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a b s t r a c t

In the paper we introduce a new variant of the graph coloring game and a new graph
parameter being the result of the new game. We study their properties and get some
lower and upper bounds, exact values for complete multipartite graphs and optimal,
often polynomial-time strategies for both players provided that the game is played on
a graph with an odd number of vertices. At the end we show that both games, the new
and the classic one, are related: our new parameter is an upper bound for the game
chromatic number.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

All graphs considered in this paper are finite, undirected and simple, i.e. without loops or multiple edges. Following
iestel [3] we use the standard graph notation: a graph G has a vertex set V (G) and an edge set E(G), with their
ardinalities n(G) and m(G), respectively. We denote by ∆(G), δ(G), χ (G), α(G) and α′(G) the maximum and minimum
egree, the chromatic number, the independence number and the matching number of the graph G, respectively. The
omplement of a graph G is denoted by Ḡ.
Map-coloring game can be traced to Scientific American 1981 article [5], but it has been analyzed extensively only

ince it was reinvented a decade later in [2] as the game played on graphs. As for today, there are many generalizations
nd variations of the graph coloring game, depending on what exactly is colored and what are the additional constraints
n the graph structure, admissible coloring etc. See for example the survey [1], covering some variants, techniques and
esults for this type of problems.

The standard version of the graph coloring game is played between Alice and Bob on a graph G with a set C of k colors,
ith k fixed. We say that color c ∈ C is legal for a vertex v ∈ V (G) if no neighbor of v is colored with c. The game proceeds
y Alice and Bob taking subsequent turns and coloring any uncolored vertex with a legal color until the entire graph is
olored or there are no legal colors for all uncolored vertices. Alice wins in the former case and Bob in the latter.
The game chromatic number of a graph G, denoted by χg (G), is defined as the minimum k such that there exists a

inning strategy for Alice, that is, it is certain that the entire graph will be colored regardless of the strategy of Bob. This
arameter is well-defined, because Alice always wins if C contains at least as many colors as there are vertices of G.
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The graph coloring game was studied by many authors. For the class of planar graphs P it was proved in [7,9] that 8 ≤

ax{χg (G) :G ∈ P} ≤ 17. For the class of outerplanar graphs OP , it was shown in [6] that 6 ≤ max{χg (G) :G ∈ OP} ≤ 7.
or k-trees KT it is the case that max{χg (G) :G ∈ OP} = 3k + 2 for k ≥ 2 (see [10]). Similarly, it was shown in [8] that
ax{χg (G) :G ∈ C} = 5 for cacti graphs C. Finally, for interval graphs it was proved in [4] that χg (G) ≤ 3ω(G) − 2, where
(G) is the clique number of G, and that there are examples of graphs with χg (G) ≥ 2ω(G) − 1.
In the paper we introduce a related graph coloring game, under the name infinite graph coloring game, played on a

raph G. In this game Alice and Bob do not use any fixed set of available colors, but instead have an infinite set of colors
t their disposal. Moreover, Alice wants to color the graph using as few colors as possible and Bob, conversely, wants to
aximize the number of colors used. The infinite game chromatic number χ∞

g (G) is then defined as the number of colors
btained when both players use their optimal strategies.
We analyze basic properties of the infinite game chromatic number. For example, we provide the exact values for

ertain classes of graphs, such as paths, cycles and complete k-partite graphs. More important, we provide exact values
or χ∞

g (G) provided that n(G) is odd, and upper and lower bound for n(G) even. Most of these values are obtainable in a
olynomial time. Then, we proceed to the proof that there is a relation between the graph coloring game and the infinite
raph coloring game. We show i.a. that the infinite game chromatic number is always an upper bound for the game
hromatic number and that there are graphs for which these numbers are identical.

. Basic properties of χ∞
g (G)

Throughout this paper we proceed in a manner known from many other proofs of properties of games on graphs: if
e want to prove that χ∞

g (G) ≥ k, then it is sufficient to show that there exists a strategy for Bob, which—regardless of
lice’s play—enforces at least k colors. Similarly, if we want to prove that χ∞

g (G) ≤ k, we present a possible strategy for
lice, such that all possible outcomes are guaranteed to be restricted to use at most k colors.

heorem 1. The inequality χ∞
g (G) ≥ max{χ (G), ⌊ 1

2n(G)⌋ + 1} holds for all graphs G.

