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Abstract 
Background: According to the current need of manufacturing healthier products, food 

companies are seeking specific biomolecules that may offer additional added value (i.e., 

biological activities) to the new food formulations. Capsaicin, as the pungent ingredient of 

chili peppers, has become so far one of the target biomolecules explored since the 1950s. 

There is evidence demonstrating that capsaicin exhibits important biological properties in 

human health including inhibits acid secretion, stimulates alkali and mucus secretion and 

particularly gastric mucosal blood flow contributing to the prevention and healing of gastric 

ulcers, thermoregulation, among many other reported bioactivities.  

Scope and Approach: However, one of the main bottlenecks deals with the proper protocol 

of extraction and purification of this compound since most of the conventional methods 

based on solvent extraction do not provide efficient yield, along with diminished bioactivity 

of the compounds. Therefore, this review comprehensively elucidates the current 

strategies proposed by researchers towards the sustainable extraction and purification of 

capsaicin from its natural source, and comparison over traditional extraction methods. 

Particular emphasis has been focused on the innovative extraction techniques and the 

relevant insights over the last five years.   

Key findings and conclusion: A detailed discussion is provided on the advantages and 

drawbacks of the novel techniques, key interactions with target molecules and their effect 

on the bioactivity of capsaicin. To finalize, according to the findings of this review, the 

future trends, perspectives, and research gaps are also given. 
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Abstract 23 

Background: According to the current need of manufacturing healthier products, food 24 

companies are seeking specific biomolecules that may offer additional added value (i.e., 25 

biological activities) to the new food formulations. Capsaicin, as the pungent ingredient of 26 

chili peppers, has become so far one of the target biomolecules explored since the 1950s. 27 

There is evidence demonstrating that capsaicin exhibits important biological properties in 28 

human health including inhibits acid secretion, stimulates alkali and mucus secretion and 29 

particularly gastric mucosal blood flow contributing to the prevention and healing of gastric 30 

ulcers, thermoregulation, among many other reported bioactivities.  31 

Scope and Approach: However, one of the main bottlenecks deals with the proper 32 

protocol of extraction and purification of this compound since most of the conventional 33 

methods based on solvent extraction do not provide efficient yield, along with diminished 34 

bioactivity of the compounds. Therefore, this review comprehensively elucidates the 35 

current strategies proposed by researchers towards the sustainable extraction and 36 

purification of capsaicin from its natural source, and comparison over traditional extraction 37 

methods. Particular emphasis has been focused on the innovative extraction techniques 38 

and the relevant insights over the last five years.   39 

Key findings and conclusion: A detailed discussion is provided on the advantages and 40 

drawbacks of the novel techniques, key interactions with target molecules and their effect 41 

on the bioactivity of capsaicin. To finalize, according to the findings of this review, the 42 

future trends, perspectives, and research gaps are also given. 43 

 44 

Keywords: Capsaicin; innovative extraction techniques; green strategies; nutraceuticals. 45 
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Nomenclature 46 

ATPE: aqueous two-phase extraction 47 

CO2: carbon dioxide 48 

DES: Deep eutectic solvents 49 

EAE: enzyme-assisted extraction 50 

HSCCC: high-speed countercurrent chromatography 51 

IL: ionic liquids 52 

ILAE: Ionic liquid-assisted extraction 53 

PLE: pressurized liquid extraction 54 

PHWE: pressurized hot water extraction 55 

MAR: microporous adsorption resin 56 

MSPE: magnetic solid-phase extraction 57 

SAE: shaker-assisted extraction 58 

SFE: supercritical fluid extraction 59 

TAPPIR: tunable aqueous polymer-phase impregnated resins 60 

TLPE: three-liquid-phase extraction 61 

UAE: ultrasound-assisted extraction 62 

 63 

1. Introduction 64 

Today, there is a current trend in the usage of bioactive compounds for manufacturing 65 

new food and pharmaceutical formulations, along with the improvement of the existing 66 

foods (Pateiro et al., 2021; Teixeira et al., 2014). The point of utilizing bioactive 67 

compounds concerns the production of healthier food options to the customers. The 68 
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bioactive compounds, generalized as nutraceuticals, are extra-nutritional elements that 69 

typically exist in low quantities in several foods, such as fruits, vegetables, fish, seaweeds, 70 

herbs, etc. These biologically active compounds are being intensively explored and 71 

studied due to their effects on health (Carunchia et al., 2015). Various chemical molecules 72 

are classified within the major category of bioactive compounds, including phenolic 73 

compounds, carotenoids, terpenes and terpenoids, nitrogen-containing and organosulfur 74 

compounds, and alkaloids (Azmir et al., 2013; Castro-Muñoz et al., 2016; Wallace et al., 75 

2020).  76 

Among the latter category of compounds, we can find the capsaicin, identified as (N-[(4-77 

hydroxy-3-methoxypheny) methyl]-8-methyl-E-6-nonenamide) in IUPAC nomenclature, 78 

which is the characteristic ingredient present in chili peppers. In principle, capsaicin is a 79 

flavourless, odourless and colourless chemical molecule but displaying a pungent and 80 

irritating character when consumed (Al Othman et al., 2011). Capsaicin stands out as the 81 

primary compound within the category of capsaicinoids, followed by dihydrocapsaicin, 82 

nordihydrocapsaicin, homodihydrocapsaicin and homocapsaicin. Capsaicin and 83 

dihydrocapsaicin are estimated to be approximately 90% of the total capsaicinoids 84 

contained in the chili pepper (Usman et al., 2014); capsaicinoids are alkaloids (see Figure 85 

1) mainly located in the placental tissue. The capsaicin owns a molecular weight of 305.40 86 

g mol-1, and it displays great lipophilicity (fat and oil-soluble) and also alcohol-soluble (De 87 

Lourdes Reyes-Escogido et al., 2011). 88 

 89 

Figure 1. Chemical structures of capsaicin (top) and dihydrocapsaicin (bottom) (Usman 90 

et al., 2014).  91 
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The first approach in capsaicin research has been documented in 1949 (Hippenmeier, 92 

