− F (w̄)

)
ZF

(
µ, ν

) , (11)

where ZF

(
µ, ν

)
= ZD

(
ν
)
Zw

(
µ
)

is the normalization factor.

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The complexity of the model MN is governed by regularization parameters µ and ν, which need
to be estimated from the data. Therefore, Bayes’ rule is again applied to optimize them from

P
(
µ, ν|D,MN

)
=
P
(
D|µ, ν,MN

)
P
(
µ, ν|MN

)
P
(
D|MN

) , (12)

where P
(
µ, ν|MN

)
denotes the assumed uniform prior density for the parameters µ and ν. From

Eq. (12), it is evident that maximizing the likelihood function P
(
D|µ, ν,MN

)
eventually max-

imizes the posterior probability P
(
µ, ν|D,MN

)
. Moreover, it can be noted that the likelihood

function in Eq. (12) is the normalization factor of Eq. (8). Therefore, solving for the likelihood
function P

(
D|µ, ν,MN

)
and expanding the objective function in Eq. (7) around the minimal

point w̄∗ via a Taylor series expansion, the optimum values of regularization parameters can be
evaluated as follows (Dan Foresee and Hagan, 1997)

µ∗ =
γ

2Ew

(
w̄∗
) and ν∗ =

Q− γ
2ED

(
w̄∗
) , (13)

where γ signifies the “number” of effective parameters exhausted in minimizing the error func-
tion

γ = K − µ∗tr
(
H∗)−1

, for 0 ≤ γ ≤ K , (14)

and H∗ is the Hessian matrix of the objective function evaluated at w̄∗, which is calculated
using the Gauss-Newton approximation as (Kayri, 2016)

H∗ ≈ JTJ , (15)

where J is the Jacobian matrix formed by the first derivatives of the network errors e with
respect to network weights wij . In (14), tr(·) denotes the trace operator. The normalization
factor ZF (µ, ν) can then be approximated as (Demuth et al., 2014)

ZF

(
µ, ν

)
≈
(
2π
)K/2 (

det
(
H∗))−1/2

exp
(
− F

(
w̄∗)) . (16)

At the end of the training, a few checks regarding the number of effective parameters are required
for better performance of the network (Kayri, 2016). The problem of computing the Hessian
matrix at the minimal point w̄∗ is implicitly solved in the Levenberg-Marquardt (LM) training
algorithm while finding the minimum of F (w̄). In the LM algorithm, the network weights and
biases at the kth iteration are adjusted according to (MacKay, 1992; Dan Foresee and Hagan,
1997)

w̄k+1 = w̄k −
[
JTJ + λI

]−1
JTe , (17)

where λ denotes the Levenberg’s damping factor and JTe is the error gradient, which needs to
be close to zero at end of the training.

4 Implementation of BR-BPNN

In this work, the input vector u of the BR-BPNN models contains seventeen elements with
peeling angle values θp ranging from 10◦ to 90◦ at an interval of 5◦. The corresponding output
vectors are the maximum normal pull-off force Fmax

n , the maximum tangential pull-off force
Fmax
t , the applied displacement at force maximum ūmax, the resultant force angle at detachment
αdet, and the applied displacement at detachment ūdet. In general, this input-output dataset
is randomly divided into training, validation, and testing sub-datasets. The training dataset

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 1: K-fold cross-validation with dataset split into five folds. The yellow cells represent testing
dataset while the blue cells correspond to training dataset. See Table 2 for explicit details for the folds
used in the present work.

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

is used to train the neural network model (which in the current work is carried out using the
Bayesian regularization-backpropagation method) and the trained model is further validated
with the validation dataset.

As described previously, the neural network model is first trained on the training dataset and
its performance is evaluated by making predictions using the testing dataset. However, this
type of single-run model-validation method could potentially result in selection-bias, i.e. the
accuracy of the model will be highly dependent on the particular choice of the training and
testing datasets. In order to assess the effectiveness of a neural network model developed using
limited data, as in this work, a cross-validation method called k-fold cross-validation method
is employed in the training of neural networks. This helps the neural network to generalize to
new or unseen data in a much better manner. In the k-fold cross-validation method the com-
plete dataset is divided into two complementary sub-datasets, i.e. training and testing. In this
method, for a given neural network model, the dataset is first randomized and then partitioned
(split) in to k almost equal sized sub-datasets called folds. Then, the k−1 folds are used to train
the neural network. The one remaining fold (i.e., kth fold) is used for testing the performance
of the neural network model. This process is repeated k times such that the network is trained
and tested on the entire dataset as illustrated in Table 1 which shows the dataset split five times
(Split 1 to Split 5) into five folds (Fold 1 to Fold 5). The yellow cells in Table 1 represent testing
dataset while the blue cells correspond to training dataset. The performance of the neural net-
work is then reported in terms of the average accuracy obtained from this k-fold cross-validation.