Proof. It is obvious that χ∞
g (G) ≥ χ (G). To prove the second inequality, let Bob adopt the ‘‘always use a new color’’

trategy, i.e. every time Bob moves, he selects an uncolored vertex and colors it with a color not assigned previously to
ny vertex. The strategy guarantees that there will be at least ⌊

1
2n(G)⌋ + 1 colors used as Alice has to use one new color

t the beginning and Bob performs exactly ⌊
1
2n(G)⌋ moves. □

As we will see later, there are many graphs for which χ∞
g (G) = ⌊

1
2n(G)⌋ + 1 (especially all graphs with low maximum

egree, see Section 3.2). Now we proceed to upper bounds for χ∞
g (G).

roposition 2. For any graph G it holds that χ∞
g (G) ≤ n(G). Furthermore, χ∞

g (G) = n(G) if and only if one of the following
onditions hold:

(i) n(G) is odd and G is a complete graph,
(ii) n(G) is even and ∆(Ḡ) ≤ 1.

roof. It is clear that χ∞
g (G) ≤ n(G). To complete the proof, it suffices to consider the following three cases:

(1) ∆(Ḡ) ≥ 2. Then there exists a vertex v of G and two its non-neighbors v1, v2. Alice colors v in her first move with
color 1. There are two possible continuations of the game:

(a) Bob reused the color 1 in his first move. As there are n(G) − 2 remaining moves and only one color used so
far, the number of colors used in the game will not exceed n(G) − 1.

(b) Bob introduced a new color in his first move. Then at least one of v1, v2 is uncolored and Alice may choose
it and color with 1. As there are n(G) − 3 remaining moves and only two colors used so far, the number of
colors used in the game will not exceed n(G) − 1.

In both cases χ∞
g (G) < n(G).

(2) ∆(Ḡ) = 1. Then V (G) = V0∪V1 where Vi is the set of vertices of G that are of degree i in Ḡ. There is also a one-to-one
function f : V1 → V1 such that vf (v) ∈ E(Ḡ). There are two subcases to consider:

(a) n(G) is even. Then Bob may adopt the following strategy: if Alice colored v in her last move and v ∈ V0 then
color any uncolored vertex of V0 with a new color, otherwise color f (v) with a new color. In this case V0 has
an even number of vertices so the strategy can be applied and moreover Alice is forced to use a new color
in every move. Hence χ∞

g (G) = n(G).
(b) n(G) is odd. Then Alice may adopt the following strategy: start by coloring a vertex from V0 and then mimic

Bob’s moves: if he colored a vertex v in his last move and v ∈ V0, color any uncolored vertex of V0, otherwise

color f (v) with the color used by Bob in his last move. In this case V0 has an odd number of vertices so the
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strategy can be applied and moreover Bob will be forced to color at least once a vertex from V1. Therefore,
Alice will repeat his color i.e. she will reuse an already existing color at least once. Hence χ∞

g (G) < n(G).

(3) ∆(Ḡ) = 0. Then G is a complete graph and obviously χ∞
g (G) = n(G). □

heorem 3. The inequality χ∞
g (G) ≤ n(G) + 1 − ⌈

1
2α(G)⌉ holds for every graph G.

roof. It is easy to see that our claim holds (and it is tight) for empty graphs so we assume that G is not empty. Alice’s
trategy consists of two parts: the first move and all other moves. In her first move, Alice:

(a) makes a partition of V (G) into a maximum independent set V0 and a nonempty set V1—note that such partition
exists since G is not empty,

(b) chooses any vertex of V1 and colors it with 1.

lice’s next moves depend on last Bob’s move in a following way:

(c) if Bob colored a vertex from V1 and there is an uncolored vertex in V1, Alice chooses it and colors with a new color,
(d) if Bob colored a vertex from V1 and all vertices in V1 are colored, Alice colors any uncolored vertex of V0 with a

new color,
(e) if Bob colored a vertex from V0 with a new color c and there is an uncolored vertex in V0, Alice chooses it and

colors with c ,
(f ) if Bob colored a vertex from V0 with previously used color and there is an uncolored vertex in V0, Alice chooses it

and colors with a new color,
(g) if Bob colored a vertex from V0 and all vertices in V0 are colored, Alice colors any uncolored vertex of V1 with a

new color.

t is easy to see that the above strategy works, as it is always possible to color vertices with new colors or the same color
hat was used previously on exactly one vertex that is not a neighbor of the one being colored (rule (e)). Moreover, the
ule (d) will be applied at most once during the game, since there is exactly one moment in the game when the last
ncolored vertex of V1 becomes colored. Hence, there are only two cases to be considered:
(1) The rule (d) was not used. Then all vertices of V0, possibly except of the one colored last, may be divided into pairs

u, v where u was colored by Bob and v was colored by Alice in consecutive moves. In all such cases Alice used rules (e)
or (f ) so the number of new colors introduced in these two moves equals 1. This implies that the number of new colors
used in V0 is at most 1

2 |V0| if |V0| is even or 1 +
1
2 (|V0| − 1) otherwise.

