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Abstract: The constant increase in the number of photovoltaic (PV) energy sources in distribution

networks is the cause of serious voltage problems. The networks built at least a dozen years ago are

not provided for the installation of a large number of micro-sources. It happens that the previously

properly functioning power networks are not able to provide to consumers power with the required

parameters, after installing many PV sources. The problem relates especially to the level of voltage in

the networks. This phenomenon sometimes occurs on sunny days, especially in summer. This paper

discusses the use of a Low-Voltage Regulator (LVR-sys) in a selected rural distribution network with

PV micro-sources. Measured voltage levels in this network, before application and after application

of this regulator, are presented. The application of the regulator significantly improved voltage levels

in the network and enabled these levels to be maintained within the normative range.

Keywords: low-voltage network; photovoltaic systems; voltage control; voltage regulator

1. Introduction

In recent years, there has been a noticeable increase in the number of photovoltaic (PV)
installations. In low-voltage networks, a large share of micro-installations (up to 50 kW) at
customers is visible. The networks that have been designed and built so far do not take
into account power production, but only consumption. The design calculations performed
for these networks were related to voltage drops, line load, and the effectiveness of electric
shock protection only for power consumption cases. Design calculations related to the
possible voltage increase as a result of connecting power sources to the grid are still not
performed. According to the national legal regulation [1] and standard EN 50160 [2], the
permissible range of the network voltage is (0.9–1.1) Vn, where Vn is the nominal voltage
of the network. Due to the emerging voltage problems in the low-voltage network, it
is possible to reconfigure the network. Such a proposal appeared in the publication [3].
However, this solution can only be used for urban networks, where the power infrastructure
is extensive and it is possible to transfer network divisions. Unfortunately, such a solution is
not effective in rural areas. Another way is to replace the existing power line by a line with
a greater cross-section of conductors, as presented in the article [4]. However, this solution
is associated with the costs of rebuilding the network and also takes a relatively long time
to implement. Another solution is the use of the Local Active Power Curtailment (APC);
such an example was presented in the article [5]. Unfortunately, this solution requires
limiting the power produced by PV sources, which is not beneficial for prosumers.
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In addition to rebuilding or changing the network configuration, it is possible to
use the following solutions/devices that are designed to improve the voltage level in
the network:

• The On-Load Tap Changer (OLTC) is able to change the voltage in the supplying
power substation. In the paper [6], power fluctuations, and thus voltage variations,
were limited by means of an OLTC. It was also shown in the article [7] that if there
is an OLTC in the distribution network, it is not necessary to control the reactive
power of PV inverters. The disadvantage of this solution could be a limited number of
switchings, but the current solutions allow for a high number of them [8]. However, it
is not always possible to use an OLTC; an example may be a grid in which PV sources
are present in only one circuit. In such a case, global voltage regulation at the power
substation level could improve power quality in one circuit but degrade in others.
Another disadvantage could be inability to mitigate the three-phase unbalance.

• Some publications [9–11] considered the use of energy storage devices in order to
optimize power flows and thus influence the voltage level in the network. The weak
point of this solution is a relatively high cost of the devices, and their durability is
not long.

• The Static VAR Compensator (SVC) is an electronic device that controls the voltage
level by providing reactive power in the node. Commonly, it consists of a coupling
transformer, thyristor valves, reactors, and capacitors. This device can inject reactive
shunt compensation for a dynamic voltage control. If the voltage level in the node with
a SVC is constant, the SVC should vary the reactive power in the node [12]. However,
the low-voltage networks are characterized by a high R/X ratio, so the reactive power
impact on the voltage level is not sufficient [13].

• The Distribution Static Synchronous Compensator (D-STATCOM) is a static com-
pensator, which is re-adapted for distribution systems. It consists of energy storage
devices, an AC filter, a three-phase inverter, and a coupling transformer for the shunt
connection with the distribution network [14]. Unfortunately, the cost of the device is
high, and it is related to storage devices.

• In the Power Factor Control (PFC) solution, the reactive power control is performed
by the PV inverters [15]. It is possible to install devices that can control the reactive
power in the node with PV sources. In the article [16], a Distributed µ-STATCOM
was presented, which controls the reactive power flow in the node with PV sources.
However, this solution is based on the voltage control by the reactive power, which, in
low-voltage networks, is ineffective.

• The publication [17] proposed a Dynamic Voltage Restorer (DVR). This device can
control the voltage level by two-level step regulation (large and small step). It can
also be designed with a small energy storage unit or energy sources in order to obtain
operation in a continuous way.

