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Different non-Fourier models were proposed to simulate temperatures in materials subjected to 

extremely fast thermal disturbances, when the speed of heat propagation should be concerned. The 

present study investigated temperature and heat balance at a microscopic sliding contact during a 

single frictional interaction based on the Cattaneo-Vernotte hyperbolic heat conduction equation. 

Two fundamental features of friction, namely, adhesion-deformational heat generation and wear, 

were taken into account. By applying the Laplace transform approach, non-stationary temperature 

expressions were derived for the hyperbolic and classical parabolic heat conduction equations. 

Parametric analysis was then done for parameter ranges typical of brake materials. It was found that 

the hyperbolic heat conduction generally results in a higher temperature at the sliding surface 

compared to the parabolic heat conduction. The influence of the heat propagation speed can be 

significant for thermal relaxation time of the order above microsecond. It becomes stronger with an 

increase in the contribution of the adhesive heat generation. Another finding obtained is that a 

considerable fraction of heat is removed from the contact zone along with wear debris, resulting in a 

lower temperature. This fraction is larger for the hyperbolic heat conduction. 
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Notation 

𝑐 specific heat capacity 

erfc(∙) complementary error function 

𝑔 volumetric heat-generation rate 

ℎ mechanically affected layer thickness 

𝑘 thermal diffusivity, 𝑘 = 𝐾 (𝜌𝑐)⁄  

lg(∙) logarithm to base 10 

𝑞 heat flux 

𝑞̅ heat flux vector 

𝑞0 specific power of heat generation 

𝑠 Laplace transform parameter 

𝑡 time variable / sliding duration 

𝑢 linear wear intensity 

𝑢n linear wear intensity of the nominal surface 

𝑥 spatial coordinate 

𝐻(∙) Heaviside step function 

𝐼𝜐(∙) modified Bessel function of the first kind of order 𝜐 

𝐾 thermal conductivity 

𝑄 dimensionless heat flux, 𝑄 = 𝑞 𝑞0⁄  

𝑇 temperature 

𝑇0 initial temperature 

𝑈 dimensionless wear intensity, 𝑈 = 𝑢√𝜏 √𝑘⁄  

𝛽 deformational heat-generation decay coefficient, 𝛽 = 2 √𝑘𝜏 ℎ⁄  

𝜂 dimensionless time variable / sliding duration, 𝜂 = 𝑡 (2𝜏)⁄  

𝜗 dimensionless temperature, 𝜗 = 𝐾(𝑇 − 𝑇0) (2𝑞0√𝑘𝜏)⁄  

𝜗p dimensionless ‘parabolic’ temperature 

𝜉 dimensionless spatial coordinate, 𝜉 = 𝑥 (2√𝑘𝜏)⁄  

𝜌 density 

𝜏 thermal relaxation time 

𝜙 heat fraction removed with wear debris 

𝜙p ‘parabolic’ heat fraction removed with wear debris 

𝜓 adhesive heat-generation fraction 

∇𝑇 temperature gradient 

ℒ[∙] Laplace transform operator 

∎̃ Laplace transform image 
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1. Introduction 

The classical parabolic heat conduction equation based on the Fourier law has been 

successfully employed for solving various problems of heat transfer. According to the Fourier law 

[1], a temperature gradient ∇𝑇 in a conductive medium causes an immediate heat flux 𝑞̅, which 

implies infinite speed of heat propagation. Experiments showed that in materials with non-

homogeneous structure thermal waves travel with finite speeds, and the parabolic heat conduction 

equation may not be applicable to accurately simulate such a behaviour (Kaminski [2], Mitra et al. 

[3], Roetzel et al. [4]). This equation fails to predict temperatures under extremely fast thermal 

disturbances induced, for instance, by a laser (Li et al. [5], Jiang [6], Banerjee et al. [7]) or a flash 

lamp (Both et al. [8]), which is also attributed to the finiteness of the heat propagation speed. 

Different non-Fourier models have been proposed to remove the mentioned theoretical 

inconsistency of the Fourier law (Ván [9]). Of these, the Cattaneo-Vernotte model takes a 

predominant place due to its simplicity. The relationship between ∇𝑇 and 𝑞̅ is defined as (Cattaneo 

[10], Vernotte [11], Luikov [12]) 

𝑞̅ + 𝜏
𝜕𝑞̅

𝜕𝑡
= −𝐾∇𝑇 (1) 

where 𝑡 is the time variable; 𝐾 is the thermal conductivity; 𝜏 is the thermal relaxation time which 

represents the time lag between ∇𝑇 and 𝑞̅. The heat propagation speed is directly related to 𝜏 and 

equals √𝑘 𝜏⁄ , where 𝑘 is the thermal diffusivity. In the particular case 𝜏 = 0, Eq.(1) transforms into 

the Fourier law. Combination of Eq.(1) and the statement of energy conservation for a volume 

element gives the hyperbolic heat conduction equation. 

Thermal friction problems occupy an important niche among heat transfer problems. 