(2) The rule (d) was used once to color vertex v. Then the above reasoning holds for V0 \ {v} and the number of new
olors used in V0 is at most 1 +

1
2 (|V0| − 1) if |V0| is odd or 1 +

1
2 |V0| otherwise.

In both cases the number of new colors used to color V0 is at most 1 + ⌊
1
2 |V0|⌋. Therefore the number of colors used

n the game is at most |V1| + 1 + ⌊
1
2 |V0|⌋ = n(G) + 1 − |V0| + ⌊

1
2 |V0|⌋ = n(G) + 1 − ⌈

1
2 |V0|⌉ = n(G) + 1 − ⌈

1
2α(G)⌉. □

Theorem 4. The inequality χ∞
g (G) ≤ ⌊

1
2n(G)⌋ + χ (G) holds for every graph G.

roof. Alice’s strategy consists of two parts: the first move and all other moves. In her first move, Alice:

(a) makes a partition of V (G) into independent sets V1, V2, . . . , Vχ (G), which exists by the definition of the chromatic
number,

(b) chooses any vertex v1 ∈ V1, colors it with c1 = 1 and sets B0 = ∅, A1
1 = {c1} and Ai

1 = ∅ for 2 ≤ i ≤ χ (G).

In her jth move, where j ≥ 2, played after Bob’s (j − 1)th move (consisting of coloring of a vertex uj−1 with color bj−1),
Alice:

(c) sets Bj−1 = Bj−2 ∪ {bj−1} and chooses ij for which there is an uncolored vertex vj ∈ Vij ,
(d) chooses a new color cj if A

ij
j−1 ⊆ Bj−1 or any element cj of A

ij
j−1 \ Bj−1 otherwise,

(e) colors vj with cj, sets A
ij
j = A

ij
j−1 ∪ {cj} and Ak

j = Ak
j−1 for k ̸= ij.

We will use induction on j to show that the above strategy works, Bj−1 is the set of colors used by Bob in his first j − 1
moves, Ai

j is the set of colors used by Alice in her first j moves on vertices from Vi, |Ai
j \ Bj−1| ≤ 1 for 1 ≤ i ≤ χ (G) and

(Ak
j ∩ Al

j) \ Bj−1 = ∅ for k ̸= l.
The above statement is clearly true for j = 1, so assume that j > 1 and that it holds for j − 1. Since Bj−2 is the set of

colors used by Bob up to move j − 2 and Bj−1 arises from Bj−2 by including the color used by Bob in his (j − 1)th move,
then Bj−1 is the set of colors used by Bob in his first j−1 moves. Similar reasoning shows that Ai

j must be the set of colors
used by Alice in her first j moves on vertices from Vi, provided that Alice can color vj with cj. To show that this move is
playable, let us consider the following two cases:
140
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Fig. 1. The graph C̄8 (left) and a partial coloring obtained during the game (right).

(1) A
ij
j−1 ⊆ Bj−1. Then cj is a new color and as such can be used to color any vertex of G.

(2) cj ∈ A
ij
j−1 \ Bj−1. Then cj is a color not used by Bob up to move j − 1. If Alice cannot color vj with cj, it means that

Alice colored some neighbor of vj, say vk in her kth move, with color cj = ck. Since Vik is an independent set, we
know that ik ̸= ij and cj ∈ (A

ij
j−1 ∩ Aik

j−1) \ Bj−1 ⊆ (A
ij
j−1 ∩ Aik

j−1) \ Bj−2 = ∅—a contradiction. Hence Alice can color vj
with cj.

The same two cases must be considered to show that |Ai
j \ Bj−1| ≤ 1 for 1 ≤ i ≤ χ (G) and (Ak

j ∩Al
j) \Bj−1 = ∅ for k ̸= l.