1949). Ever since, capsaicin, as the most recognized compound of the chili pepper, has 93 

been widely investigated and there is a deep interest in research developments toward 94 

its application in various fields (Szolcsányi, 2004). A continuous effort has been devoted 95 

to the exploration of capsaicin over the last two decades, as evidenced in Figure 2. Apart 96 

from the interest of capsaicin as an ingredient and nutraceutical in new food and 97 

pharmaceutical formulations, it can also be used as a feedstock for the synthesis of 98 

aromas (such as vanillin) via enzymatic treatment (Heuvel et al., 2001). However, the 99 

major importance relies on its plenty of biological activities documented by the research 100 

community, such as anticancer (Clark & Lee, 2016), mechanosensitive (Drew et al., 101 

2002), antioxidant, anti-iron-binding (Dairam et al., 2008), analgesic (Duarte et al., 2020), 102 

anti-inflammatory, antiobesity (Narang et al., 2018), and antimicrobial properties (Molina-103 

Torres et al., 1999), among many others. 104 

Such bioactivity can be potentially affected due to the use of unsuitable extraction and 105 

purification protocols while R&D centres require pure ingredients (ca. 99.9%) for the 106 

development of new food formulations and more importantly for therapeutic assays. In 107 

principle, capsaicin may present instability and be less active when downstream 108 

extraction techniques use high temperatures (over 100 °C), extreme pH values and longer 109 

extraction times (Si et al., 2014). Additionally, capsaicin undergoes many purification 110 

stages (such as crystallization and further recrystallization) to industrially obtain a high 111 

purity degree compound (Yang, 2010). Therefore, there is a need of finding more cost-112 

effective extraction and purification techniques to preserve the nutritional, functional and 113 

biological properties of capsaicin, together with high extraction yields. In this work, we 114 
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comprehensively review the latest advances in extracting capsaicin from its natural 115 

matrix. Apart from analyzing the most relevant insights in the field, great attention is paid 116 

to the innovative strategies proposed by the research community, comparing their 117 

advantages and disadvantages with conventional extraction techniques. After reviewing 118 

the latest research, the perspectives and research gaps are also stated. 119 

 120 

Figure 2. Documented publications related to the research towards capsaicin over the 121 

last two decades (until July 15th, 2021; source: Scopus). Keyword: Capsaicin. 122 

 123 

2. Traditional extraction techniques for capsaicin 124 

Regardless of the type of purpose (extraction, purification, isolation and concentration), 125 

most of the methods towards the separation of bioactive compounds (like capsaicinoids) 126 

are classified as traditional and innovative techniques (Sagar et al., 2018). The traditional 127 

techniques are those that have been employed for a long time and they are based on 128 

solvent extraction combined with heat treatment. The classical methods are considered 129 

conventional techniques. Soxhlet extraction, hydro-distillation and maceration are, for 130 

instance, some of such traditional extraction techniques (Tsakona et al., 2012; Zhang et 131 

al., 2018). To date, hexane-based extraction is likely to be the most explored method to 132 

recover capsaicin, however, this solvent is harmful and also produces undesired residues, 133 

compromising the final product quality. Alternatively, the extraction has been attempted 134 

using other less harmful solvents including methanol, ethanol, acetonitrile, and water, in 135 

which organic solvents offer a capsaicinoid recovery ranged from 70 to 92% (see Table 136 

S1, supplementary material), and interestingly, the extraction time is inversely 137 
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proportional to the polarity of the solvent (Lu et al., 2017).   138 

 139 

Boonkird et al. (2008) reported a recovery rate of capsaicin as high as 92% using 140 

conventional Soxhlet. Using the same solvent (ethanol), the authors also compared 141 

Soxhlet extraction (for 5h) with simple maceration (for 15 h) and ultrasound-assisted 142 

extraction (UAE) (for 3 h), exhibiting recovery of 79% and 87%, respectively. UAE offered 143 

approximately 10% greater capsaicinoid recovery in comparison with maceration but 5% 144 

lower recovery than Soxhlet extraction. In these experiments, Soxhlet extraction had the 145 

highest extraction yield since it was performed at the highest temperature (~78°C) and 146 

having the greatest concentration gradient comparing with all other extractions. The 147 

concentration gradient in Soxhlet extraction is due to the basics of the Soxhlet extraction 148 

process, where the extraction is done all the time with fresh solvent, unloaded with 149 

substances.  150 

However, UAE has been noted with an enhanced extraction yield when increased the 151 

temperature from 30 to 45°C showing a capsaicin recovery of > 95%. In principle, UAE 152 

accelerates the swelling and hydration, provoking an enlargement in the pores of the plant 153 

cell walls. Thus, an enhanced mass transfer of solutes from the matrix to solvent can be 154 

obtained. Also, the authors associated such an enhanced recovery thanks to the 155 

disruption of plant cells by microjet after the cavitation bubble collapsed that could 156 

potentially promote the rate of solvent penetration into chilli tissue (Toma et al., 2001). 157 

Unlike Boonkird’s study (Boonkird et al., 2008), Santos et al. (2015) selected 158 

dichloromethane in the Soxhlet method to extract the capsaicinoids from Malagueta 159 

pepper (Capsicum frutescens L.). In preliminary studies, the authors evaluated various 160 

Jo
urn

al 
Pre-

pro
of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 

 

solvents with different polarities, as reported in Table S2. It was observed that the highest 161 

capsaicin yields of Soxhlet were acquired with low polarity solvents, in which 162 

dichloromethane showed ca. 92% of total capsaicin recovery. Since the capsaicin is not 163 

totally water-soluble, aqueous systems are generally not preferred for the proper 164 

extraction of the target capsaicin (Sarma & del Valle, 2020).  165 

An important parameter when extracting capsaicin relies on its solubility into the used 166 

solvents, in which an estimation of the solubility may guideline for an optimized and 167 

efficient separation. Importantly, the solubility of capsaicin depends on both temperature 168 

and solvent polarity; e.g. Yan et al. (2012) estimated the solubility of capsaicin in different 169 

organic solvents as follows: n-hexane ≈cyclohexane < carbon disulfide < butyl ether< 170 

isopropyl ether. These findings were corroborated by solute−solvent intermolecular 171 

repulsive interactions and values of mixing Gibbs free energy (ΔG). Thanks to Yan’s 172 

analysis, it was understood that dissolution of capsaicin in solvents comprises a 173 

spontaneous process; it means, lower ΔG values correspond to higher solubility values 174 

and thus more favourable dissolution.  175 

 176 

Even though solvent extraction provides high extraction yields and total capsaicinoid 177 

content depending on the method and operating conditions (Martins et al., 2017), most of 178 

the traditional techniques demand large amounts of solvents and long extraction times; 179 

which certainly raises the overall extraction cost. This is the main drawback that limits 180 

their establishment, while overuse of harmful solvents also complicates meeting the 181 

environmental and health guidelines. Therefore, according to the principles of “green 182 

principles”, there is today a strong need in developing cost-effective processes and 183 
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feedstocks implying the use of less hazardous materials, and minimal production of 184 

wastes (Anastas & Eghbali, 2010). Also, a major challenge concerns improving the 185 

traditional extraction and purification processes. The following section outlines the up-to-186 

date strategies and innovative protocols towards the sustainable separation of capsaicin. 187 