Whenever two bodies are in sliding motion, their mechanical energy is transformed into friction 

heat. The dissipation of the friction heat in the bodies results in an increase in their temperatures, 

which inevitably affects the thermo-mechanical and tribological characteristics. A thermal friction 

problem is usually formulated in the form of a problem of non-stationary heat conduction for one or 

both friction bodies (Yevtushenko and Kuciej [13]). If it is defined macroscopically, temperature 

distributions in the bodies are simulated with account of the thermal processes at their sliding 

interface and boundaries with the environment. On the other hand, if the main focus is on the 

thermo-mechanical interaction between rough surfaces in sliding, temperature is simulated for a 

microscopic contact zone including one or a few roughness asperities. Regardless of the problem 

formulation level (macroscopic or microscopic), the simulations are performed using the parabolic 

heat conduction equation. 

Frictional interactions of roughness asperities occur in a random manner. In most 

engineering systems, the typical interaction duration is of the order 10−8 to 10−6 s, as reported by 
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Kragelskii [14]. The heat generation associated with such a short interaction induces an extremely 

fast local heating of either of the sliding surfaces, similarly to a short-pulse heating by a laser. 

Consequently, the question arises whether the speed of heat propagation affects temperatures at 

microscopic sliding contacts. This question is intimately related to determination of the application 

limits for the parabolic heat conduction equation. 

When two asperities come into contact, adhesion bonds occur between their atoms and 

molecules. Multiple formation and destruction of the adhesion bonds is accompanied by intensive 

heat generation (adhesive heat generation). The interaction of the asperities is not limited to 

adhesion but also involves deformational processes (Rigney and Hirth [15], Kennedy [16]). Plastic 

deformations occur in the vicinity of the asperities, which is sometimes referred to as ‘mechanically 

affected layer’, and represent another source of heat (deformational heat generation). Since the 

adhesive heat generation occurs directly at the sliding interface, it is modelled by a concentrated 

heat source, e.g. prescribed heat fluxes. By contrast, the deformational heat generation is specified 

in the form of a volumetric heat source (Kennedy [17]). Thereby, accurate simulations should allow 

for both mentioned sources of heat. 

 During a frictional interaction, wear debris detaches from an asperity and carries some of the 

friction heat away. According to the principle of heat balance, this should lead to a reduction of the 

temperature in the asperity zone. Experiments on brake materials showed that the wear intensity 𝑢n 

of the nominal surface is normally below 1 μm/s (Friedrich and Reinicke [18], Findik [19]), while 

the temperature gradient ∇𝑇 attains a maximum level of 0.1–1 °C/μm (Newcomb [20], Balakin 

[21]). The product 𝑢n × ∇𝑇 can thus hardly reach a value of 1 °C/s, which implies that the wear 

process has insignificant effect on transient temperatures when considered macroscopically. The 

situation is drastically different for a single asperity. Since the total contact area of roughness 

asperities is by 2–3 orders of magnitude smaller than the nominal contact area (Bowden and Tabor 

[22], Myshkin et al. [23]), the asperity wear intensity is expected to be proportionally larger than 

𝑢n. Furthermore, as revealed by Rozeanu and Pnueli [24], ∇𝑇 at a microscopic contact is by 3 

orders of magnitude larger compared to that at the nominal surface. This reasoning leads to the 

hypothesis that the wear process affects temperature in the asperity zone. 

The purpose of the present study was to analytically investigate the influence of the heat 

propagation speed on the temperature and heat balance at a microscopic sliding contact during a 

single interaction with account of the above mentioned fundamental features of friction ― 

adhesion-deformational heat generation and wear. 
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2. Mathematical model 

 Consider a semispace which initially occupies the domain 𝑥 > 0 and moves with constant 

velocity 𝑢 in the direction opposite to the 𝑥-axis. The semispace is heated by a volumetric heat 

source of rate 𝑔 dependent on 𝑥. The temperature 𝑇(𝑥, 𝑡) and heat flux 𝑞(𝑥, 𝑡) in the semispace are 

then related by the following heat balance equation (Al-Khairy and AL-Ofey [25], Han and 

Peddieson [26]): 

𝜌𝑐 (
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
− 𝑢

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
) +

𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
= 𝑔(𝑥) (2) 

where 𝜌 is the density; 𝑐 is the specific heat capacity. 

 Accepting a non-zero thermal relaxation time 𝜏 and taking the motion of the semispace into 

account allow expressing Eq.(1) in the form (Christov and Jordan [27]) 

𝑞(𝑥, 𝑡) + 𝜏 (
𝜕𝑞(𝑥, 𝑡)

𝜕𝑡
− 𝑢

𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
) = −𝐾

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
 (3) 

 Combination of Eqs.(2) and (3) yields the heat transport equation with respect to 𝑞(𝑥, 𝑡) as 

follows: 

𝜏
𝜕2𝑞

𝜕𝑡2
+

𝜕𝑞

𝜕𝑡
− 2𝜏𝑢

𝜕2𝑞

𝜕𝑥𝜕𝑡
− 𝑢

𝜕𝑞

𝜕𝑥
− (𝑘 − 𝜏𝑢2)

𝜕2𝑞

𝜕𝑥2
= −𝑘

𝜕𝑔

𝜕𝑥
 (4) 

where the thermal diffusivity 𝑘 = 𝐾 (𝜌𝑐)⁄ . 

To a first approximation, heat flux in the vicinity of an asperity being in the frictional 

interaction with a counter-asperity is assumed to be geometrically one dimensional (Archard [28]). 