(1) A
ij
j−1 ⊆ Bj−1. Then A

ij
j \ Bj−1 = {cj}, Ai

j = Ai
j−1 for i ̸= ij, Bj−2 ⊆ Bj−1 and it is easy to see that our claim holds.

(2) cj ∈ A
ij
j−1 \ Bj−1. Then Ai

j = Ai
j−1 for all i, Bj−2 ⊆ Bj−1 and it is easy to verify that our claim holds.

To complete the proof, it suffices to see how many colors were used in the game played with the above strategy. There
are two cases to consider:

(1) Alice’s jth move was the last move of the game. Then the number of colors used by both sides equals |Bj−1 ∪
⋃χ (G)

i=1
Ai
j| ≤ |Bj−1| +

∑χ (G)
i=1 |Ai

j \ Bj−1| ≤ ⌊
1
2n(G)⌋ + χ (G).

(2) Bob’s jth move was the last move of the game. Let B be the set of colors used by Bob. Then the number of colors
used by both sides equals |B ∪

⋃χ (G)
i=1 Ai

j| ≤ |B| +
∑χ (G)

i=1 |Ai
j \ B| ≤ |B| +

∑χ (G)
i=1 |Ai

j \ Bj−1| ≤ ⌊
1
2n(G)⌋ + χ (G). □

At first glance the ‘‘always use a new color’’ strategy seems optimal for Bob. It appears that it is not true.

roposition 5. There exist graphs such that the strategy ‘‘use always a new color’’ is not optimal for Bob, that is, there exists
graph G such that no matter how Bob plays using this strategy, the players use strictly less than χ∞

g (G) colors.

roof. Let us consider a game played on the graph C̄8 shown in the left part of Fig. 1. Without loss of generality, we may
ssume that Alice started the game by choosing vertex v1 and assigning to it the color 1.
If Bob uses a new color in each of his moves, Alice can reuse colors at least 3 times. To see this, let us consider the

ext moves in the game. Due to symmetries in the graph, there are only two cases to consider:

1. Bob colors v2 or v3 with 2. Then Alice colors the only uncolored vertex in the set {v2, v3} with 2. The game proceeds
as follows:

(a) If Bob colors v4 or v5 with 3, Alice colors the only uncolored vertex in the set {v4, v5} with 3, too. Whatever
vertex vi is chosen by Bob as next, it has at least one uncolored non-neighbor and Alice may choose it and
repeat the color Bob just assigned to vi.

(b) If Bob colors v7 or v8 with 3, Alice colors the only uncolored vertex in the set {v7, v8} with 3, too. Whatever
vertex vi is chosen by Bob as next, it has at least one uncolored non-neighbor and Alice may choose it and
repeat the color Bob just assigned to vi.

(c) If Bob colors v6 with 3, Alice colors v5 with 3. If in the next move Bob colors v8 with 4, Alice colors v7 with
4. Otherwise, Alice colors v8 with 1.

2. Bob colors v4 or v5 with 2. Then Alice colors the only uncolored vertex in the set {v4, v5} with 2. The game proceeds
as follows:

(a) If Bob colors v2 or v3 with 3, Alice colors the only uncolored vertex in the set {v2, v3} with 3, too. Whatever
vertex vi is chosen by Bob as next, it has at least one uncolored non-neighbor and Alice may choose it and
repeat the color Bob just assigned to v .
i
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(b) If Bob colors v6, v7 or v8 with 3, Alice chooses its uncolored non-neighbor and colors it with 3. If in the next
move Bob colors v2 with 4, Alice colors v3 with 4. Otherwise Alice colors v2 with 1.

n all above cases, the obtained colorings use 5 colors.
However, when Bob is allowed to reuse colors, he answers Alice’s first move with assigning color 2 to v5. Then, Alice

as two possibilities: either repeat a color or use a new one.

1. In the first case Bob just mirrors the move Alice did, creating a situation presented in the right part of Fig. 1. It is
easy to see that Bob can force Alice to use only new colors in the remaining moves, simply by choosing to color
the only uncolored neighbor of the vertex Alice just colored.

2. In the second case Bob follows the ‘‘always use a new color’’ strategy.

n all the above cases, the obtained colorings use at least 6 colors, which completes the proof. □

It remains an open problem to decide whether ‘‘reuse an existing color if possible’’ is always an optimal strategy for
lice.