Table 2 give the details of testing dataset and testing dataset used in the k-fold cross-validation,
see Appendix B for the FE results. The indices in the table refer to the case number in
Table B1 (first column). For each split, the training dataset is used to train the neural network
model using Bayesian regularization method and the trained model is further validated with
the validation dataset using the fold mentioned in the last column of Table 2. The validation
dataset, in other back-propagation training algorithms, is used to optimize the hyperparameters
for effective training. The hyperparameters, like the number of neurons in the hidden layer and
the learning parameters such as γ and λ, are defined as the variables required for training the
neural network. However, for BR-based learning networks, the hyperparameters in the form
of the regularization parameters (µ, ν) are implicitly optimized using Eq. (7). Therefore, the
validation set is not essentially required in this case for optimizing the network hyperparameters.
Finally, the testing dataset is utilized to predict the targeted output to and analyze the model
performance, accordingly. Appendix C presents a simple algorithmic overview of the BR-BPNN
model developed in the present work.

7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 2: Details of training dataset and testing dataset used in the k-fold cross-validation. The indices
refer to the case number (first column) in Table B1.

Split Number Training dataset indices Number
of train-
ing data
(Ntrain)

Testing
dataset in-
dices

Number
of test-
ing data
(Ntest)

Fold for
Testing
dataset

Split 1 1, 2, 5, 6, 8, 10, 11, 13 3, 4, 7, 9 4 Fold 1
12, 13, 14, 15, 16, 17

Split 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 14 12, 13, 17 3 Fold 2
10, 11, 11, 14, 15, 16

Split 3 2, 3, 4, 5, 7, 8, 9, 12, 13 1, 6, 10, 11 4 Fold 3
13, 14, 15, 16, 17

Split 4 1, 3, 4, 5, 6, 7, 9, 10, 14 2, 8, 14 3 Fold 4
11, 12, 13, 15, 16, 17

Split 5 1, 2, 3, 4, 4, 6, 7, 8, 9 14 5, 15, 16 3 Fold 5
10, 11, 12, 13, 14, 17

Next, two BR-BPNN models are formed with different output datasets; the first model has
three output vectors and the second model has two output vectors as shown in Tables 3 and
4. The three output vectors for BR-BPNN-I are the applied displacement at force maximum
ūmax, the maximum normal pull-off force Fmax

n , and the maximum tangential pull-off force
Fmax
t . For BR-BPNN-II, the output vectors are the applied displacement at detachment ūdet

and the resultant force angle at detachment αdet, respectively. Each output vector consists of
3Ntest and 2Ntest elements for models BPNN-I and BPNN-II respectively.

However, only Ntrain elements corresponding to the input training dataset (see Table 2) are
selected for training the BPNN models. Then, the input and output vectors are normalized by
the corresponding maximum values. The performance of the BR-BPNN models are estimated
by comparing the mean square error (MSE) values with the number of neurons in the hidden
layer and determining the optimal number. The MSE is computed from the network error ED

in Eq. (6) as

MSE =
1

nt
ED. (18)

Table 3: Output dataset for model BR-BPNN-I (see Appendix B for the FE results).

Applied displacement at force maximum ūmax := [ūmax
1 , ūmax

2 , , ūmax
16 , ūmax

17]T

Maximum normal pull-off force Fmax
n :=

[
Fmax
n1

, Fmax
n2

. , Fmax
n16

, Fmax
n17

]T
Maximum tangential pull-off force Fmax

t :=
[
Fmax
t1 , Fmax

t2 , Fmax
t16 , Fmax

t17

]T
Remark 2 : Even though the geometric and material parameters for gecko spatula peeling are
cosidered fixed, see Remark 1 at the end of Section 2, the proposed model can be extended to
predict the influence of these parameters as follows: First an additional FE dataset needs to
be generated for each parameter. Then, the input vector of the proposed model needs to be
extended to include the additional input parameters. The network can then be retrained to
obtain the optimum number of neurons in the hidden layer and the model parameters. The
algorithm mentioned in appendix C will then, in principle, work in a similar manner.

8

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 4: Output dataset for model BR-BPNN-II (see Appendix B for the FE results).

Applied displacement at detachment ūdet :=
[
ūdet1 , ūdet2 , , ūdet16 , ū

det
17

]T
Resultant force angle at detachment αdet :=

[
αdet
1 , αdet

2 , αdet
16 , α

det
17

]T

Remark 3 : It is worth noting that in this work a neural network-based prediction of adhesion
phenomena is proposed rather than applying a curve-fitting-based interpolation technique. At
first it may appear that the proposed BR-BPNN models merely interpolate the missing data.
However, this is not so due to the following reasons:

• It can be observed from Table B1 that all the output vectors consist of high dimensional
data and the change from preceding value to the next one is highly nonlinear. It is
well known that for the case of highly nonlinear data, neural networks can provide more
flexibility in mapping the input-output relation with accurate tolerances. Moreover, in
case more precise results are desired using curve fitting, the selection of high dimensional
polynomials increases the computational complexity and eventually the computational
time. This is a major drawback of curve fitting.