• The Step-Voltage Regulator (SVR) is based on an autotransformer, connected in series
with the power network, with multiple taps and a servomechanism that allows the
selection of the most appropriate output voltage level by mechanically changing the
winding coupling [18]. In addition, by this device, the voltage asymmetry can be
reduced [19]. In the publication [20], the SVR was used for the asymmetry reduction
in a medium-voltage network. A very similar device, which is also connected to the
network in series, is an Active Voltage Regulation Transformer (AVRT), presented in
the paper [21].

• Despite the above-mentioned devices being able to work separately, there are some
publications where the cooperation of those devices for additional advantages is
presented. In the article [22], a central regulation for devices such OLTC, SVR, and PV
inverters was discussed. In the publication [23], the cooperation of an SVC device with
distributed sources was proposed. In the paper [24], several SVR devices operated in
cascade and, in this case, it was necessary to apply central regulation.
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This paper presents problems of the voltage profiles in a real low-voltage network
(230/400 V) with PV energy sources, located in northern Poland, and the results of the
experiment–verification of voltage levels improvement after the application of a Low-
Voltage Regulator (marked by the authors as LVR-sys) to this network. These levels were
measured in the real low-voltage network, before and after installation of the LVR-sys.
Thus far, the well-working low-voltage network has voltage problems when it has been
saturated with PV sources. This saturation of PV sources makes the voltage exceed the
upper permissible limit (1.1 Vn) in some periods of the year. This has been found during the
measurements carried out along the main line of the network (not at the consumer’s origin
of the electrical installation). The main aim of the experiment is to verify if the applied
LVR-sys is able to maintain the voltage within the normative range (0.9–1.1) Vn.

The rest of this paper is organized as follows. In Section 2, descriptions of the LVR-sys
regulator and the real low-voltage network are presented. Section 3 includes results of
the measurements of voltage profiles and power flow in the analyzed power network.
Conclusions following from the experiment are included in Section 4.

2. Materials and Methods

2.1. Description of the LVR-sys Regulator

The operation of the LVR-sys regulator (manufacturer: a-eberle, distributor: ASTAT)
is similar to the operation of a transformer with on-load tap control. The basis for the
application of this solution is the need to maintain the required voltage level of the distri-
bution network and to improve the power quality parameters, which are influenced by the
connected distributed generation sources [25]. The main regulated variable is the voltage
(in each phase) at the secondary side of the LVR-sys regulator. The device specifies the
voltage values that should be maintained at the regulator output, taking into account the
dead band. If the values of the measured voltages at the output of the device exceed the
permissible limit, the operation of the regulator/controller takes place. The device responds
after a certain time delay, which is defined by selecting the appropriate characteristics.
Moreover, after activating the function ‘Grid impedance’, new control values are generated.
Measurement of the currents and parameterization of the network impedance enable for
precise calculation of the voltage in a given node (even far from the output terminals
of the device). This allows the regulation to be optimized without the use of network
communication devices.

The analyzed regulator provides independent voltage regulation in each phase by
connecting two series transformers with thyristors. The transformers are controlled by
thyristors. The semiconductor elements are characterized by a high durability and ease
of use, as well as a low short-circuit resistance. The stages of transformer operation are
determined by the thyristor switching settings. Table 1 shows the possible steps of the
voltage regulation. The device allows the voltage to be adjusted in 9 steps.

Table 1. Generated voltage steps using thyristors; data according to [26].

Step Transformer 1.5% Transformer 4.5%

−6.0% −1.5% −4.5%
−4.5% 0 −4.5%
−3.0% +1.5% −4.5%
−1.5% −1.5% 0

0% 0 0
+1.5% +1.5% 0
+3.0% −1.5% +4.5%
+4.5% 0 +4.5%

+6.0% +1.5% +4.5%
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Thyristor control signals are generated in circuits ensuring their intelligent switching.
Taking into account the participation of the magnetic field in the transformer and related
phenomena, the application of the LVR-sys system can have a positive effect on the shape
and parameters of the load current and level of the controlled voltage. As each phase can
be controlled separately, it also becomes possible to reduce voltage unbalance.

Figure 1a shows the structure of the LVR-sys regulator, and Figure 1b shows an
example of voltage regulation by +3%, whereas Figure 1c depicts a view of the tested
LVR-sys regulator.

Figure 1. Cont.D
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Figure 1. The structure of the LVR-sys regulator (a), example of voltage regulation by +3%, according

to [26] (b), and a view of the tested LVR-sys (c).

The device is installed in series in the low-voltage network. The place of installation of
the LVR-sys in the low-voltage network can be arbitrary. It is possible to install the device
at the power transformer substation, as well as in the interior of the network in any place. It
can be installed outdoors because it has a special enclosure. It should be placed on a special
foundation or plates. Selected parameters of the device used for the tests are presented in
Table 2.