. Special classes of graphs

.1. Complete multipartite graphs

heorem 6. Let exactly 2l numbers among r1, r2, . . . , rk be odd for some l ≥ 0. Then χ∞
g (Kr1,r2...,rk ) = ⌊

1
2n(G)⌋ + k − l.

roof. Let V1, V2, . . . , Vk be a partition of vertices of Kr1,r2...,rk into independent sets of sizes r1, r2, . . . , rk. Note that, if a
olor c is used for a vertex in Vi, then it cannot be used in any Vj, where j ̸= i. Therefore, as long as there are uncolored
ertices in Vi, players may always reuse c for other vertices in Vi.
The strategy for Alice is to minimize the number of parts that she colors first. On the other hand, it seems reasonable

or Bob to try to force Alice to begin coloring vertices from as many sets Vi as possible.
(≤) A strategy for Alice, which ensures that no more than ⌊

1
2n(G)⌋ + k − l colors are used:

(1) if possible, pick a vertex from a set Vi which already has some vertices colored—and use one of colors previously
used in Vi,

(2) if possible, pick any uncolored vertex in a set Vi with an odd number of vertices and use a new color,
(3) otherwise, pick any uncolored vertex in any set Vi and use a new color.

he strategy guarantees that Alice colors the first vertex only in at most l sets Vi of odd cardinality. Note that Alice starts
oloring a set only when all sets are either colored completely or not colored at all—and only in the case when the sum of
ardinalities of all colored sets is even. Alice starts coloring a set with an odd number of vertices. Therefore, she does not
tart coloring any new set until some yet uncolored set with an odd number of vertices will have the first vertex colored
y Bob. And since there are k − 2l sets of even cardinality, we know that there are at most ⌊

1
2n(G)⌋ + k − l colors in any

resulting coloring.
(≥) A strategy for Bob is strikingly similar:

(1) if possible, pick an uncolored vertex from the same set Vi which has already some vertices colored,
(2) if possible, pick any uncolored vertex in a set Vi with an odd number of vertices,
(3) otherwise, pick any uncolored vertex.

Always use a new color.
Playing this way Bob can force Alice to start at most half of sets Vi with an odd parity and all sets Vi with an even

parity. To see the former fact, suppose Bob starts coloring a set with an odd number of vertices. This means that there
were no partially colored sets in the graph. Since Bob does not start coloring a new set unless he is forced to, the next
set with an odd number of vertices will have the first vertex definitely colored by Alice. To see the latter one, let Alice
start coloring any vertex in a set Vi with even number of vertices. After Bob’s answer the total number of vertices in sets
Vi which are partially and completely colored is an even number. Bob’s strategy ensures that the next yet uncolored set
will be colored first by Alice.

Therefore Alice will use at least (k − 2l) + l = k − l new colors. And since in all moves Bob use a new color, we have
t least ⌊

1
2n(G)⌋ + k − l colors in total. □

Note that from this follows immediately that Kr1,r2,...,rk with all ri (1 ≤ i ≤ k) even is a tight example for upper bound
rom Theorem 4.

heorem 7. Let exactly 2l + 1 numbers among r , r , . . . , r be odd for some l ≥ 0. Then χ∞(K ) = ⌊
1n(G)⌋ + l + 1.
1 2 k g r1,r2,...,rk 2
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Proof. We use exactly the same strategies as in the previous proof.
(≤) Alice is certain to use only l + 1 colors, as she may force Bob to start all sets of even cardinality and ⌊

2l+1
2 ⌋ = l

ets of odd cardinality. Therefore it is true that there are at most ⌊
1
2n(G)⌋ + l + 1 colors in any resulting coloring.

(≥) Playing this way Bob guarantees that Alice starts coloring at least l + 1 sets of odd cardinality, which is sufficient
o use at least ⌊

1
2n(G)⌋ + l + 1 colors in total. □

Observe that there is a striking asymmetry between the results from Theorems 6 and 7: in the former case χ∞
g (G)

becomes smaller with the growth of l, when n and k are held constant, but in the latter case it behaves exactly the other
way round, with the maximum at l = k.

3.2. Graphs with bounded maximum degree

Theorem 8. If a graph G satisfies condition ∆(G) ≤
1
3 (n(G) − 1) then χ∞

g (G) = ⌊
1
2n(G)⌋ + 1.

Proof. The lower bound follows from Theorem 1, therefore we only need to prove the upper bound. Suppose that Alice
uses the following strategy:

(1) in the first move, pick any vertex v1 and assign to it color 1,
(2) in her kth move with 2 ≤ k ≤ ∆(G) + 1, pick any uncolored vertex vk which is not adjacent to vertex uk−1 picked

in the previous move by Bob and assign to it the same color (if Bob used a new color) or assign to it any new color
(otherwise).