• Furthermore, even if curve fitting can be used for interpolation, it is pertinent to mention
that the generalization capability of the curve fitting technique can not be as accurate
as the proposed BR-BPNN when the dimensionality of the data increases. The proposed
BR-BPNN models perform well because the procedure to map the input-output dataset is
inherently interpreted by the systematic selection of activation function, hyperparameters,
neurons, and hidden layer(s). However, in case of curve-fitting, this process is an iterative
one left as a user input for the selection of a polynomial function.

Remark 4 : It is also worth to mention that the computational time taken for each full finite
element run shown in Table B1, depending on the peeling angle value, takes between 15 minutes
to 7 hours on a multicore machine with parallel computing. On the other hand the training
and the testing of the dataset in Table 2 takes less than a minute for each split on the same
machine without any parallel computing option enabled.

5 Results and discussion

This section presents the Bayesian regularization-based backpropagation neural network pre-
dictions of the maximum normal pull-off force Fmax

n , the maximum tangential pull-off force
Fmax
t , and the resultant force angle at detachment αdet along with the corresponding displace-

ments ūmax and ūdet. Predictions of the networks are then compared with the FE results
of Gouravaraju et al. (2021a,b) that have not been yet used for training.

To define the optimal structure of each network model, the mean square error (MSE) of Eq. (18)
is investigated along with the number of neurons (1 to 10) in the hidden layer. For the two
BR-BPNN models (BR-BPNN-I and BR-BPNN-II), training is performed with 1 to 10 hidden
neurons. The MSE values for both the models with only one hidden neuron are found to be
comparatively high i.e. 7×10−3 and 9.045×10−4, being incapable to form an efficient network.
However, as the number of hidden neurons increases to two, a major drop in the MSE values
(6.793 × 10−4, and 2.6060 × 10−4) is recorded. Each model is trained 15 times independently

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure 3: Average mean square error from 5-fold cross-validation with the number of neurons in the
hidden layer for different BR-BPNN models.

for different number of neurons to mitigate the unfavorable effects by choosing random initial
weights. Each network model is trained for a maximum of 2000 epochs. An epoch is completed
when the entire training dataset is passed forward and backward through the network thus
updating the weights once. For BPNN-I, the mean square error attains a broad minimum and
continuous to decrease between 1 and 5 hidden neurons as shown in Fig. 3. For N2 greater than
5, the MSE value again starts to rise due to overfitting of the network models. Therefore, for
BPNN- I the number of neurons in the hidden layer is selected as 5. The number of neurons in
the input and output layers are taken as 1 and 3 as there is one input vector and three output
vectors for the BPNN-I model. Following a similar trend, the optimal number of hidden neurons
for model BPNN-II is found to be 2, forming the network structure 1-2-2.

Either of the following criteria are selected to terminate or complete the training process: max-
imum number of epochs reached, minimum value of performance gradient reached, minimum
constant value of effective parameters (γ) reached, maximum value of Levenberg’s damping
factor (λ) attained, or MSE reaching the performance limits. The training results for models
BR-BPNN-I and BR-BPNN-II are shown in Tables 5 and 6 respectively. The other network
training parameters like the sum of square errors (SSE) (Eq. (6)), sum of square weights (SSW)
(Ew in Eq. (7)), Levenberg’s damping factor, and error gradient (Eq. (17)) values are also shown
in Tables 5 and 6.
Table 5: Training parameters for the best configuration (1-5-3) for BR-BPNN-I from 5-fold cross
validation.

Epochs MSE SSE(ED) SSW
(EW)

Number
of effective
parame-
ters (γ)

LM Parame-
ter (λ)

Gradient
(JTe)

Split 1 384 9.79 ×10−4 3.26 ×10−4 63.98 22.18 1.0 9.88 ×10−8

Split 2 300 7.39 ×10−5 2.47 ×10−5 80.97 22.38 1.0 ×1010 1.07 ×10−7

Split 3 145 2.36 ×10−6 7.81 ×10−7 56.61 23.26 1.0 ×1010 1.31 ×10−7

Split 4 92 1.86 ×10−6 6.21 ×10−7 110.29 24.90 1.0 ×1010 1.34 ×10−7

Split 5 106 0.0011 3.62 ×10−4 46.91 23.15 1.0 9.88 ×10−8

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 6: Training parameters for best configuration (1-2-2) for BR-BPNN-II from 5-fold cross validation.