Table 2. Selected parameters of the LVR-sys device; data according to [26].

Parameter Value

Power 144 kVA
Regulation area +/−6%
Rated voltage 400 V
Rated current 200 A

Rated frequency 50 Hz
Degree of protection IP 54

Type of electrical system TN-C

2.2. Description of the Analyzed Network

The analyzed power network consists of two circuits: circuit ‘100’ and circuit ‘200’.
Circuit ‘100’ is an overhead rural network in which the main supply line is 4 × AL 25
(four-wire, aluminum bare conductors of nominal cross-sectional area 25 mm2). The main
supply line of circuit ‘200’ is made up of AsXSn 4 × 70 (four-wire, insulated aluminum
conductors of nominal cross-sectional area 70 mm2). In both cases, the loads are single-
family houses, and summer or agricultural houses. Circuit ‘100’ is saturated with PV
sources (7 installations with a total power of approx. 30 kW); in circuit ‘200’, there is 1 PV
installation. As a result of the injected power produced by the PV sources in the network,
voltage problems arise in circuit ‘100’—too high an rms value of the supply voltage occurs.
Customers of circuit ‘100’ complain about inadequate voltage parameters in the network.
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There are no voltage problems in circuit ‘200’. Therefore, the considerations in this article
refer only to circuit ‘100’. The structure of the analyzed network is shown in Figure 2.

Figure 2. Structure of the analyzed low-voltage network for circuits ‘100’ and ‘200,’ as well as

information about the location of the photovoltaic sources, the places where the measurements were

made with a recorder, and the node where the LVR-sys is installed.

The ‘100’ circuit of the analyzed network is characterized as follows:

• The voltage at the power substation is within range: 235 ÷ 247 V (before the LVR-sys
implementation).

• The voltage in the power substation is set slightly higher than the nominal value due
to the relatively high length of circuit ‘100’ (14 nodes) and the low cross-section of the
wires (4 × Al 25), and there is a high voltage drop on circuit ‘100’.

• In the absence of PV sources, the voltage in the network was correct; the average rms
voltage from 10 min measurements did not fall below the lower limit value of 0.9 Vn,
i.e., 207 V, at the final node 114.

• In the case of power generation by PV sources, the voltage value sometimes (espe-
cially in sunny summer days) increases beyond the permissible upper limit of 1.1 Vn,
i.e., 253 V, in the low-voltage network. This has been confirmed by measurements
carried out deep inside in the network and not directly at the consumer’s origin of the
electrical installation.

• The voltage reduction on the transformer substation is not possible, because, during
peak load (approx. 6 a.m.), when there is no power generation by the PV sources, the
voltage at the end of the circuit would be too low.

• The power network requires reconstruction (cable cross-section 25 mm2); when replac-
ing cables with cables with a larger cross-section, one should expect an improvement
in the voltage situation in the network. Nevertheless, such an investment takes time.
For this reason, the possibility of using the LVR-sys voltage regulator as a temporary
solution, pending the modernization of the line, was tested.
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2.3. Description of the Experiment

In order to carry out the experiment, recorders with the measurement accuracy class
‘A’ were used. They were installed in the following places (places of installation are shown
in Figure 2):

• In the supply substation in the ‘100’ circuit, this location is marked as ‘A’ and the
results of the measurements are marked as (VA, PA).

• In the node upstream of the LVR-sys regulator, in Figure 2, it is node no. 105; this
location is marked as ‘B’ and the results of the measurements are marked as (VB, PB).

• In the node farthest from the supply substation, in Figure 2, it is node no. 114; this
location is marked as ‘C’ and the results of the measurements are marked as (VC, PC).

In addition, the regulator/controller output parameters were also measured by the
controller itself. The results of the measurements at the output terminals of the LVR-sys are
marked as the results from place ‘D’ (VD, PD).

In order to obtain greater readability of the results, the graphs of voltage variation in
the selected nodes in the network are presented for specific days. In the case of no LVR-sys
device in the network, a sunny day was selected: 20 May 2021 (Thursday); in the case
of network operation with the device, it was also a sunny day: 11 June 2021 (Friday). In
addition, the voltage (VD) and power diagrams (PD, QD) at the regulator output for the
entire test period were presented, i.e., from 1 June 2021 to 29 June 2021. The value of the
set voltage Vref at the output of the LVR-sys regulator was, respectively: on 1 June 2021
to 24 June 2021: Vref = 230 V (nominal voltage of the network); on 24 June 2021 to 29 June
2021: Vref = 240 V.