This allows applying Eq.(4) for determining the heat flux 𝑞(𝑥, 𝑡) in the vicinity of an asperity 

subjected to wear under the fulfilment of the following conditions. The asperity zone is represented 

by the domain 𝑥 > 0. The asperity sliding surface is the plane 𝑥 = 0. The asperity wear is 

simulated by the motion of the semispace, and, accordingly, the parameter 𝑢 is set equal to the 

linear wear intensity of the asperity. The relevant schematic is presented in Fig.1. 
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Fig.1. Schematic of the heat transport problem for an asperity zone (2-column image) 

 

 Let 𝑞0 denote the quantity of heat generated per unit friction area per unit time. Assume that 

its fraction 𝜓 is released at the sliding surface due to adhesion, while (1 − 𝜓) is released in the 

volume due to plastic deformations (Nosko [29]). Furthermore, based on the studies by Heilmann 

and Rigney [30] and Kennedy [16], the volumetric heat-generation rate 𝑔 is assumed to decay 

exponentially with the distance 𝑥 from the sliding surface. These assumptions allow describing the 

adhesive heat generation by the boundary condition 

𝑞|𝑥=0 = 𝜓𝑞0 (5) 

and the deformational heat generation by the function 

𝑔(𝑥) =
(1 − 𝜓)𝑞0

ℎ
exp {−

𝑥

ℎ
} (6) 

where ℎ is the thickness of the mechanically affected layer defined in the present study as the layer 

within which 63.2% of the ‘deformational’ friction heat is released. 

 The definition of the problem is completed by specifying zero heat flux at infinite distance 

from the sliding surface 

𝑞|𝑥→∞ = 0 (7) 

and zero initial conditions 

𝑞|𝑡=0 =
𝜕𝑞

𝜕𝑡
|

𝑡=0
= 0 (8) 

Introduce the dimensionless spatial coordinate 𝜉 = 𝑥 (2√𝑘𝜏)⁄ , time variable 𝜂 = 𝑡 (2𝜏)⁄ , 

heat flux 𝑄 = 𝑞 𝑞0⁄ , temperature 𝜗 = 𝐾(𝑇 − 𝑇0) (2𝑞0√𝑘𝜏)⁄ , deformational heat-generation decay 

coefficient 𝛽 = 2√𝑘𝜏 ℎ⁄ , and wear intensity 𝑈 = 𝑢√𝜏 √𝑘⁄ . Here 𝑇0 is the initial temperature. This 
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allows decreasing the number of parameters in Eqs.(4)–(8) and writing the dimensionless heat 

transport equation with respect to 𝑄(𝜉, 𝜂) in the form 

𝜕2𝑄

𝜕𝜂2
+ 2

𝜕𝑄

𝜕𝜂
− 2𝑈

𝜕2𝑄

𝜕𝜉𝜕𝜂
− 2𝑈

𝜕𝑄

𝜕𝜉
− (1 − 𝑈2)

𝜕2𝑄

𝜕𝜉2
= (1 − 𝜓)𝛽2 exp{−𝛽𝜉} (9) 

boundary conditions 

𝑄|𝜉=0 = 𝜓 (10) 

and 

𝑄|𝜉→∞ = 0 (11) 

and initial conditions 

𝑄|𝜂=0 =
𝜕𝑄

𝜕𝜂
|

𝜂=0

= 0 (12) 

 If the heat flux 𝑄(𝜉, 𝜂) is known, the temperature 𝜗(𝜉, 𝜂) is derived using Eq.(3) written as 

𝜗(𝜉, 𝜂) =
1

2
∫ (2𝑄(𝜍, 𝜂) +

𝜕𝑄(𝜍, 𝜂)

𝜕𝜂
)

∞

𝜉

𝑑𝜍 +
𝑈

2
𝑄(𝜉, 𝜂) (13) 

The problem defined by Eqs.(9)–(13) incorporates 3 parameters, namely, 𝜓, 𝛽 and 𝑈. 

 It should be noted that the heat transport equation for an asperity zone can be formulated 

directly with respect to the temperature 𝑇(𝑥, 𝑡). However, the formulation of the boundary 

condition of Eq.(5) in terms of temperature and temperature gradient cannot be performed 

straightforward, as follows from Eq.(3), and requires application of the special mathematical 

methods (Yu et al. [31]). 

 

3. Analytical solution 

 Application of the Laplace transform ℒ to Eq.(9) with respect to 𝜂 and taking account of 

Eq.(12) yield 

(1 − 𝑈2)
𝜕2𝑄̃

𝜕𝜉2
+ 2𝑈(𝑠 + 1)

𝜕𝑄̃

𝜕𝜉
− 𝑠(𝑠 + 2)𝑄̃ = −

(1 − 𝜓)𝛽2

𝑠
exp{−𝛽𝜉} (14) 

where 𝑠 is the transform parameter; 𝑄̃(𝜉, 𝑠) is the image of 𝑄(𝜉, 𝜂), i.e. 𝑄̃(𝜉, 𝑠) = ℒ[𝑄(𝜉, 𝜂)]. 