Epochs MSE SSE(ED) SSW
(EW)

Number
of effective
parame-
ters (γ)

LM Parame-
ter (λ)

Gradient
(JTe)

Split 1 64 1.18 ×10−5 3.93 ×10−6 53.71 8.57 1.0 ×1010 4.23 ×10−7

Split 2 82 1.27 ×10−5 4.24 ×10−6 60.20 8.26 1.0 ×1010 5.76 ×10−7

Split 3 43 8.38 ×10−6 2.79 ×10−6 37.29 8.31 1.0 ×1010 7.75 ×10−7

Split 4 68 5.84 ×10−6 1.95 ×10−6 43.26 8.51 1.0 ×1010 8.93 ×10−7

Split 5 115 8.94 ×10−6 2.98 ×10−6 62.13 8.43 1.0 ×1010 7.59 ×10−7

After training the models with input-output datasets with Ntrain datapoints (see Table 2),
the testing dataset with Ntest datapoints (see Table 2) is utilized to predict the corresponding
desired output values. The relative error (RE) is used to measure the accuracy of the network
predictions. The RE is calculated as the deviation of the predicted result from the desired
target result, i.e.

RE =
ti − ai
ti

, (19)

where ti and ai denote the desired target result and the network prediction for a particular
peeling angle of the testing data set, respectively.

5.1 Case I: Maximum normal and tangential pull-off forces

Based on the training parameters from Table 5, Figs. 4, 5, and 6 present the predicted (BR-
BPNN-I) results of the maximum normal pull-off force Fmax

n , maximum tangential pull-off force
Fmax
t and the corresponding applied displacement ūmax. Since in the present work a 5-fold cross

validation method is used the predicted and the desired results across all the splits are shown§.

Figure 4: Plot of predicted and desired (FE) value of maximum normal pull-off force Fmax
n with the

peeling angle θp across all the splits for model BR-BPNN-I.

§The correlation between the split and the predicted indices can be found in Table 2

11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure 5: Plot of predicted and desired (FE) value of maximum tangential pull-off force Fmax
t with the

peeling angle θp across all the splits for model BR-BPNN-I.

It can be seen from Figs. 4 and 5 that the predicted values of Fmax
n and Fmax

t for all angles
except θp = 10◦ are very close to the desired target results (that are obtained by FE). However,
for θp = 10◦, the predicted results show a slightly higher deviation compared to the other tested
peeling angles. It is observed from Table 2 that the 10◦ angle (index 1) is considered as part of
the training dataset for the first, second, fourth, and fifth split and the testing dataset for the
third split. Although the predicted results for 10◦ angle are found to be more accurate for the
third split, they, however, are computed for all the splits. Furthermore, as can be interpreted
from Table 5, the MSE values significantly contribute to those splits which have 10◦ angle

Figure 6: Plot of predicted and desired (FE) value of applied displacement ūmax with the peeling angle
θp at maximum pull-off force across all the splits for model BR-BPNN-I.

(index 1) in the training dataset. The MSE value in the third split can not compensate the
adverse effects of the MSE values in rest of the splits. Therefore, this cumulative effect of the
MSE values has become instrumental in creating a disparity between the predicted results from
the testing dataset and the desired results from the FE model. In the case with 20◦ angle,
the disparity is substantially reduced by compensating the adverse effects of the training splits

12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 7: Relative error (RE) for the predictions of model BR-BPNN-I.

Fmax
n Fmax

t umax

Maximum RE (%) 1.78 0.91 9.68

Minimum RE (%) 2.04× 10−4 0.0076 0.06

Average RE (%) 0.24 0.19 1.22

(first, second, third, and fifth) through the testing split (i.e., the fourth split) which has the
smallest MSE value. The predictions are a little different for ūmax as shown in Fig. 6 where
significant differences are found for θp = 10◦, 20◦, and 90◦. This can also be observed from
Table 7, which lists the relative error (RE) for the all the tested peeling angles. From the table
it can be seen that the maximum relative error for the case of displacement umax is 9.68% while
the average relative error is around 1.22%. The average relative error for the case of maximum
normal and tangential forces is found to be very small.

5.2 Case II: Resultant force angle at detachment

Figures 7 and 8 show the predictions for the output dataset of BR-BPNN-II, i.e. the applied
displacement at detachment ūdet and the resultant force angle at detachment αdet using the
corresponding training parameters from Table 6. Again, as mentioned previously, since in the
present work a 5-fold cross validation method is used, the predicted and the desired results
across all the splits are shown.

Figure 7: Plot of predicted and desired (FE) value of applied displacement at detachment ūdet with
the peeling angle θp across all the splits for model BR-BPNN-II.

It can be seen from Fig. 7 that the predicted values of udet for all the angles except for θp = 10◦

are very close to the desired target FE results. The maximum, minimum and the average RE
values, given in Table 8, are estimated to be 9.85%, 0.15%, and 1.24%, respectively. Although
the predicted results are evaluated for all the splits, the most effective results are observed for
the third split for the case of θp = 10◦. Similar to the reasoning in Section 5.1, the pestilential
effects of cumulative MSE values pertaining to the first, second, fourth, and the fifth split can-
not be compensated by the MSE value in the third split. This results in discrepancies between
the neural network predicted outputs and FE-based desired outputs. However, in case of the
θp = 20◦ angle, this problem is addressed by mitigating the adverse effects of the training splits

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure 8: Plot of predicted and desired (FE) value of resultant force angle at detachment αdet with
the peeling angle θp across all the splits for model BR-BPNN-II.