(3) in any further moves, pick any uncolored vertex and assign to it any color which was already used, but which does
not appear in the neighborhood of this vertex.

e will show that the above strategy works and during phases (1) and (2) both players use exactly ∆(G) + 1 colors. To
his aim consider Alice’s kth move, where 2 ≤ k ≤ ∆(G)+1. Vertex uk−1 has at most ∆(G) neighbors, 2k−2 other vertices
re colored and ∆(G) + 2k − 2 ≤ 3∆(G) < n(G), so there is an uncolored vertex that is not adjacent to uk−1. It can be
asily colored using the rule described in phase (2) and it is easy to see that Alice introduces a new color if and only if
ob did not introduce a new color in his last move. Therefore after kth Alice’s move the number of colors in the game
quals k and when phase (2) ends there are ∆(G) + 1 colors in the game.
Phase (3) also works as every vertex has at most ∆(G) neighbors and there are already ∆(G) + 1 colors used. Hence

he number of colors used in the whole game equals ∆(G) + 1 colors introduced during phases (1) and (2) and at most
1
2 (n(G) − 2∆(G) − 1)⌉ colors introduced in phase (3) by Bob, which gives at most ⌈

1
2 (n(G) − 1)⌉ + 1 = ⌊

1
2n(G)⌋ + 1

olors. □

orollary 9. If G is a subcubic graph with at least 10 vertices then χ∞
g (G) = ⌊

1
2n(G)⌋ + 1.

Proof. It follows immediately from Theorem 8 and definition of subcubic graphs as graphs with maximum degree not
exceeding 3. □

Exhaustive computer search that we performed on all subcubic graphs with at most 9 vertices shows that there are
only four subcubic graphs with χ∞

g (G) > ⌊
1
2n(G)⌋ + 1, namely K3, C4, K4 without one edge and K4. Combining this with

roposition 2 we get the following formula:

orollary 10. If G is a subcubic graph then

χ∞

g (G) =

⎧⎨⎩
3 if G is K3,
4 if G is C4, K4 without an edge or K4,
⌊
1
2n(G)⌋ + 1 otherwise.

□

. General results

heorem 11. For any graph G with an odd number of vertices it is true that χ∞
g (G) ≤ n(G) − α′(Ḡ).

roof. Let M ⊆ E(Ḡ) be a maximum matching in Ḡ. Then all vertices outside of M form a clique in G—let us denote this
et by K . Alice adopts the following strategy:

(1) start in K by picking any vertex and assign to it color 1,
(2) if Bob colored a vertex in K in his last move, pick any uncolored vertex in K and assign to it a new color,
(3) if Bob colored a vertex u /∈ K in his last move, then pick v such that uv ∈ M and use exactly the same color as Bob

used for u, when it was a new color or use a new color, otherwise.
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Fig. 2. An example path used in a construction of function f .

his strategy works since K has an odd number of vertices and V (G) \ K has an even number of vertices. The number
f colors will never exceed |K | for K and |M| for V (G) \ K , because for each edge of M we use exactly one new color.
herefore in total it will not exceed |K | + |M| = n(G) − 2α′(Ḡ) + α′(Ḡ) = n(G) − α′(Ḡ). □

Theorem 12. For all graphs G it holds that χ∞
g (G) ≥ n(G) − α′(Ḡ).

Proof. Let us use M and K exactly as defined in the proof above. Bob divides the game into two phases: (1) there are
uncolored vertices in K and (2) all vertices in K are colored. Bob’s strategy for phase (1) is as follows:

(a) if Alice picked a vertex from K in her last move, pick any uncolored vertex of K and color it with a new color,
(b) if Alice picked a vertex u /∈ K in her last move, then pick v such that uv ∈ M and color it with a new color.