Eq.(14) represents a non-homogeneous  differential equation of the second order with exponential 

right side. Its general solution is 

𝑄̃(𝜉, 𝑠) = 𝐴1(𝑠) exp {−
𝜉

𝑏
(𝑈(𝑠 + 1) − √(𝑠 + 1)2 − 𝑏)}

+ 𝐴2(𝑠) exp {−
𝜉

𝑏
(𝑈(𝑠 + 1) + √(𝑠 + 1)2 − 𝑏)} +

(1 − 𝜓)𝛽2 exp{−𝛽𝜉}

𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
 

(15) 

which incorporates two unknown functions 𝐴1(𝑠) and 𝐴2(𝑠) and the coefficients given by 

𝑎1 = 1 + 𝛽𝑈 − √1 + 𝛽2; 
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𝑎2 = 1 + 𝛽𝑈 + √1 + 𝛽2; 

𝑏 = 1 − 𝑈2 

 Under the assumption that 0 ≤ 𝑈 < 1, it follows from Eq.(11) that 𝐴1 = 0. The other 

function is determined by substituting Eq.(15) into Eq.(10) in the space of images: 

𝐴2(𝑠) =
𝜓

𝑠
−

(1 − 𝜓)𝛽2

𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
 

which allows rewriting Eq.(15) in the form 

𝑄̃(𝜉, 𝑠) = (
𝜓

𝑠
−

(1 − 𝜓)𝛽2

𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
) exp {−

𝜉

𝑏
(𝑈(𝑠 + 1) + √(𝑠 + 1)2 − 𝑏)}

+
(1 − 𝜓)𝛽2 exp{−𝛽𝜉}

𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
 

(16) 

Substitution of Eq.(16) into Eq.(13) represented in the space of images as 

𝜗̃(𝜉, 𝑠) = ℒ[𝜗(𝜉, 𝜂)] =
𝑠 + 2

2
∫ 𝑄̃(𝜍, 𝑠)

∞

𝜉

𝑑𝜍 +
𝑈

2
𝑄̃(𝜉, 𝑠) 

yields 

𝜗̃(𝜉, 𝑠) =
1

2
(

𝜓

𝑠
−

(1 − 𝜓)𝛽2

𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
) (

𝑏(𝑠 + 2)

𝑈(𝑠 + 1) + √(𝑠 + 1)2 − 𝑏
+ 𝑈)

× exp {−
𝜉

𝑏
(𝑈(𝑠 + 1) + √(𝑠 + 1)2 − 𝑏)} +

(1 − 𝜓)𝛽 exp{−𝛽𝜉} (𝑠 + 2 + 𝛽𝑈)

2𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
 

or 

𝜗̃(𝜉, 𝑠) = 𝜑̃1(𝜉, 𝑠)(𝜑̃2(𝑠)𝜑̃3(𝑠) + 𝜑̃4(𝑠)) + 𝜑̃5(𝜉, 𝑠) (17) 

where 

𝜑̃1(𝜉, 𝑠) = exp {−
𝑈𝜉

𝑏
(𝑠 + 1)}

exp {−
𝜉
𝑏

√(𝑠 + 1)2 − 𝑏}

√(𝑠 + 1)2 − 𝑏
; 

𝜑̃2(𝑠) = 𝑠 + 1 − √(𝑠 + 1)2 − 𝑏; 

𝜑̃3(𝑠) =
𝑈

2𝑠2
(𝜓 −

(1 − 𝜓)𝛽2

(𝑠 + 𝑎1)(𝑠 + 𝑎2)
) ; 

𝜑̃4(𝑠) =
(𝑠 + 1)2 − 𝑈(𝑠 + 1) − 𝑏

2𝑠2
(𝜓 −

(1 − 𝜓)𝛽2

(𝑠 + 𝑎1)(𝑠 + 𝑎2)
) −

𝜓

2
; 

𝜑̃5(𝜉, 𝑠) =
𝜓

2
𝜑̃1(𝜉, 𝑠) +

(1 − 𝜓)𝛽 exp{−𝛽𝜉} (𝑠 + 2 + 𝛽𝑈)

2𝑠(𝑠 + 𝑎1)(𝑠 + 𝑎2)
 

 The original of 𝜗̃(𝜉, 𝑠) given by Eq.(17) is found using the convolution theorem for the 

Laplace transform: 

𝜗(𝜉, 𝜂) = ∫ 𝜑1(𝜉, 𝜍) (∫ 𝜑2(𝜖)𝜑3(𝜂 − 𝜍 − 𝜖)
𝜂−𝜍

0

𝑑𝜖 + 𝜑4(𝜂 − 𝜍)) 𝑑𝜍
𝜂

0

+ 𝜑5(𝜉, 𝜂) (18) 
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where 𝜑𝑖(𝜉, 𝜂) = ℒ−1[𝜑̃𝑖(𝜉, 𝑠)], 𝑖 ∈ {1,2,3,4,5}. 

Transformation of 𝜑̃1(𝜉, 𝑠) according to 

ℒ−1[𝜑̃(𝑠 − 𝑎)] = exp{𝑎𝜂} 𝜑(𝜂) 

then 

ℒ−1[exp{−𝑑𝑠} 𝜑̃(𝑠)] = 𝜑(𝜂 − 𝑑)𝐻(𝜂 − 𝑑) 

and finally (Prudnikov et al. [32], p. 322) 

ℒ−1 [
exp{−𝑑√𝑠2 − 𝑎2}

√𝑠2 − 𝑎2
] = 𝐼0 (𝑎√𝜂2 − 𝑑2) 𝐻(𝜂 − 𝑑) 

yields 

𝜑1(𝜉, 𝜂) = exp{−𝜂} 𝐼0 (√
(𝑏𝜂 − 𝑈𝜉)2 − 𝜉2

𝑏
) 𝐻 (𝜂 −

𝜉

1 − 𝑈
) 

where 𝐻(∙) is the Heaviside step function; 𝐼𝜐(∙) is the modified Bessel function of the first kind of 

order 𝜐; 𝑑 > 0. 