 188 

3. Latest strategies for the extraction and purification of capsaicin: A last-five 189 

years outlook  190 

The extraction process is a crucial challenging step with a meaningful impact on the 191 

production of bioactive compounds, which are generally present in low concentrations in 192 

foods and natural sources. As illustrated in Figure 3, most of the protocols used for 193 

extraction of bioactive compounds from food matrices imply different pre-treatment, 194 

extraction, purification and concentration. Of course, the sequence and strategies will 195 

depend on the type of target bioactive and food matrix (which usually contains plentiful 196 

compounds). In theory, the ‘ideal’ extraction method should eliminate undesired 197 

compounds while displaying high recovery rates in less time (Camara et al., 2021). The 198 

modern extraction methods include microwave, ultrasound and high-pressure extraction, 199 

supercritical and subcritical fluid extraction, electrotechnologies such as pulsed electric 200 

field, high voltage electric discharge and nanosorbent-based extraction techniques, while 201 

the purification techniques can be categorized as physical (fractional distillation, 202 

chromatographic techniques) and chemical methods (i.e. chemical reactions) (Favela-203 

González et al., 2020).  204 

 205 

Figure 3. Usual strategy used for the extraction of bioactive compounds from food 206 
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systems. Inspired by Camara et al. (2021). 207 

 208 

Today, the research community has provided interesting breakthroughs utilizing the 209 

above-mentioned extraction techniques for the purification and polishing of capsaicin. 210 

Here, various operating conditions, supplies, and hybrid extraction processes (as the 211 

synergistic combination of more than two techniques) have been strategically 212 

implemented. Table 1 enlists the most recent and innovative techniques and protocols 213 

used towards capsaicin purification. 214 

 215 

Table 1. Ongoing progress on the extraction and purification of capsaicin applying 216 

emerging techniques and protocols. 217 

 218 

One of the emerging extraction technologies for the extraction of high-added-value 219 

molecules is supercritical fluid extraction (SFE), which utilizes elevated operating 220 

pressures and temperatures to reach a critical point, in which the solvent (CO2) owns the 221 

diffusivity properties of a gas and concurrently the solvation power of a liquid (Dias et al., 222 

2021). Afterward, the solvent can be easily removed from the target molecule by 223 

depressurization; also, the product displays better stability since there is lower 224 

temperature and non-presence of organic solvent (Zougagh et al., 2004). Considering 225 

that capsaicin presents good solubility in CO2 (Knez & Steiner, 1992), SFE is a promising 226 

emerging technique for its extraction, e.g., Aguiar et al. (2018) and Aguiar et al. (2020) 227 

explored the efficient extraction of capsaicin; they were able to obtain up to 115 mg 228 

capsaicinoid/g extract by means of SFE. By performing an economic analysis, they 229 
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speculated that optimal conditions (at 240 min, 50°C and 15 MPa) could offer an 230 

estimated manufacturing cost of about 125.41 USD/kg of extract (Aguiar et al., 2018). 231 

Here, Aguiar et al. (2018) provide a more attractive process since offering lower 232 

manufacturing costs compared with Rocha-uribe et al. (2014) who estimated 233 

approximately 600 USD/kg of extract.  234 

Applying SFE combined with high-speed countercurrent chromatography (HSCCC), Yan 235 

et al. (2018) claimed exceptionally extraction yield (of about 93%) for both capsaicin and 236 

dihydrocapsaicin. This process performed the extraction with aqueous methanol, followed 237 

by crystallization via alkali extraction and acid precipitation. As a polishing step, capsaicin 238 

and dihydrocapsaicin were subjected to further purification with HSCCC, in which n-239 

hexane–ethyl acetate–methanol-water (1.4:0.6:1:1, v/v/v/v) was selected as a solvent. 240 

The obtained capsaicin and dihydrocapsaicin presented a purity degree of 98.3 and 241 

96.6%, respectively. Hamada et al. (2019) developed an online approach integrated by 242 

SFE, dilution line and for the capsaicin extraction and measurement. The concentration 243 

of the capsaicin varied from 21 to 60 ng/g in various types of bell peppers. According to 244 

the authors’ findings, the extraction performance was greatly dependent on the pressure 245 

since the pressure increment provokes a higher density of the critical fluid (i.e., CO2) and 246 

thus raises solvating powder leading to better extraction yield (Gnayfeed et al., 2001). 247 

Unfortunately, the yield could be lowered at low pressure due to the diminished diffusivity 248 

decreases the interaction between the fluid and the matrix (Kwon et al., 2011).  Therefore, 249 

SFE could potentially benefit from other emerging techniques that may promote mass 250 

transfer via convection or diffusion (Stoica et al., 2016). For instance, Santos et al. (2015) 251 

achieved to increase (up to 77%) the capsaicin yield in SFE by using ultrasound waves, 252 
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which substantially improved the SFE separation rate. UAE lies on creating small cavities 253 

to deliver energy into the product/solvent mixture facilitating the extraction of target 254 

analytes. Sricharoen et al. (2017) were able to extract several biomolecules (including 255 

capsaicin) embedded into an oleoresin from hot chili peppers. In principle, chili peppers 256 

contained between 614-25,976 mg/kg for capsaicin and 609-22,130 mg/kg for 257 

dihydrocapsaicin, of which UAE demonstrated a recovery efficiency ranging from 62 to 258 