(first, second, third, and fifth) with the benefits of the smallest MSE value in the testing split
(i.e., the fourth split). As shown in Fig. 8, the predicted values of αdet are also very close to the
desired target FE results. The maximum, minimum and the average RE values corresponding
to the αdet predictions are estimated to be 0.66%, 0.06%, and 0.30%, respectively. It can be
observed that the predictions are very accurate even outside of the training data set.

Table 8: Relative error (RE) for the predictions of model BR-BPNN-III.

αdet ūdet

Maximum RE (%) 0.66 9.85

Minimum RE (%) 0.06 0.15

Average RE (%) 0.30 1.24

From all these results, it can be observed that for both the BR-BPNN models, the predictions
are very close to the target outputs value except for θp = 10◦. Further, for both the BR-BPNN-I
and BR-BPNN-II models, the deviations in the predictions are larger for displacements rather
than forces. Whereas in case of BR- BPNN-I and BR-BPNN-II, ūmax, and ūdet vary quite
abruptly near θp = 10◦. This is because for both BR-BPNN-I and BR-BPNN-II , ūmax and
ūdet vary quite abruptly at θp = 10◦ (as seen in Figures 6 and 7) and thus can be considered
as outliers.

The important advantage of these ANN models lies in the significant reduction in computational
cost. It is observed that the time to train the networks with the data corresponding to all
the testing peeling angles of each split for both networks is hardly more than one minute.
Similarly, once the network is trained, any number of predictions can be made within minutes.
Thus, using FE models in conjunction with ANNs has the potential to significantly reduce the
computational time leading to faster analysis once the required data has been obtained. This
gives a particularly big advantage when the data is obtained using experiments.

14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6 Conclusions

An artificial neural network model is constructed in the present work to study the peeling
behavior of a thin strip such as a gecko spatula. In particular, the variation of the maximum
normal and tangential pull-off forces, the corresponding applied displacement, the resultant
force angle and the applied displacement at detachment as a function of the peeling angle are
investigated. The input data is obtained from the finite element analysis of Gouravaraju et al.
(2021a,b). Bayesian regularization in conjunction with k-fold cross validation method is used
to form two separate networks. The two networks correspond to (a) the maximum normal
and tangential pull-off force and the corresponding applied displacement, and (b) the resultant
force angle and the applied displacement at detachment. The number of hidden neurons in
each model are evaluated based on their respective mean square errors. From all the results,
the maximum and minimum relative deviations of the predicted values from the FE results are
found to be 9.85% and 0.0076% respectively. Based on the results, it can be concluded that the
Bayesian regularization-based backpropagation neural networks can be employed to successfully
study peeling problems. The present work successfully shows that utilizing ANN algorithms
can significantly reduce the computational time. Further, the proposed neural network models
can be extended to predict the influence of various geometrical, material, and environmental
factors on gecko spatula peeling. Another interesting problem that can be investigated using
BR-BPNN is the constitutive modeling for the hierarchical structures in the gecko adhesion
mechanism.

Acknowledgments

The authors gratefully acknowledge the support from SERB, DST, under projects SB/FTP/
ETA-0008/2014 and IMP/2019/000276.

A Background theory on BPNN with Bayesian regularization

A classical neural network architecture mimics the function of the human brain. The brain
neurons and their connections with each other form an equivalence relation with neural network
neurons and their associated weight values (w). In a single layer network with multiple neurons,
each element uj of an input vector is associated with each neuron i with a corresponding weight
wij . A constant scalar term called bias bi corresponding to each neuron, which is like a weight, is
generally introduced in order to increase the flexibility of the network. This bias bi is multiplied
by a scalar input value (chosen to be 1 here) and is added to the weighted sum

∑
j wijuj of the

vector components uj to form a net input ni. This net input ni is then passed to an activation
function f (also called transfer function) that produces an output value ai. In general, a neural
network consists of two or more layers. Adding a hidden layer of neurons between the input layer
and output layer constitutes a multi-layer neural network, also named shallow neural network.
The addition of more than one hidden layer in the multi-layer neural network is called a deep
neural network.

Traditionally, a BPNN model, a kind of multi-layer neural network, comprises three layers: an
input layer, one or more hidden layers, and an output layer, as shown in Fig. A1. The input
layer associates the input vector u having R elements with input weight matrix W1 and first
bias vector b1 to yield an effective input n1 to the activation function f1, which produces an
output vector a1. The output vector a1 from the first layer forms the input to the hidden layer

15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure A1: A typical backpropagation neural network with input, hidden, and output layers. Adapted
from Demuth et al. (2014).

and is associated with the weight matrix W2 and bias vector b2 of the hidden layer. At last,
the hidden layer output a2 is given as an input to the output layer and delivers a predicted
output a3 with weight matrix W3 and bias vector b3. In a neural network with a total of nl
number of layers, the weight matrix Wl and bias vector bl for layer l (where l = 1, 2, . . . , nl)
can be written as

Wl =


w l
11 w l

12 w l
13 . . . w l

1R

w l
21 w l

22 w l
23 . . . w l

2R
...