 The known transform (Carslaw and Jaeger [33], p. 495) 

ℒ−1 [𝑠 − √𝑠2 − 𝑎2] =
𝑎 𝐼1(𝑎𝜂)

𝜂
 

allows finding the original of 𝜑̃2(𝑠) as follows: 

𝜑2(𝜂) =
√𝑏

𝜂
exp{−𝜂} 𝐼1(√𝑏 𝜂) 

The originals of 𝜑̃3(𝑠) and 𝜑̃4(𝑠) are obtained as 

𝜑3(𝜂) =
𝜓𝑈

2
𝜂 +

(1 − 𝜓)𝛽2𝑈

2
(

𝑎1 + 𝑎2

𝑎1
2𝑎2

2 −
𝜂

𝑎1𝑎2
+

exp{−𝑎1𝜂}

𝑎1
2(𝑎1 − 𝑎2)

+
exp{−𝑎2𝜂}

𝑎2
2(𝑎2 − 𝑎1)

) 

and 

𝜑4(𝜂) =
𝜓

2
(2 − 𝑈 − 𝑈(1 − 𝑈)𝜂)

−
(1 − 𝜓)𝛽2

2
(

(2 − 𝑈)𝑎1𝑎2 + 𝑈(1 − 𝑈)(𝑎1 + 𝑎2)

𝑎1
2𝑎2

2 −
𝑈(1 − 𝑈)

𝑎1𝑎2
𝜂

+
𝑏 − (1 − 𝑎1)2 + 𝑈(1 − 𝑎1)

𝑎1
2(𝑎1 − 𝑎2)

exp{−𝑎1𝜂}

+
𝑏 − (1 − 𝑎2)2 + 𝑈(1 − 𝑎2)

𝑎2
2(𝑎2 − 𝑎1)

exp{−𝑎2𝜂}) 

 The original of 𝜑̃5(𝜉, 𝑠) is given by 
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𝜑5(𝜉, 𝜂) =
𝜓

2
𝜑1(𝜉, 𝜂)

+
(1 − 𝜓)𝛽

2
exp{−𝛽𝜉} (

2 + 𝛽𝑈

𝑎1𝑎2
+

2 − 𝑎1 + 𝛽𝑈

𝑎1(𝑎1 − 𝑎2)
exp{−𝑎1𝜂}

+
2 − 𝑎2 + 𝛽𝑈

𝑎2(𝑎2 − 𝑎1)
exp{−𝑎2𝜂}) 

 Analysis of Eq.(18) should involve its comparison with a solution 𝜗p(𝜉, 𝜂) of the parabolic 

heat conduction problem incorporating equivalent volumetric heat source, boundary and initial 

conditions. This problem can be easily formulated by removing the terms associated with 𝜏 in 

Eqs.(9)–(13): 

2
𝜕𝜗p

𝜕𝜂
− 2𝑈

𝜕𝜗p

𝜕𝜉
−

𝜕2𝜗p

𝜕𝜉2
= (1 − 𝜓)𝛽 exp{−𝛽𝜉} ; 

−
𝜕𝜗p

𝜕𝜉
|

𝜉=0

= 𝜓; 
𝜕𝜗p

𝜕𝜉
|

𝜉→∞

= 0; 𝜗p|
𝜂=0

= 0 

(19) 

The Laplace transform approach and known transform (Prudnikov et al. [32], p.176, 192) 

ℒ−1 [
√2𝑠 + 𝑎2 − 𝑎

2𝑠
exp {−𝑑 (√2𝑠 + 𝑎2 + 𝑎)}] =

1

√2𝜋𝜂
exp {−

(𝑑 + 𝑎𝜂)2

2𝜂
} −

𝑎

2
erfc {

𝑑 + 𝑎𝜂

√2𝜂
} 

allow deriving the solution of Eq.(19) as follows: 

𝜗p(𝜉, 𝜂) = ∫ (
1

√2𝜋𝜍
exp {−

(𝜉 + 𝑈𝜍)2

2𝜍
} −

𝑈

2
erfc {

𝜉 + 𝑈𝜍

√2𝜍
})

𝜂

0

× (𝜓 +
(1 − 𝜓)𝛽

𝛽 − 2𝑈
(1 − exp {𝛽 (

𝛽

2
− 𝑈) (𝜂 − 𝜍)})) 𝑑𝜍

−
1 − 𝜓

𝛽 − 2𝑈
exp{−𝛽𝜉} (1 − exp {𝛽 (

𝛽

2
− 𝑈) 𝜂}) 

(20) 

where erfc(∙) is the complementary error function. 