92%. 259 

Bajer et al. (2015), in their work, investigated the application of pressurized hot water 260 

extraction (PHWE) and thus compared it with conventional Soxhlet. At this time, the 261 

authors applied such processes for capsaicin recovery from several varieties of Capsicum 262 

chinenses and Capsicum annuum. Here, the relative efficiency of PHWE was observed 263 

at ca. 110% compared with Soxhlet; for example, PHWE was able to extract capsaicin as 264 

high as 12,000 µg/g while Soxhlet exhibited 12,000 µg/g, pointing out that the extraction 265 

time of PHWE was significantly shorter. It is worth mentioning that PLE with water 266 

presents a great potential when the capsaicin extracts are further processed for pepper 267 

sprays, in which solvents, like ethanol, are mostly employed. 268 

Very recently, Martins et al. (2017) screened and compared traditional (such as Soxhlet) 269 

and emerging extraction methods, such as UAE and shaker-assisted extraction (SAE), 270 

for the recovery of capsaicin from habanero chili. According to the experimentation, the 271 

total capsaicin content obtained by Soxhlet (using ethanol) demonstrated that the fruit 272 

has 2.2% (ca. 22.0 mg/g) of capsaicin, while UEA yielded 90.7% (between 14.2–19.9 273 

mg/g) and SAE 76.1% (between 8.3–16.9 mg/g). In this approach, the highest extraction 274 

yield was acquired by the Soxhlet method that was ascribed to high extraction time (225 275 
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min), which supports Boonkird’s idea, together with handled temperature (90°C) and 276 

molecule: solvent ratio fostering the solubility increase of capsaicin. Unfortunately, 277 

Soxhlet clearly showed a degradation of the capsaicin in the first 30 min of operation, 278 

while the other techniques proved their reliability in product stability. Even though SAE 279 

and UEA recovered less capsaicin (between 9.3-23.9 % less), they offered a 99% solvent 280 

saving and 86% less time in comparison to conventional solvent extraction. By comparing 281 

SAE and UEA, the latter extraction technique apparently gave a higher extraction yield 282 

thanks to the acoustic cavitation in the solvent due to the ultrasonic waves. In addition, 283 

the waves provoked a mechanical effect that results in enhanced penetration of the 284 

solvent into the fruits matrix and thus surface contact among the solid-liquid phase (Zhang 285 

et al., 2009). As a suggestion, the authors also pointed out that UAE displays several 286 

advantages over the other two techniques, however, the usage for the extraction of 287 

bioactive compounds must be selected carefully since the formation of cavity bubbles 288 

could raise in temperature (over 500 °C) and pressure (up to 550 atm) (Martins et al., 289 

2017), which could indeed speed up the degradation of thermal-sensitive compounds 290 

(Schläfer et al., 2002). 291 

A liquid-liquid fractionation technique, such as aqueous two-phase extraction (ATPE), 292 

was proposed by Fan et al. (2017) for the extraction and purification of capsaicin from 293 

commercial oleoresin. ATPE uses two incompatible phases, such as polymer-salt, ionic 294 

liquid (IL)-salt, or alcohol-salt, for efficient extraction. Here, the two incompatible phases 295 

take place when one polymer is enriched on the top phase and the salt (or second 296 

polymer) is also enriched but at the bottom side. In general, ATPE acts as a promising 297 

method for the separation of biologically active compounds since such a technique 298 

Jo
urn

al 
Pre-

pro
of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14 

 

possesses several advantages in terms of low cost, low equipment requirements, short 299 

extraction time, and uses 70-90% water. Based on this, Fan et al. (2017) explored  ATPE 300 

for obtaining capsaicin and subsequently purified using adsorption process (with ADS-17 301 

and AB-8 resin). Initially, the ATPE system (using ethylene oxide-propylene oxide 302 

copolymer and K2HPO4) exhibited ca. 95% extraction yield, while after the adsorption 303 

processes, the integrated technique containing ADS-17 resin showed a capsaicin 304 

recovery and purity of 83.7% and 50.3%, respectively, meantime AB-8 resin provided 305 

slightly higher recovery rate and high purity product (88.0% and 85.1%, respectively). 306 

Comparable outcomes (capsaicin purity of 85%) were also documented by Zhao et al. 307 

(2015) who employed D101 and SKP-10-4300 resin, while Cienfuegos et al. (2017) 308 

purified capsaicin (> 5-fold) from Capsicum chinense via ATPE, which was previously 309 

extracted by MAE. At the present work, the overall extraction efficiency of 85 % was 310 

reported, in which the active compounds proved ≈80% antioxidant activity. In a previous 311 

study, Dang et al. (2014) achieved to recover over 98% capsanthin from red pepper 312 

(Capsicum annum L.) via three-liquid-phase extraction (TLPE), without requiring any 313 

adsorption or additional purification step.   314 

As part of current ideas in process intensification, there is a necessity to developing 315 

simple and efficient extraction processes with a fewer number of processing steps, and 316 

importantly, they should work at all scales (Fernandez Rivas et al., 2020). Attending such 317 

a need, Lu & Cui (2019) integrated two techniques, such as ATPE and (MAR), to develop 318 

‘tunable aqueous polymer-phase impregnated resins’ (TAPPIR), which was subsequently 319 

implemented into chromatography. At optimal conditions, the aqueous polymer phase 320 

impregnated HZ816 resins containing 18.5% (w/w) PEG6000, 15% (w/w) sodium citrate, 321 
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and 10% (w/w) [Emim] [OAc] (at pH 6.5) yielded 95% capsaicin extraction, which was 322 

ultimately purified by SKP-10-4300 resin in chromatography. Basically, the overall system 323 

offered a capsaicin recovery and purity of about 85% and 92%, respectively. 324 

Chemists are strongly exploring sustainable alternatives to replace conventional 325 

molecular solvents. In this way, ionic liquids (ILs) stand out as a green alternative due to 326 

their low toxicity and biodegradability (Welton, 2011). Specific green solvents, such as 327 

cholinium (Ch)-based ILs, were explored in ATPE by Santos et al. (2016), who utilized it 328 

(together with acetonitrile and water) as an ideal phase to partition capsaicin. The general 329 

process followed by Santos et al. (2016) is illustrated in Figure 4. It was observed that 330 

the acetonitrile phase was preferentially enriched with the capsaicins while the IL 331 

captured other metabolites (like phenolic compounds). After the overall extraction 332 

process, the extraction efficiency was over 90% with a purification factor of ca. 3.20. 333 