...
...

. . .
...

w l
N l1

w l
N l2

w l
N l3

. . . w l
N lR

 , b l =


b l1

b l2

...

b l
N l

 , (20)

where N l denotes the number of neurons in layer l and the effective input nl is then given as

nl = Wlal−1 + bl , with a0 = u . (21)

The number of neurons in the input layer (N1) and output layer (N3) is linked to the number of
input and output vectors, respectively. However, the number of neurons in the hidden layer (N2)
are accountable for the quantification of the weights and biases. The optimal network structure
is versed by the optimum number of neurons in each layer required for the training and denoted
as N1-N2-N3. A variety of activation functions are used in backpropagation neural network,
viz., hard limit, linear, sigmoid, log-sigmoid, hyperbolic tangent sigmoid (Demuth et al., 2014).
In the current work, linear activation functions are employed in all the layers according to which,
the output is equal to the input i.e. al = nl.

The network error e is calculated by subtracting predicted output ao from target output to.
The sensitivity s, which measures how the output of the network changes due to perturbations
in the input, is back-propagated from output layer (s3) to input layer (s1) via the hidden layer
(s2). Through the backpropagation process, the error of the neurons in the hidden layer is
estimated as the backward weighted sum of the sensitivity. Thereafter, to update weights,
different learning algorithms are used in association with the sensitivity such as the steepest
descent, LM, and conjugate gradient algorithms. The sensitivity at layer l is calculated using
the recurrence relation (Demuth et al., 2014)

sl = Ḟl
(
nl
)
Wl+1 sl+1 , where l = nl − 1, . . . , 2, 1 , (22)

with snl = Ḟnl
(
nnl
)

(to − ao) , (23)

16

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

where Ḟl(nl) is a diagonal matrix containing the partial derivatives of the activation function
f l with respect to the net inputs nl and is given as

Ḟl
(
nl
)

=


ḟ l
(
nl1
)

0 . . . 0

0 ḟ l
(
nl2
)

. . . 0
...

...
. . .

...

0 0 . . . ḟ l
(
n l
N l

)
 , where ḟ l

(
nlj

)
=
∂f l
(
nlj

)
∂nlj

, (24)

and for the considered linear activation function is equal to the identity matrix.

The purpose of a backpropagation neural network model is to ensure a network with small
deviations for the training dataset and supervise the unknown inputs effectively. The intricacy
of the BPNN, monitored by neurons in the hidden layer and their associated weights, leads to
overfitting, i.e. the network tries to make the error as small as possible for the training set
but performs poorly when new data is presented. However, a robust network model should
be able to generalize well, i.e. it should predict well even when presented with new data.
Therefore, Bayesian regularization based learning of BPNN models is utilized to achieve better
generalization and minimal over-fitting for the trained networks (MacKay, 1992; Burden and
Winkler, 2008).

B Results from finite element simulations

Table B1 lists the values of the maximum normal force Fmax
n , maximum tangential force Fmax

t ,

applied displacement at force maximum ūmax, applied displacement at ūdet, and resultant force

angle at detachment αdet for different peeling angles as obtained by Gouravaraju et al. (2021a,b)

using nonlinear finite element analysis.

Table B1: Data from finite element results of Gouravaraju et al. (2021a,b).

Peeling Applied Max. normal Max. tangential Applied Resultant force

Case angle displacement at pull-off force pull-off force displacement at angle at detachment

θp force max. Fmax
n Fmax

t at detachment αdet

[degrees] ūmax [nm] [nN] [nN] ūdet [nm] [degrees]

1 10 41.8 174.1584 1722.719 393.4 25.64973

2 15 35.6 171.1613 1529.699 263.8 25.57726

3 20 33.8 165.5169 1370.545 199.6 25.56427

4 25 32.4 160.1255 1240.153 161.6 25.59890

5 30 31.2 155.0284 1129.391 136.6 25.60988

6 35 30.6 150.3356 1034.944 119.0 25.55115

7 40 30.2 145.7655 950.3074 106.2 25.55958

8 45 30.0 141.2537 872.9422 96.6 25.61840

9 50 30.2 136.8172 801.4117 89.2 25.65779

10 55 30.6 132.2554 733.2346 83.4 25.62680

11 60 31.4 127.5051 667.3803 78.8 25.53845

12 65 32.8 122.5176 602.7001 75.4 25.66338

13 70 34.4 117.0706 537.6730 72.6 25.51802

14 75 36.8 110.9777 471.2534 70.6 25.49363

15 80 40.2 104.0514 402.4569 69.4 25.69447

16 85 44.8 95.87533 330.1474 68.4 25.44845

17 90 51.8 86.18540 254.5306 68.2 25.49894

17

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

C Framework of Bayesian regularization-based backpropaga-

tion

The algorithm for the Bayesian regularization based backpropagation is composed of the fol-

lowing steps:

1. Pick training data set D containing the Ntrain cases specified in Tables 2, 3 and 4, and

Appendix B.