Although the temperature expressions 𝜗 and 𝜗p given by Eqs.(18) and (20) were found using 

the classical mathematical methods, they are additionally validated by comparisons with several 

known analytical expressions. Fig.2 shows the distributions of 𝜗 and 𝜗p and the values calculated 

from the hyperbolic heat conduction expressions by Yu et al. [31] and Lewandowska [34] and 

parabolic heat conduction expressions by Carslaw and Jaeger [33]. Solid and dashed lines stand for 

Eqs.(18) and (20), respectively. A perfect matching can be seen between the presented results. 
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Fig.2. Validation of Eqs.(18) and (20) at 𝜂=0.5, 𝛽=2 and 𝑈=0 (1-column image) 

 

4. Parameter variation ranges 

 Thermal relaxation time 𝜏 is the key parameter of the present study. Unfortunately, 

measurements of 𝜏 at normal and elevated temperatures are rare, and the relevant systematic data 

are not available. It is generally accepted that 𝜏 of metals is of the order 10−14 to 10−11 s (Özişik and 

Tzou [35]). By contrast, the experimental studies by Kaminski [2], Mitra et al. [3] and Roetzel et al. 

[4] showed that several materials with non-homogeneous structure, including sand, sodium 

bicarbonate and processed meat, have drastically larger 𝜏 of the order 10−1 to 10 s. A characteristic 

friction material comprises at least several non-metallic components of different origin and 

chemical composition. One can reasonably expect that 𝜏 of such a material exceeds 10−11 s. On the 

other hand, a value of the order 10−1 to 10 s looks to be a substantial overestimate of 𝜏 since no 

measurements were reported on deviations from the parabolic heat conduction in friction elements. 

Thus, 𝜏 of a multicomponent friction material most probably lies in the range 10−10 to 10−2 s. 

 Another important parameter is the asperity wear intensity 𝑢. As mentioned in the 

introduction, the nominal surface of a brake material is worn out with intensity 𝑢n below 10−6 m/s. 

Assume that the total contact area of roughness asperities makes up 10−3 (i.e. 0.1%) of the nominal 

contact area, which agrees with the studies by Bowden and Tabor [22] and Myshkin et al. [23]. 

Then the maximum order of magnitude of 𝑢 is estimated as 𝑢n×103=10−3 m/s. 

Table 1 presents the estimated parameter variation ranges. 
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Table 1. Parameter variation ranges 

Parameter Minimum order 

of magnitude 

Maximum order 

of magnitude 

Thermal relaxation time 𝜏, s 10−10 10−2 

Sliding duration 𝑡, s [14] 10−8 10−6 

Dimensionless sliding duration 𝜂 10−6 104 

Thermal diffusivity 𝑘, m2/s 10−6 10−4 

Mechanically affected layer thickness ℎ, m [16] 10−7 10−5 

Deformational heat-generation decay coefficient 𝛽 10−3 104 

Linear wear intensity 𝑢, m/s  10−3 

Dimensionless wear intensity 𝑈  10−1 

 

5. Results and discussion 

5.1. Thermal wave 

First consider the case of pure adhesive heat generation (𝜓=1) in the absence of wear (𝑈=0). 

Fig.3 shows the distributions of 𝜗 and 𝜗p at different values of 𝜂. It is seen that 𝜗 exceeds 𝜗p at the 

sliding surface 𝜉=0, i.e. the hyperbolic heat conduction results in a higher temperature compared to 

the parabolic heat conduction. The heat propagates in the form of a wave with a blunt front. 

According to Eq.(18), at each time instance 𝜂>0 the temperature 𝜗 undergoes a jump at the point 

𝜉 = 𝜂 from zero to the value of exp{−𝜂} 2⁄ . The propagation of similar thermal waves in a 

semispace was extensively studied theoretically (Glass et al. [36], Guillemet and Bardon [37]). 

 

 

Fig.3. Distributions of the temperatures 𝜗 and 𝜗p at 𝜓=1 and 𝑈=0 (1-column image) 
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Figure 4 shows the evolution of 𝜗 and 𝜗p for different values of 𝜉. It is notable that there is 

an initial jump in 𝜗 at 𝜉=0, which is in contrast with the continuous curve of 𝜗p (Antaki [38], Zhang 

et al. [39]). Rapid temperature changes in the test samples subjected to an instantaneous heating 

were reported in a few experimental studies (Mitra et al. [3], Both et al. [8]). As concerns problems 

of friction, to the best author’s knowledge, no hyperbolic heat conduction models were previously 

applied to characterising materials or simulating temperatures in engineering systems. 

 

 

Fig.4. Evolution of the temperatures 𝜗 and 𝜗p at 𝜓=1 and 𝑈=0 (1-column image) 

 

5.2. Adhesion-deformational heat generation 

 Figure 5 shows the distributions of 𝜗 and 𝜗p depending on the adhesive heat-generation 

fraction 𝜓. With a decrease in 𝜓, i.e. with a smaller contribution of the adhesive heat generation, 𝜗 

and 𝜗p take smaller values at the sliding surface 𝜉=0, as does the difference (𝜗 − 𝜗p) characterising 

the influence of the heat propagation speed. The above mentioned jump in 𝜗 at 𝜉 = 𝜂 also exhibits a 

tendency to decrease. In the case of pure deformational heat generation (𝜓=0), 𝜗 has a continuous 

distribution. This implies that if plastic deformations are the predominant heat source, e.g. 𝜓<0.15 

for copper-on-steel contact (Protasov and Kragelskii [40]), the absence of thermal waves with a 

blunt front cannot be considered as an evidence for the ‘parabolic’ nature of heat conduction. 
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Fig.5. Influence of the adhesive heat-generation fraction 𝜓 on the temperatures 𝜗 and 𝜗p at 𝜂=𝛽=1 

and 𝑈=0 (1-column image) 

 Figure 6 shows the influence of the deformational heat-generation decay coefficient 𝛽 at 

𝜓=0. At small values of 𝛽 the difference (𝜗 − 𝜗p) is negligibly small, suggesting that the 

hyperbolic heat conduction can be neglected in favour of the parabolic heat conduction. With an 

increase in 𝛽, the deformational heat generation becomes more concentrated near 𝜉=0, which leads 

to higher temperatures 𝜗 and 𝜗p and larger difference (𝜗 − 𝜗p). This result agrees with those 

reported by Al-Khairy and AL-Ofey [25], Lewandowska [34], Yilbas et al. [41], Qi et al. [42], 

Talaee et al. [43]. 