Interestingly, it is known that the extraction efficiencies tend to be enhanced by raising 334 

the operating temperature when recovering solutes due to the enhanced solubility in liquid 335 

phases (Abe et al., 2014; Valencia-Arredondo et al., 2020), nevertheless, Santos et al. 336 

(2016) underlined that the extraction efficiency (between 89.7-93.0 %) was not greatly 337 

influenced by the temperature, this insight was obtained thanks to the analysis of the 338 

effect of the temperature on the capsaicin migration. By calculating thermodynamic 339 

parameters (Gibbs energy, enthalpy and entropy), the migration into acetonitrile (using 340 

ATPE) was apparently determined as spontaneous (negative Gibbs energy). On the 341 

contrary, the analysis suggested that transport of capsaicin into the cholinium (Ch)-based 342 

IL behaved as endothermic.  343 

 344 
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Figure 4. Integrated system applied for the extraction, purification and polishing of 345 

capsaicin (Santos et al., 2016). 346 

 347 

Ultimately, the latest research refers to the exploration of new adsorbent materials for the 348 

purification and polishing of the pre-concentrated capsaicin. For instance, Lu et al. (2020) 349 

focused their research on exploring magnetic solid-phase extraction (MSPE) for the 350 

separation of capsaicin from gutter oil (cooking oil recovered from food waste). The 351 

authors proposed MSPE as a pre-treatment strategy to directly adsorb the target 352 

capsaicin while enriching and separating via an external magnetic field. In this work, a 353 

nanocomposite based on graphene oxide (GO)–Fe3O4 was synthesized by means of the 354 

co-precipitation method. The optimal amount of hybrid adsorbent (ca. 40 mg) offered 355 

capsaicin extraction recovery > 80%, which was increased by extending the extraction 356 

time (up to 100% for 20 min). It is important to point out that such a nanocomposite also 357 

exhibited a similar uptake rate for dihydrocapsaicin and N- vanillylnonanamide, in which 358 

its reuse is feasible by several times with no significant loss of performance. Such high 359 

recovery efficiencies are credited to the GO due to its large adsorption capacity as a result 360 

of its high surface area and two-dimensional structure (Cha-Umpong et al., 2020).  361 

Very recently, Genovese et al. (2021a) also assessed nineteen adsorbents (including 362 

hydrotalcites, lamellar solids, and phyllosilicates) to pre-concentrate the capsaicin from 363 

various cultivars of Capsicum annuum. To sum up, hydrotalcite magnesium aluminium 364 

azelate and bentonite exhibited the best performing extraction efficiencies, yielding 365 

between 73-91% and 68-71%, respectively. Bentonite especially possesses a large 366 

surface area and high water uptake properties (Claverie et al., 2018), this latter property 367 
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was speculated to play an important role since it is quite possible that the transfer of the 368 

solvent (water) to the solid phase could have mechanically driven the capsaicin onto the 369 

sorbent and thus contributing to the high extraction yield. Regarding hydrotalcite 370 

magnesium aluminum azelate, its selectivity towards capsaicin was attributed to Van der 371 

Waals and hydrophobic interactions since capsaicinoids present linear 6-8 carbons acyl 372 

chains that are able to fit with the linear carbon skeleton of azelaic acid intercalated in the 373 

inner structure. 374 

 375 

4. Other capsaicinoids and bioactive compounds extracted from chili pepper 376 

Capsaicin and dihydrocapsaicin are the most prominent forms in the chili pepper fruit 377 

extracts, accounting for almost 90% of capsaicinoids. Nordihydrocapsaicin (7%), 378 

homocapsaicin (1%) and homodihydrocapsaicin (<1%) are always present at very low 379 

concentrations when compared to capsaicin and dihydrocapsaicin (De Lourdes Reyes-380 

Escogido et al., 2011). Due to their low concentration, few studies and efforts were made 381 

to quantify those capsaicin analogs in chili pepper extracts. For instance, Genovese et al. 382 

(2021b) performed solid phase extraction of twenty-two cultivars of chili pepper using 383 

solid sorbents. The quantities of extracted capsaicinoids reached 865 mg of capsaicin 384 

(76%), 239 mg of dihydrocapsaicin (21%), 17 mg of nordihydrocapsaicin (2%), and 10 385 

mg of homocapsaicine (1%) for the most effective sorbent. Liu et al. (2020), for instance, 386 

applied solvent extraction of chili pepper seeds. The nordihydrocapsaicin contents ranged 387 

from 43 up to 297 μg/g depending on the type of seed and solvent used for extraction, 388 

while total capsaicinoids content range was between 1052 – 3692 μg/g.  389 

A similar group of compounds, named capsinoids, include capsiate, dihydrocapsiate, and 390 
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nordihydrocapsiate, are also naturally present in chili peppers. Capsinoids have the 391 

beneficial properties of capsaicinoids, however, due to their slightly different structure, 392 

they do not cause the characteristic of pungency (Hursel & Westerterp-Plantenga, 2010). 393 

The research group of Aguiar has worked with different extraction techniques applied to 394 

capsinoids recovery from biquinho pepper. They reported the presence of a considerable 395 

concentration of capsinoids in extract obtained by SFE at 60 oC and 15 MPa (Aguiar et 396 

al., 2014). Capsinoids are less polar than capsaicinoids, due to their ester bond that 397 

replaced the amide bond of capsaicinoids, thus supercritical CO2 was selective for 398 

capsinoid compounds – capsiate and dihydrocapsiate. In a subsequent study, the authors 399 

pursued the intensification of the extraction process by combining SFE with pressurized 400 

liquid extraction (PLE), allowing the production of capsiate-enriched oleoresin from 401 

biquinho pepper (Aguiar et al., 2020). An extraction yield of 77% was obtained, together 402 

with a reduction 1.39 times of the manufacturing cost. At this point, this finding proves 403 

that the smart combination of different techniques makes the process more economically 404 

profitable. 405 

Chili peppers are also an excellent source of other phytochemicals, such as 406 

anthocyanins, vitamins, phenolic acids, flavonoids, and carotenoids. Various traditional 407 

and emerging techniques have been employed for the extraction of phytochemicals from 408 

chili peppers, including maceration (Luiza et al., 2020), solvent extraction (Bogusz et al., 409 

2018), ultrasound-assisted extraction (Liu et al., 2020), supercritical fluid extraction 410 