3. Results

3.1. Case A: Without Regulator LVR-sys in the Network

Figures 3–5 present variations in the voltage and active power in selected nodes, before
installation of the LVR-sys regulator. If the node is located relatively close to the supply
transformer substation, voltage variations are small. In the supply substation node, the
voltage varies within the range VA = (235 ÷ 247) V; in node 105, VB = (222 ÷ 255.9) V. Node
114 (Figure 5) has the worst voltage conditions VC = (207.6 ÷ 262) V.

 
(a) 

Figure 3. Cont.
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Figure 3. Voltage and active power variations in the supply substation (period: 20 May 2021, hour

2:00 a.m.−21 May 2021, hour 4:00 a.m.): (a) voltage VA; (b) active power PA.

Figure 4. Cont.
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Figure 4. Voltage and active power variations in node 105 (period: 20 May 2021, hour 2:00 a.m.−

21 May 2021, hour 4:00 a.m.): (a) voltage VB; (b) active power PB.

Figure 5. Voltage variations VC in node 114 (period: 20 May 2021, hour 2:00 a.m.−21 May 2021, hour

4:00 a.m.).

3.2. Case B: With Regulator LVR-sys in the Network

Figures 6–8 present variations in the voltage and active power in selected nodes, after
installation of the LVR-sys regulator. The voltages vary within the following ranges:

• VA = (235.3 ÷ 246.8) V;
• VB = (226 ÷ 256.4) V;
• VC = (213 ÷ 247) V.
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Figure 6. Voltage variations VA in the supply substation (period: 11 June 2021, hour 0:00 a.m.−

12 June 2021, hour 4:00 a.m.).

Figure 7. Cont.
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Figure 7. Voltage and active power variations in node 105 (period: 11 June 2021, hour 0:00 a.m.−

12 June 2021, hour 4:00 a.m.): (a) voltage VB; (b) active power PB.

Figure 8. Voltage variations VC in node 114 (period: 11 June 2021, hour 0:00 a.m.−12 June 2021, hour

4:00 a.m.).

Figure 9 presents voltage variations at the LVR-sys output terminal for the entire test period.
The presented results of the measurements (Figures 6–8) show that the voltage vari-

ability has decreased with reference to the case without the LVR-sys, which has allowed the
parameters of the power quality to be improved. Unfortunately, the voltage at the input of
the device did not improve; this is related to the fact that the power produced by the PV
sources in node 105 did not change—it was approx. 8 kW per phase (from the comparison
of Figures 4b and 7b).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2022, 15, 723 12 of 14

Figure 9. Voltage variations VD for three phases (v1, v2, v3); period: 1 June 2021, hour 10:20 a.m.−

29 June 2021, hour 6:40 a.m.

Figure 9 shows that the LVR-sys was not able to maintain the set value at the 230 V
output, which is related to the fact that the device has control possibilities that are too low
—the range of +/−6 V is not sufficient in the case of the analyzed network. After changing
the set voltage Vref = 240 V on 24 June 2021, a smaller voltage variation around the set value
is visible (Figure 9). It is a positive effect. The power flow presented in Figure 10 shows
that the rated power of the LVR-sys device could be significantly lower than 140 kVA (the
power flow does not exceed 20 kW).

Figure 10. Active PD and reactive QD power variations; period 1 June 2021, hour 10:20 a.m.−29 June

2021, hour 6:40 a.m.
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4. Conclusions

In power networks with PV sources, there are more technical problems, especially
with voltage profiles, than in networks without these sources. Moreover, the number of
voltage regulation methods are limited in low-voltage networks. The paper presents a case
report of the use of an additional device in a rural low-voltage network to improve the
parameters of the power quality. The study was conducted on a real low-voltage network
with PV micro-sources. After the analysis, the following conclusions were formulated:

• The regulator LVR-sys improved the voltage levels in the network.
• The voltage at the farthest node no. 114 after installing the regulator was within the

normative range, i.e., (207 ÷ 253 V). The recorded values were (207.6 ÷ 262) V before
LVR-sys implementation, and (213 ÷ 247) V after LVR-sys implementation.

• The device increased the voltage regulation possibilities in the network.
• It is important to be able to set the voltage at the output of the regulator, thanks to

which it is possible to limit the range of voltage variation and to adjust the voltage
value to the individual needs of the network.

• Due to the fact that the power produced by PV sources did not change (approx. 8 kW
per phase), after installation of the LVR-sys, the voltage at the input of the LVR-sys
also remained unchanged.

• A device of this type can effectively support power system operators in preventing
voltage problems in the most difficult cases (until the major reconstruction of the
low-voltage network in a given area is completed).
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