During phase (2) Bob picks any uncolored vertex and colors it with a new color.
It is easy to see that the above strategy works. Let us consider the moment when the last vertex of K is colored. By

the strategy, when it happens all edges in M have either none or both vertices colored—and note that every edge has
different colors at its endpoints. Denote by M ′

⊆ M the set of edges with colored both ends. Let us also denote by CK
A ,

CK
B , C

M
A , CM

B colors used by Alice and Bob in K and M ′, respectively.
We will prove that |CK

A ∩ CM
B | ≤ |CM

A \ (CM
B ∪ CK

B ∪ CK
A )|. To this end, we will define an injective function f : CK

A ∩ CM
B →

M
A \ (CM

B ∪ CK
B ∪ CK

A ). Let us pick c1 ∈ CK
A ∩ CM

B . There exists exactly one v1 ∈ K , which has been assigned c1 by Alice
because K is a clique in G). Since c1 ∈ CM

B , there exists an edge u1v2 ∈ M such that u1 was colored with c1 by Bob. Due
o the Bob’s strategy, it means that v2 was colored by Alice—let us denote this color by c2.

Clearly, c2 ∈ CM
A . Moreover, c2 /∈ CK

A ∪ CK
B , because otherwise it would mean that v2 has a non-neighbor w ∈ K in

—but then there would be an augmenting path v1, u1, v2, w in Ḡ, so M would not be a maximum matching in Ḡ. Now
f c2 /∈ CM

B , then clearly c2 ∈ CM
A \ (CM

B ∪ CK
B ∪ CK

A ), so we just assign c2 = f (c1).
Otherwise, there is a vertex u2 ∈ V (G) \K , to which Bob assigned color c2. Due to the strategy there has to be a vertex

v3 such that Alice colored it with some c3. We have now c3 ∈ CM
A \ (CK

B ∪ CK
A ) so similarly as before: either c2 /∈ CM

B (and
then we assign c3 = f (c1)), or c2 ∈ CM

B —and we repeat the step, as shown in Fig. 2. By the strategy of Bob, all ci are
different, so obviously the whole procedure has to end after at most |M ′

| steps and the value of f (c1) is well defined.
This function is injective, because if there was c1 ̸= c ′

1 such that f (c1) = f (c ′

1), we would have both paths joining, as
hown in Fig. 3. However, it would mean that the first vertex (counting from v1 and v′

1) belonging to both paths is either
ome vj or uj. The first case is impossible—since paths are defined in such a way that uj−1vj ∈ M , if vj is common for both
aths, then so is uj−1. But if uj is common for both paths, then a path from v1 through uj to v′

1 is an augmenting path for
in G—which contradicts the maximality of M .
Therefore, our function is injective and |CK

A ∩ CM
B | ≤ |CM

A \ (CM
B ∪ CK

B ∪ CK
A )|—and the number of colors used at the

oment of coloring the last vertex of K can be bounded in the following way:

|CM
B ∪ CM

A ∪ CK
B ∪ CK

A | = |CM
B | + |CK

B |

+ |CK
A \ CM

B | + |CM
A \ (CM

B ∪ CK
B ∪ CK

A )|

≥ |M ′
| + |CK

B | + |CK
A \ CM

B | + |CK
A ∩ CM

B |

= |M ′
| + |CK

B | + |CK
A | = |M ′

| + |K |.

ere we used the fact that by Bob’s strategy CK
B is disjoint from CM

B , and by the fact that in clique the players cannot
epeat colors it is disjoint from CK

A —and therefore |CK
A | + |CK

B | = |K |.
Note also that in later game there are only vertices belonging to a matchingM\M ′ left, so Bob will use exactly |M|−|M ′

|

ew colors. Thus, the final number of colors will be at least |M| + |K | = n(G) − α′(Ḡ). □
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Fig. 3. An example structure occurring whenever c1 ̸=c ′

1 and f (c1) = f (c ′

1).

Corollary 13. For graphs with an odd number of vertices it holds that χ∞
g (G) = n(G) − α′(Ḡ). □

Note that when n(G) is even, the equality χ∞
g (G) = n(G) − α′(Ḡ) may not hold. For example, for the complement G

of the graph K2,2,...,2 (k twos) we have α′(G) = k. But at the same time we know that χ∞
g (K2,2,...,2) = 2k, which directly

ollows from Proposition 2.
On the other hand, we see that Corollary 13 provides a stronger bound than Theorem 8 for graphs with odd number

f vertices:

roposition 14. If n(G) is odd, n(G) ≥ 3 and ∆(G) ≤ ⌊
1
2n(G)⌋ − 1 then χ∞

g (G) = ⌊
1
2n(G)⌋ + 1.