(Sricharoen et al., 2017), and pressurized liquid extraction (Aguiar et al., 2020). The 411 

conventional methods focus in using organic solvents, such as methanol and ethanol, as 412 

the extraction vehicle of phytochemicals by the implementation of solvent extraction. 413 
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Nevertheless, various innovative technologies for the extraction of bioactive compounds 414 

from chili peppers have been also reported (see Table 2). 415 

 416 

Table 2. Comparison of different extraction techniques used to recover the 417 

phytochemicals other than capsaicinoids. 418 

 419 

Although the scientific interest focuses on capsaicinoids extraction and purification, most 420 

of the research has focused on characterizing the volatiles ones, since sensory 421 

characteristics are crucial factors determining the quality of chili peppers and thus affect 422 

consumer acceptance. The volatile fraction of chili peppers typically includes low 423 

molecular weight compounds and a class of lipophilic secondary metabolites with high 424 

vapor pressure (Sosa-Moguel et al., 2017). A few studies have been conducted to identify 425 

volatile compounds present in chili peppers varieties, such as Brazilian chili peppers 426 

(Bogusz Junior et al., 2015), Shimatogarashi chili peppers (Manikharda et al., 2018) and 427 

traditionally pickled Chinese chili peppers (Ye et al., 2020). Their results revealed a 428 

complex chemical composition with a total number of compounds, ranging from 127 up 429 

to 184, including esters, alcohols, aldehydes, alkanes, ketones, terpenes, ethers, 430 

pyrazine, and sulfur compounds. Esters are usually the major group in the volatile 431 

compounds profile of chili peppers in terms of amount and varieties, however, in the study 432 

reported by Patel et al. (2016), terpenes were found to be predominant volatiles (a total 433 

of 45 out of 127 identified compounds) in Peruvian chili pepper samples.  434 

  435 

5. Concluding remarks, perspectives and guidelines for the new researchers  436 
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This review has elucidated the ongoing progress (over the last five years) on novel and 437 

emerging extraction techniques for the cost-effective purification of capsaicin from their 438 

natural-containing matrix (i.e., chili peppers). According to the current findings and other 439 

researchers’ works (Wen et al., 2020), the combination of multiple extraction techniques 440 

(either traditional, emerging and novel) will continue to be a common practice for 441 

synergistic purification protocols conducting to an enhanced capsaicin recovery efficiency 442 

(Wang et al., 2021). In recent years, interesting yields (from 76 to 95%) and purity degrees 443 

(up to 98%) have been documented by the research community using hybrid systems 444 

(including SFE, PLE, UAE, ATPE, MAE, MARS, TAPPIR, among others, see Table 1). 445 

After reviewing the current literature, a general guideline process scheme, which is 446 

inspired by the efforts of researchers, can be established, as illustrated in Figure 5.   447 

 448 

Figure 5. Process guideline for the efficient extraction and purification of capsaicin from 449 

chili peppers considering the current efforts of the research community. 450 

 451 

This process basically implies three fundamental downstream stages such as pre-452 

treatment, extraction and purification, together with polishing. It is worth pointing out that 453 

the current efforts have been focused on emerging technologies for the extraction 454 

(Sereshti et al., 2019), and novel materials for the selective purification of capsaicin 455 

molecules. To finalize, the perspectives and current research gaps for new researchers 456 

in the field are given as follows: 457 

• One of the current research interests deals with the discovery of the biosynthetic 458 

pathway of capsaicin and its precursors (Usman et al., 2014). However, such 459 
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unknown knowledge has not been limited to the research community at exploring 460 

alternatives for the capsaicin separation and purification towards its exceptional 461 

biological and pharmaceutical properties, along with sensorial features to new food 462 

formulations. Importantly, since chili pepper fruits are so far the only source used 463 

for obtaining such high-added-value molecules, future research will be certainly 464 

devoted to new strategies, including techniques, solvent phases, purification 465 

supplies, etc., for the cost-effective purification of capsaicin. To date, it is likely that 466 

most of the research has been done to directly extract the capsaicinoids from the 467 

chili peppers. However, researchers should extend their efforts on considering the 468 

wastes produced from artisanal and industrial processing since crop waste 469 

materials (seeds, skin, defective fruits) (Castro-Muñoz et al., 2020) are also a 470 

potential source of biomolecules and not limited to capsaicin only. 471 

• Pre-treatment and extraction: To date, maceration stands out as the easy-to-472 

handle and typical methodology for the primary extraction and availability of 473 

capsaicin from the placental tissue where they are biosynthesized and 474 

accumulated (Santos et al., 2016). Apart from typical maceration for obtaining the 475 

capsaicin, enzyme-assisted extraction (EAE) could be an alternative as a way to 476 

acquire the bounded capsaicin into the cell wall and thus foster enhanced 477 

extraction yield. Until now, EAE has been successfully applied in the recovery of 478 

aromas (Galiano et al., 2019) and bioactive compounds (Figoli et al., 2006) from 479 

natural products but minimally explored in capsaicin recovery. Importantly, such 480 

enzymatic treatment can be combined with other extraction techniques, and it is 481 

recognized as an environmentally friendly strategy since water is commonly used 482 
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as a solvent. Here, different enzymes, such as cellulases, pectinases, beta-483 

glucosidases (Cortés-Ferré et al., 2021), must be suitable to hydrolyze the cell 484 

structure releasing the target analyte. 485 

• Polishing of capsaicin as a final stage: adsorption processes aided with 486 

commercial microporous resins, such as SKP-10-4300, ADS-17 and AB-8, are the 487 

preferred strategy by the research community. Particular attention should be paid 488 

to the new hybrid materials with exceptional adsorption properties, e.g., graphene 489 

oxide (GO)-Fe3O4 composites have been introduced as an adsorptive material, 490 

displaying a capsaicin extraction recovery as high as 98% (Lu et al., 2020). It is 491 

worth mentioning that such new hybrid material presented promising reusability 492 

since it was used for extracting more than 10 times with unchanged performance. 493 

Apart from this, the chemistry should be properly studied to benefit from the large 494 

uptake capacities of such new materials. In this regard, further exploration of the 495 

physicochemical properties of the sorbents, such as interlayer distances, particle 496 

size, the polarity of the inner cavity, surface areas, introduction of selected ions in 497 

the crystal lattice, should be performed and extended to possibly tunning for an 498 

enhanced extraction. Here, chemical or physical treatments should be adapted 499 

emphasizing overall charge, polarity and further interactions, including van der 500 