(a) Input vector, u: Peeling angles θp

(b) Target output vector, to : ūmax, Fmax
n , Fmax

t (for BR-BPNN-I)

ūdet , αdet (for BR-BPNN-II)

2. Initialize neural network with

(a) Number of neurons in the input layer equal to the number of input vectors, which is

equal to 1 for both the BR-BPNN models as described in step 1(a), i.e. N1 = 1.

(b) Number of neurons in the output layer equal to the number of output vectors, which

is equal to N3 = 3 for model BR-BPNN I and N3 = 2 for model BR-BPNN II,

respectively, as described in Tables 3 and 4.

(c) Number of neurons in the hidden layer equal to one, i.e. N2 = 1.

3. Set learning method to Bayesian regularization

(a) Set maximum number of epochs to 2000.

(b) Divide the training data set as per Table 2 using k-fold cross validation.

4. Train the network

(a) Compute regularization parameters µ and ν using Eq. (13).

(b) Backpropagate sensitivities calculated using Eqs. (22) and (23).

(c) Update weights using Eq. (17).

5. Compute mean square error (MSE) using Eq. (18).

6. Loop over steps 4 and 5 with different number of neurons in the hidden layer.

7. Plot the MSE with number of neurons in the hidden layer as in Fig. 3.

8. Select the number of neurons in the hidden layer to be the value from which MSE attains

a broad minimum and decreases as N2 is further increased. This determines the optimal

network structure N1-N2-N3.

9. Retrain the neural network model with optimal network structure from step 8.

10. Save the model parameters (using Tables 5 and 6) along with weights and biases.

11. Using the saved parameters in step 10, predict for the testing dataset as in Tables 2, 3

and 4.

18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

References

Agrawal, V. and Gautam, S. S. (2013). NURBS based isogeometric analysis for stable and

accurate peeling computations. Sadhana, 46:3.

Argatov, I. I. and Chai, Y. S. (2019). An artificial neural network supported regression model

for wear rate. Tribol. Int., 138:211–214.

Autumn, K. (2002). Mechanisms of Adhesion in Geckos. Integr. Comp. Biol., 42(6):1081–1090.

Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R.,

and Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787):681–685.

Bonet, J. and Wood, R. D. (2008). Nonlinear Continuum Mechanics for Finite Element Anal-

ysis. Cambridge University Press, London, 2nd edition.

Burden, F. and Winkler, D. (2008). Bayesian Regularization of Neural Networks. In Methods

Mol. Biol., pages 23–42. Humana Press.

Dan Foresee, F. and Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning.

In Proc. Int. Conf. Neural Networks, volume 3, pages 1930–1935. IEEE.

Demuth, H. B., Beale, M. H., De Jess, O., and Hagan, M. T. (2014). Neural network design.

Martin Hagan, 2nd edition.

Drotlef, D., Amjadi, M., Yunusa, M., and Sitti, M. (2017). Bioinspired Composite Microfibers

for Skin Adhesion and Signal Amplification of Wearable Sensors. Adv. Mater., 29(28):1701353.

Federle, W. and Labonte, D. (2019). Dynamic biological adhesion: mechanisms for controlling

attachment during locomotion. Philos. Trans. R. Soc. B Biol. Sci., 374(1784):20190199.

Gautam, S. S. and Sauer, R. A. (2013). An energy-momentum-conserving temporal discretiza-

tion scheme for adhesive contact problems. Int. J. Num. Meth. Engrg., 93(10):1057–1081.

Gautam, S. S. and Sauer, R. A. (2014). A composite time integration scheme for dynamic

adhesion and its application to gecko spatula peeling. Int. J. Comp. Methods, 11(05):1350104

(1–28).

Gouravaraju, S., Sauer, R. A., and Gautam, S. S. (2021a). Investigating the normal and

tangential peeling behaviour of gecko spatulae using a coupled adhesion-friction model. J.

Adhes., 97(10):952–983.

Gouravaraju, S., Sauer, R. A., and Gautam, S. S. (2021b). On the presence of a critical

detachment angle in gecko spatula peeling - a numerical investigation using an adhesive

friction model. J. Adhes., 97:1234–1254.

Gu, G. X., Chen, C.-T., Richmond, D. J., and Buehler, M. J. (2018). Bioinspired hierarchical

composite design using machine learning: simulation, additive manufacturing, and experi-

ment. Mater. Horiz., 5:939–945.

19

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Kayri, M. (2016). Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt

Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data.

Math. Comput. Appl., 21(2):20.