roof. Since ∆(G) ≤ ⌊
1
2n(G)⌋ − 1, we know that δ(Ḡ) = n(G) − 1 − ∆(G) ≥ ⌈

1
2n(G)⌉. This, by Dirac’s theorem, implies

hat Ḡ is Hamiltonian and as such contains a matching of size ⌊
1
2n(G)⌋. The matching is clearly maximal, so Corollary 13

ow gives χ∞
g (G) = n(G) − ⌊

1
2n(G)⌋ = ⌊

1
2n(G)⌋ + 1. □

We note in passing that from the perspective of the players it may be important to distinguish between the strategies
hich can be obtained when they do not have unlimited computing power, but it is restricted to the execution of
nly polynomial-time algorithms. Recall that Theorems 1, 3 and 4 would require the knowledge of χ (G) or α(G), both
arameters known to be NP-hard to compute in general. On the other hand, the strategies used in Theorems 11 and
2 are in this sense better for players, since α′(G) and the respective strategies for both Alice and Bob can be found in
olynomial time. Similarly, all the strategies for particular classes of graphs presented in Section 3 can be run by players
n polynomial time.

. Relation between game chromatic number and infinite game chromatic number

heorem 15. For any graph G it holds that χg (G) ≤ χ∞
g (G).

roof. We will show that if k ≥ χ∞
g (G) then there is a winning strategy for Alice in the standard chromatic game played

n G with a set C of k colors. Note that without loss of generality we may assume that:

(1) C = {1, 2, . . . , k},
(2) when Bob and Alice use yet unused color, they pick always the smallest one possible.

ow it is sufficient to show that the optimal strategy for Alice in the infinite chromatic game can be used also in the
hromatic game and it leads to her win.
Note that if at any point Alice or Bob cannot make move according to the rules of the chromatic game, it means that

ll colors in C are already in use. But now note that in the infinite chromatic game they would simply pick a new color,
hich contradicts the definition of k. Therefore it never happens and the whole graph gets colored which means that
lice wins. □

There are graphs for which the above inequality turns out to be equality. For instance, if r1 = r2 = · · · = r2l+1 = 1
nd r2l+2 = rl+2 = · · · = rk = 2 then χ∞

g (Kr1,r2,...,rk ) = χg (Kr1,r2,...,rk ) = k.
There are also graphs for which the inequality is strict. For example, it is known that χ∞

g (G) = 2n and χg (G) = 2n−1,
here G is the complete graph K2n with one edge e removed. The strategy to achieve the last equality is simple: in her
oves Alice tries not to color any of the endpoint of e—unless Bob in his last move colored one, so Alice may color the
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other endpoint using the same color. Ultimately Alice may be forced to be first to color an endpoint of e in her final move,
ut then Bob will be forced to repeat this color in his final move.
The difference χ∞

g (G) − χg (G) may be arbitrarily large. To prove that we need the following result.

emma 16. For k ≥ 2 and any r1, r2, . . . , rk we have χg (Kr1,r2,...,rk ) ≤ 2k − 1.

roof. Let V1, V2, . . . , Vk be a partition of V (Kr1,r2,...,rk ) into independent sets such that |Vi| = ri. The strategy for Alice is
imple: in her first move she starts coloring each set Vi with first color available. Clearly, after at most 2k − 1 moves in
otal (k by Alice, k−1 by Bob) it is achieved — and now she may proceed by repeating colors already used in the respective
ets. Note that if the color set contains 2k − 1 colors, then Alice can always achieve her goal and Bob is likewise limited
o use this set of colors. □

Let k ≥ 2, r1 = r2 = · · · = rk = 4 and G = Kr1,r2,...,rk . Using Lemma 16 and Theorem 6 we get χ∞
g (G) − χg (G) ≥

k − (2k − 1) = k − 1.

. Conclusions

The paper considers a chromatic game with a minor modification to the well-known one: there is no fixed set on
llowed colors—but both players still aim to optimize the number of used colors in different ways. It turns out that there
xists a fundamental asymmetry between the cases for graphs on even and odd number of vertices, as the optimal number
f colors for the first one is always equal to n(G) − α′(Ḡ), but the second is only upper bounded by that value and may
e significantly larger. Moreover, it was shown that this game may be used to bound from above the game chromatic
umber. Interestingly, even for the dense graphs it turns out that the difference between both chromatic numbers can be
arge, i.e. proportional to the number of vertices in the graph.

Finally, the problems of a complete account of values of χ∞
g (G) for even n(G) and more precise analysis of a relation

etween χ∞
g (G) and χg (G) remains open for further investigation.
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