 

 

Fig.6. Influence of the deformational heat-generation decay coefficient 𝛽 on the temperatures 𝜗 and 

𝜗p at 𝜂=1 and 𝜓=𝑈=0 (1-column image) 
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Parametric analysis of the temperatures 𝜗 and 𝜗p requires their comparisons with some 

reference temperature. The expression √2 𝜂 𝜋⁄  derived from Eq.(20) at 𝜉=𝑈=0 and 𝜓=1 will serve 

for this purpose, which describes the dimensionless surface temperature of a parabolic heat 

conduction semispace of thermal conductivity 𝐾 and diffusivity 𝑘 heated at its surface by heat flux  

𝑞0 (Carslaw and Jaeger [33], p.75). The relative deviations 𝜀 and 𝜀p of the respective temperatures 

𝜗 and 𝜗p from the reference temperature are then defined as follows: 

𝜀(𝜂) =
𝜗|𝜉=0

√2 𝜂 𝜋⁄
− 1; 

𝜀p(𝜂) =
𝜗p|

𝜉=0

√2 𝜂 𝜋⁄
− 1 

 Figure 7 illustrates the behaviour of 𝜀 and 𝜀p for 𝜂 varying from 10−4 to 104 in logarithmic 

scale. At 𝜓=1 the deviation 𝜀 monotonically decreases to zero with increasing 𝜂. In general case, 

when 𝜓 lies between 0 and 1 (𝜓 = 1 2⁄  in Fig.7), 𝜀 changes its sign from positive to negative. This 

implies that the influence of the heat propagation speed, characterised by the difference (𝜀 − 𝜀p), is 

predominant at small values of 𝜂, while the influence of the deformational heat generation, 

characterised by |𝜀p|, predominates at larger 𝜂. As 𝜂 → ∞ it is true that 𝜗|𝜉=0~𝜗p|
𝜉=0

~√2 𝜂 𝜋⁄ , i.e. 

𝜀 and 𝜀p are asymptotically equivalent. 

 

 

Fig.7. Influence of the adhesive heat-generation fraction 𝜓 on the temperature deviations 𝜀 and 𝜀p at 

𝛽=1 and 𝑈=0 (1-column image) 
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The curves of 𝜀 and 𝜀p have substantially different shapes when 𝜓=0. Fig.8 shows that 𝜀 

practically coincides with 𝜀p at small values of 𝛽. With an increase in 𝛽, the influence of the heat 

propagation speed noticeably increases, which was also illustrated in Fig.6. Of interest is the fact 

that 𝜀 and 𝜀p exhibit an asymptotically equivalent behaviour at 𝜂 → 0, which is due to the relation  

𝜗|𝜉=0~𝜗p|
𝜉=0

~ 𝛽𝜂 2⁄  (Nosko [29]). 

 

 

Fig.8. Influence of the deformational heat-generation decay coefficient 𝛽 on the temperature 

deviations 𝜀 and 𝜀p at 𝜓=𝑈=0 (1-column image) 

 

 Analysis of the simulation results including those presented in Figs.7 and 8 shows that the 

influence of the heat propagation speed is crucial at 𝜂 of the order below 1, i.e. approximately at 𝜏 

of the order above 10−6 s (see Table 1). This influence becomes stronger with increasing 𝜓 or 𝛽. 

 

5.3. Wear 

 Figure 9 shows the influence of the wear intensity 𝑈 for 𝜓=1/2, when the adhesive and 

deformational processes contribute equally to heat generation. It is seen that an increase in 𝑈 leads 

to a decrease in either of the temperatures 𝜗 and 𝜗p. 
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Fig.9. Influence of the wear intensity 𝑈 on the temperatures 𝜗 and 𝜗p at 𝜂=𝛽=1 and 𝜓 = 1 2⁄  (1-

column image) 

 

Of theoretical interest is the case 𝑈 ≥ 1 when the linear wear intensity 𝑢 is equal to or 

greater than the heat propagation speed √𝑘 𝜏⁄ . Analysis of Eqs.(14) and (15) shows that in this case 

the heat flux image 𝜗̃(𝜉, 𝑠) is completely defined based on Eq.(11) without involving the boundary 

condition of Eq.(10) describing the adhesive heat generation. The corresponding temperature 

expression, which can be found from Eq.(18) by setting 𝜑𝑖(𝜉, 𝜂) ≡ 0, 𝑖 ∈ {1,2,3,4}, is solely 

governed by the parameters of the deformational heat generation (see the curve of 𝜗 at 𝑈 = 1 in 

Fig.9). Physically, this result is explained by that the surface layer affected by the adhesive heat 

generation is immediately worn out. 