Kim, Y., Yang, C., Kim, Y., Gu, G. X., and Ryu, S. (2020). Designing an adhesive pillar shape

with deep learning-based optimization. ACS Appl. Mater. Interf., 12(21):24458–24465.

Komvopoulos, K. (2003). Adhesion and friction forces in microelectromechanical systems: mech-

anisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci.

Technol., 17(4):477–517.

Labonte, D. and Federle, W. (2016). Biomechanics of shear-sensitive adhesion in climbing

animals: peeling, pre-tension and sliding-induced changes in interface strength. J. R. Soc.

Interface, 13(122):20160373.

MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks.

Neural Comput., 4(3):448–472.

Majidi, C., Groff, R. E., Maeno, Y., Schubert, B., Baek, S., Bush, B., Maboudian, R., Gravish,

N., Wilkinson, M., Autumn, K., and Fearing, R. S. (2006). High Friction from a Stiff Polymer

Using Microfiber Arrays. Phys. Rev. Lett., 97(7):076103.

Mergel, J. C., , Scheibert, J., and Sauer, R. A. (2021). Contact with coupled adhesion and

friction: computational framework, applications, and new insights. J. Mech. Phys. Solids,

146:104194.

Oishi, A. and Yagawa, G. (2020). A surface-to-surface contact search method enhanced by deep

learning. Comput. Mech., 65(4):1125–1147.

Peng, Z. L., Chen, S. H., and Soh, A. K. (2010). Peeling behavior of a bio-inspired nano-film

on a substrate. Int. J. Solids Struct., 47(14-15):1952–1960.

Persson, B. N. J. and Gorb, S. (2003). The effect of surface roughness on the adhesion of elastic

plates with application to biological systems. J. Chem. Phys., 119(21):11437–11444.

Pesika, N. S., Tian, Y., Zhao, B., Rosenberg, K., Zeng, H., McGuiggan, P., Autumn, K., and

Israelachvili, J. N. (2007). Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive

System. J. Adhes., 83(4):383–401.

Sauer, R. A. (2009). Multiscale modelling and simulation of the deformation and adhesion of a

single gecko seta. Comput. Methods Biomech. Biomed. Engin., 12(6):627–640.

Sauer, R. A. (2011a). Enriched contact finite elements for stable peeling computations. Int. J.

Numer. Methods Eng., 87(6):593–616.

Sauer, R. A. (2011b). The Peeling Behavior of Thin Films with Finite Bending Stiffness and

the Implications on Gecko Adhesion. J. Adhes., 87(7-8):624–643.

20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sauer, R. A. and Holl, M. (2013). A detailed 3D finite element analysis of the peeling behaviour

of a gecko spatula. Comput. Methods Biomech. Biomed. Engin., 16(6):577–591.

Sauer, R. A. and Li, S. (2007). A contact mechanics model for quasi-continua. Int. J. Numer.

Methods Eng., 71(8):931–962.

Sauer, R. A. and Mergel, J. C. (2014). A geometrically exact finite beam element formulation

for thin film adhesion and debonding. Finite Elem. Anal. Des., 86:120–135.

Sauer, R. A. and Wriggers, P. (2009). Formulation and analysis of a three-dimensional finite

element implementation for adhesive contact at the nanoscale. Comput. Methods Appl. Mech.

Eng., 198(49-52):3871–3883.

Schubert, B., Majidi, C., Groff, R. E., Baek, S., Bush, B., Maboudian, R., and Fearing, R. S.

(2007). Towards friction and adhesion from high modulus microfiber arrays. J. Adhes. Sci.

Technol., 21(12-13):1297–1315.

Sexsmith, M. and Troczynski, T. (1994). Peel adhesion test for thermal spray coatings. J.

Therm. Spray Technol., 3(4):404–411.

Tian, Y., Pesika, N. S., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., Autumn, K., and

Israelachvili, J. N. (2006). Adhesion and friction in gecko toe attachment and detachment.

Proc. Natl. Acad. Sci., 103(51):19320–19325.

Tikhonov, A. N. (1963). Solution of ill-posed problems and the regularization method. Dokl.

Akad. Nauk SSSR, 151:501–504.

Zhang, X., Liu, Y., Liu, Y., and Ahmed, S. I. U. (2009). Controllable and switchable capillary

adhesion mechanism for bio-adhesive pads: Effect of micro patterns. Sci. Bull., 54(10):1648–

1654.

Zhu, C. (2000). Kinetics and mechanics of cell adhesion. J. Biomech., 33(1):23–33.

21

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Introduction
	Peeling using an adhesive friction model
	Bayesian regularization-backpropagation neural network (BR-BPNN)
	Implementation of BR-BPNN
	Results and discussion
	Case I: Maximum normal and tangential pull-off forces
	Case II: Resultant force angle at detachment

	Conclusions
	Background theory on BPNN with Bayesian regularization
	Results from finite element simulations
	Framework of Bayesian regularization-based backpropagation