Waals, hydrogen bonding, dipole-dipole forces, and cation-anion interactions 501 

(Cartalade & Vernhet, 2006; Galanakis, 2015; Sun & Leung, 2019). 502 

• A non-typical practice from research regards the techno-economic feasibility of the 503 

applied emerging techniques. It could be interesting if the authors may provide an 504 

estimation of the extraction cost of capsaicin using these novel techniques and 505 
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related strategies (Aguiar et al., 2018; Aguiar et al., 2020; Rocha-uribe et al., 2014), 506 

this opens the possibility to have a clear and realistic overview about the feasibility 507 

of such techniques. 508 

• The use of ILs, as non-volatile and tunable solvents, has been done for the 509 

capsaicin extraction (Lau et al., 2015), however, the green analogues of ILs, so-510 

called deep eutectic solvents (DESs) or natural deep eutectic solvents (NADES), 511 

can potentially be applied. DESs are currently employed in various applications 512 

including extraction of biologically active compounds and pharmaceuticals (Faraz 513 

et al., 2021), analytical determinations (Zhang et al., 2012), extraction of heavy 514 

metals (Haq et al., 2021), among others. Therefore, a new research gap in the 515 

near future will refer to the sustainable extraction of capsaicin using DESs. 516 

However, particular attention should be devoted to the polarity of the DESs, which 517 

is influenced by the type of hydrogen bond acceptor (HBA) and hydrogen bond 518 

donor (HBD) and their molar ratio (Smith et al., 2014). 519 

• In recent years, membrane-based technologies stand out as an alternative for 520 

recovery and concentration high-added values compounds from natural products 521 

and their by-products (Castro-Muñoz et al., 2020). Such technologies, 522 

implemented with ultrafiltration and nanofiltration membranes, could be an 523 

alternative for the concentration of capsaicin once they are available in a liquid 524 

system. Considering the molecular weight of the capsaicin (~305,41 g/mol), 525 

nanofiltration membranes can easily assist the concentration of these compounds 526 

depending on the membrane properties (e.g., polymer type, 527 

hydrophilicity/hydrophobicity, pore size, structure, morphology, etc.). It is important 528 
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to point out that there is no report so far on processing capsaicin extract via 529 

membrane techniques. 530 
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Figure 1. Chemical structures of capsaicin (top) and dihydrocapsaicin (bottom) (Usman et al., 2014).  
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Figure 2. Documented publications related to the research towards capsaicin over the last two decades (until July 15th, 

2021; source: Scopus). Keyword: Capsaicin. 

 

Jo
urn

al 
Pre-

pro
of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 3. Usual strategies used for the extraction of bioactive compounds from food systems. Inspired by (Camara et al., 

2021). 
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Figure 4. Integrated system applied for the extraction, purification and polishing of capsaicin (Santos et al., 2016). 
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Figure 5. Process guideline for the efficient extraction and purification of capsaicin from chili peppers considering the 

current efforts of the research community. 
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Table 1. Ongoing progress on the extraction and purification of capsaicin applying emerging techniques and protocols. 

Technique/ 
technology 

Source Operating conditions Yield/ purity/ capsaicin 
recovery 

Reference 

SFE Malagueta pepper 
(Capsicum frutescens L.) 

40 ◦C, 15 MPa, acetonitrile, acetic acid, 

water 

115mg/g extract (Aguiar et al., 2018) 

SFE Malagueta pepper (Capsicum 
frutescens L.) 

40◦C, 15 MPa Yield: 76.1%  (Santos et al., 2015) 

SFE+UAE Malagueta pepper (Capsicum 
frutescens L.) 

SFE: 40◦C, 15MPa, 150 min 
UAE: 360 W, 60 min 

Yield: 79% (Santos et al., 2015) 

SFE dedo de moça pepper 
(Capsicum baccatum L. var. pendulum) 

60◦C, 25 MPa, 120 min Yield: 88%  (Dias et al., 2016) 

SFE Habanero chili 10 MPa, 35◦C, 90.2 kg/h CO2 flow rate Yield: 92%  (Rocha-uribe et al., 
2014) 

UAE Habanero chili 60min, 37◦C, hydroethanolic solution, 
40 KHz 

19mg/g extract (Martins et al., 2017) 

SAE Habanero chili Hydroethanolic solution 16.9mg/g extract (Martins et al., 2017) 

UAE Red Jalapeno pepper 
(Capsicum annuum L.) 

40% amplitude, 40◦C, 400W and 24 
kHz, 15 min, olive oil 

- (Civan & 
Kumcuoglu, 2019) 

UAE Red hot chili pepper powder (Capsicum 
annuum L.) 

28.5/31.5 kHz, 20min, olive oil 169.9 mg/kg pepper (Paduano et al., 
2014) 

ATPE+MAR Capsicum oleoresin Buffer pH: 2.74, sample: 0.35 g 
capsicum oleoresin, polymer 
concentration: 
20 % (w/w) ethanol, 22.3 % (w/w) 
potassium carbonate. 

Purity: 85% (Zhao et al., 2015) 

PLE Capsicum chinenses, Capsicum 
annuum 

20 MPa, 200 ◦C and 
10 + 20 min of static extraction time 

Capsaicin concentration: 
20, 264 µg/g 

(Bajer et al., 2015) 

TLPE  
 Red pepper (Capsicum annum L.) 

22% (w/w) acetone 
20% (w/w) K2HPO4 10% (w/w) n-
hexane, 25 ◦C 

Recovery: 98.15% (Dang et al., 2014) 

MAE Red hot chili pepper powder (Capsicum 
annuum L.) 

 500 W, 60s, olive oil 164.7 mg/kg pepper (Paduano et al., 
2014) 

ILAE Green Capsicum annuum 
Bird’s eye chilli (Thailand) 

IL: chili ratio (5: 1), 50 ◦C, 1 h, IL’s: 1-
ethyl-3-methylimidazolium 
acetate, 1-ethyl-3-methylimidazolium 

- (Lau et al., 2015) 
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hydrogen sulfate 

SFE Green, yellow and red bell pepper Modifier: 5% methanol 
Total flow rate: 5 mL/min 

60.33 ng/g, (Green) 
31.79 ng/g, (Yellow) 
35.38 ng/g, (Red) 

(Hamada et al., 
2019) 

ATPE+MAR Capsicum oleoresin Buffer pH: 4.35, sample: 0.24 g 
capsicum oleoresin, polymer 
concentration: 
16.3% UCON 50-HB-5100, 10% 
K2HPO4, 1% ethanol. 