Figure 10 shows the deviations 𝜀 and 𝜀p calculated for pure adhesive heat generation (𝜓=1) 

and different values of 𝑈. It is apparent that 𝜀 and 𝜀p monotonically decrease with 𝜂. There is, 

however, a qualitative difference in their behaviour at 𝜂 of the order below 1, suggesting that the 

influence of the heat propagation speed predominates over that of wear. On the contrary, at 𝜂 of the 

order above 1 the predominant process is wear, resulting in negative 𝜀. As 𝜂 → ∞ both 𝜗|𝜉=0 and 

𝜗p|
𝜉=0

 tend to the stationary value of 1 (2𝑈)⁄ , which yields the asymptotic equivalence of 𝜀 and 𝜀p. 
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Fig.10. Influence of the wear intensity 𝑈 on the temperature deviations 𝜀 and 𝜀p at 𝜓=1 (1-column 

image) 

 

The temperature effect of wear should be analysed considering the heat balance in the 

asperity zone. With this in mind, introduce the quantities 

𝜙(𝜂) = 1 −
2

𝜂
∫ 𝜗(𝜍, 𝜂)𝑑𝜍

∞

0

 

and 

𝜙p(𝜂) = 1 −
2

𝜂
∫ 𝜗p(𝜍, 𝜂)𝑑𝜍

∞

0

 

which indicate the fractions of friction heat removed from the asperity zone with wear debris due to 

Eqs.(18) and (20), respectively. 

 Figure 11 shows the evolution of 𝜙 and 𝜙p at different values of 𝑈. Either of 𝜙 and 𝜙p 

monotonically increases with increasing 𝜂 or 𝑈. It is remarkable that when 𝜂 → 0, 𝜙 tends to 𝑈, 

whereas  𝜙p tends to zero, which implies that wear debris carries away more heat in the case of the 

hyperbolic heat conduction. At 𝜂 of the order above 1, 𝜙 and 𝜙p reach levels of several tens of 

percent, i.e. wear debris carries away a large amount of heat, which explains the reduction of the 

temperature deviations 𝜀 and 𝜀p illustrated in Fig.10. This result is of practical importance for 𝑈 of 

the order below 10−1 (see Table 1). As 𝜂 → ∞ both 𝜙 and 𝜙p tend to 1. 
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Fig.11. Influence of the wear intensity 𝑈 on the heat fractions 𝜙 and 𝜙p removed with wear debris 

at 𝜓=1 (1-column image) 

 

 Several studies (Li et al. [44], Lin et al. [45], Chen et al. [46]) investigated frictional 

interactions between nanoscale metallic bodies using the method of Molecular Dynamics. This 

method involves numerical integration of the classical equations of motion for a system of atoms 

and allows simulating mechanical deformations and associated generation and dissipation of heat. It 

was shown that the friction of two metals is accompanied by extensive plastic deformations and 

material transfer, which results in the formation in the contact zone of a mixed layer. The studies by 

Lin et al. [45] and Chen et al. [46] revealed that the temperature at the boundary between the mixed 

layer and one or either of the metals is considerably lower than the maximum temperature in the 

mixed layer. One of the main causes for the temperature difference was concluded to be the motion 

of the boundary in the direction perpendicular to the initial sliding interface. This finding agrees 

qualitatively with that obtained in the present study stating that the wear of a sliding surface leads to 

its lower temperature. Thus, the formulae of Eqs.(18) and (20) can be potentially applied to 

simulating friction problems where the sliding interface motion is caused by a non-wear 

mechanism, such as material transfer.  

Summarising the obtained findings, it should be underlined that the heat propagation speed 

is an important factor affecting the temperature and heat balance at microscopic sliding contacts. 

The extent of its influence can be significant at thermal relaxation time τ of the order above 10−6 s 

depending on the features of adhesion-deformational heat generation and wear. Further 

experimental studies are required here to determine 𝜏 of friction materials, which would enable 

more accurate simulations of thermal friction problems. 
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6. Conclusions 

The influence of the finite speed of heat propagation on temperature and heat balance at a 

microscopic sliding contact was investigated with account of adhesion-deformational heat 

generation and wear. Based on the Laplace transform approach, the non-stationary temperature 

expressions of Eqs.(18) and (20) were derived for the Cattaneo-Vernotte hyperbolic heat conduction 

equation and classical parabolic heat conduction equation, respectively. Their parametric analysis 

led to the following findings: 

1. Adhesion-deformational heat generation results in a thermal wave with a blunt front. Under pure 

deformational heat generation, the temperature distribution is continuous. 

2. The hyperbolic heat conduction results in a higher temperature at the sliding surface compared 

to the parabolic heat conduction. The influence of the heat propagation speed can be significant 

at thermal relaxation time of the order above microsecond. 

3. The influence of the heat propagation speed becomes stronger with an increase in the adhesive 

heat-generation fraction (𝜓) or deformational heat-generation decay coefficient (𝛽). The 

hyperbolic heat conduction can be neglected in favour of the parabolic heat conduction at pure 

deformational heat generation and small values of 𝛽. 

4. An increase in the wear intensity (𝑈) results in a temperature decrease, which is explained by 

that a considerable fraction of heat is removed from the contact zone with wear debris. This 

fraction is larger for the hyperbolic heat conduction. 

 

The present work was supported by the National Science Centre, Poland [grant number 

2017/26/D/ST8/00142]. 
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