Yield：95.5% 

Purity：85.1% 

(Fan et al., 2017) 

MAE+ATPE Cumari-do-Para 
(Capsicum chinense var.) 

20 wt.% of ethanolic extract, 25 wt.% of 
NaH2PO4 

Extraction efficiency: 
85.6% 

(Cienfuegos et al., 
2017) 

MAE Capsicum frutescens Linn. 90, 320, 360, 600 W 
ethanol, 5-20 min  

5.2 mg/g dried chili (Chuichulcherm et 
al., 2013) 

UAE Capsicum frutescens Linn. 40 kHz, 600 W 
ethanol, 5-30 min 

4.0 mg/g dried chili (Chuichulcherm et 
al., 2013) 

UAE Dietary supplements sold as fat burners 65% methanol Recovery: 76-89 % (Werner et al., 2021) 

TAPPIR + 
Chromatography 

Capsicum oleoresin 18.5% (w/w) PEG6000, 
15% (w/w) sodium citrate, and 10% 
(w/w) [Emim] [OAc] at pH 6.5 
SKP-10-4300 resin 

Yield: 95.8 % 
Recovery: 85% 
Purity: 92% 
 

(Lu & Cui, 2019) 

SFE+HSCCC Capsici fructus SFE: 33MPa, 41 ∘C, co-solvent volume 
75 mL. 
HSCCC: n-hexane–ethyl acetate–
methanol–water (1.4:0.6:1:1, v/v/v/v), 
25 ∘C, flow rate 2 mL/ min  

Capsaicin extraction 
yield:93.1% 
Dihydrocapsaicin 
yield:93.4% 
Capsaicin purity :98.3% 
Dihydrocapsaicin 
purity:96.6% 

(Yan et al., 2018) 

ATPE Capsicum frutescens var. malagueta 30 wt.% acetonitrile, 35 wt.% of [Ch]Cl, 
35 wt.% of water, at 318 (±1) K 

Extraction efficiency: 
90% 

(Santos et al., 2016) 

SFE Paprika (Capsicum annuum L.) Temperature 35-75°C, pressure 100-
500 bar, extraction 
time 60-180 min, particle size 0.25-1.25 
mm. 

Capsaicin content: 
2.10% 

(Shah et al., 2020) 

UAE Hot pepper (Capsicum annuum L.) 2 h, methanol, 50°C, sample-solvent 
ratio 1:8  

Capsaicin concentration: 
627 µg/g 

(Marincaş et al., 
2018) 

UAE Hot pepper (Capsicum annuum L.) Water-methanol (20:80%v/v), 50°C, 20 
min, 35 kHz and 640 W 

Recovery efficiency: 62- 
92% 

(Sricharoen et al., 
2017) 
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SAE Hot pepper (Capsicum annuum L.) 2 h, sample-solvent ratio 1:8 Capsaicin concentration: 
662 µg/g 

(Marincaş et al., 
2018) 

MSPE+ 
Adsorption 

Gutter oil MSPE: 1 mL dichloromethane, 3 mL, 
2% NaOH aqueous solution, 1500 rpm 
Adsorbent: GO-Fe3O4 

Recovery: >83% 
 

(Lu et al., 2020) 

Adsorption Capsicum annuum Adsorbents: Hydrotalcite magnesium 
aluminium azelate, and bentonite 

Extraction yields:70-
92% 

(Genovese et al., 
2021a) 

PLE: pressurized liquid extraction; MAE: microwave assisted extraction; SFE: supercritical fluid extraction; UAE: ultrasound-assisted extraction; 

SAE: shaker-assisted extraction; ILAE: Ionic liquid-assisted extraction; ATPE: aqueous two-phase extraction; MAR: microporous adsorption resin; 

TLPE: three-liquid-phase extraction; HSCCC: high-speed countercurrent chromatography, MSPE: magnetic solid phase extraction 
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Table 2. Comparison of different extraction techniques used to recover the phytochemicals other than capsaicinoids. 
Extraction method Operating conditions: Extracted compound: Reference: 

Solvent extraction Methanol  
3 h, room temperature 

Phenolic compounds (Bogusz et al., 2018) 

 Methanol 
24 h, 25 oC 

Phenolic compounds, flavonoids, 
Ascorbic acid 

(Hamed et al., 2019) 

 80% methanol 
24 h, 25 ± 2 oC 

Carotenoids, phenolics and 
flavonoids 

(Ayob et al., 2021) 

UAE ethanol 80%, methanol 80% and 
acetone 80%  
40 min, 40 oC 
40 kHz 

Phenolic compounds (Liu et al., 2020) 

Enzyme-Assisted extraction • Cellulase, viscozyme L, pectinase 
1 h, 60 oC 
• Solvent Extraction: ethanol, 30 
min 

Phenolic compounds, flavonoids, 
carotenoids 

(Nath et al., 2016) 

Enzymatic maceration • Pectinex AR, Celluclast and 
combined  
18 h, 50 oC 
• Solvent Extraction: Water, 18 h, 
50 oC 

Carotenoids (Luiza et al., 2020) 

PLE 65 oC, 10 MPa, ethanol and water, 
60 min   

Capsiate, phenolic compounds (Aguiar et al., 2020) 

SFE + PLE • SFE: 50 oC, 15 MPa, 120 min  
• PLE: 65 oC, 10 MPa, ethanol and 
water, 60 min 

Capsiate, phenolic compounds (Aguiar et al., 2020) 

SFE 50 oC, 15 MPa, 120 min Capsiate, phenolic compounds (Aguiar et al., 2020) 

 40 oC, 25 MPa, 80 min 
Ultrasonic power 600 W 

Phenolic compounds (Dias et al., 2016) 
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Highlights 

 

A last 5 years comprehensive review on the current strategies towards capsaicin 

extraction is given. 

 

Innovative techniques for the purification of capsaicin are highlighted. 

 

 

The guidelines to the new scientists for the effective extraction are stated. 

 

 

The current research gaps and perspectives in the field are outlined. 
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