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Abstract: Friction Stir Welding (FSW) is a solid-state bonding technique. There are many direct and
indirect factors affecting the mechanical and microstructural properties of the FSW joints. Tool offset,
tilt angle, and plunge depth are determinative tool positioning in the FSW process. Investigating
the effect of these factors simultaneously with other parameters such as process speeds (rotational
speed and translational speed) and tool geometry leads to a poor understanding of the impact of
these factors on the FSW process. Because the three mentioned parameters have the same origin, they
should be studied separately from other process parameters. This paper investigates the effects of tilt
angle, plunge depth, and tool offset on Ultimate Tensile Stress (UTS) of joints between AA6061-T6
and AA7075-T6. To design the experiments, optimization, and statistical analysis, Response Surface
Methodology (RSM) has been used. Experimental tests were carried out to find the maximum
achievable UTS of the joint. The optimum values were determined based on the optimization
procedure as 0.7 mm of tool offset, 2.7 degrees of tilt angle, and 0.1 mm of plunge depth. These
values resulted in a UTS of 281 MPa. Compared to the UTS of base metals, the joint efficiency of the
optimized welded sample was nearly 90 percent.

Keywords: friction stir welding; tool offset; tilt angle; plunge depth; ultimate tensile strength

1. Introduction

Friction Stir Welding (FSW) is a relatively new method used for joining similar or
dissimilar materials together and classified in solid state joining processes [1,2]. Rotation,
penetration, and linear traveling of a non-consumable tool causes material joining [3].
Generated heat by friction between tool and workpiece and materials plastic flow are the
main factors of materials joining [4]. Many factors affect mechanical and metallurgical
properties of FSW joints, which can be categorized in two main groups: tool geometry and
process parameters [5]. Tool geometry parameters are pin and shoulder shapes [6]. Process
parameters of FSW include traveling speed, rotational speed, downward force on tool,
plunge depth, tilt angle, and tool offset, which have direct effect on materials plastic flow
pattern and heat generation and distribution [7]. By varying mentioned parameters, plastic
flow and generated heat experience significant changes, which affect microstructures and
mechanical properties of joints [8,9]. Three out of six process parameters, namely tilt angle,
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plunge depth, and tool offset, are directly in connection with tool position [3,10]. Tilt angle
has a great effect on materials forging and moving plastic flow to weld-line [4,11]. The weld
nugget and defect density experience significant changes by varying this parameter [12,13].
Plunge depth indicates the tool shoulder penetrating in workpiece, which causes a great
amount of friction and plastic flow at the upper part of the workpiece and can lead to
extensive changes in the stir zone [14]. Tool offsetting in FSW of dissimilar materials is
a way to balance the plastic flow generation and can strongly affect the mechanical and
metallurgical properties of joint [15]. By proper adjustment of mentioned parameters, one
can achieve a defect-less joint.

There are a few studies on the effect of plunge depth, tilt angle, and tool offset in the
FSW process. Kumar et al. [16] investigated the tilt angle effect on mechanical properties of
FSW of AISI 316L. Three degrees named 0, 1.5, and 3 were chosen and it was found that
at a degree of 1.5, the highest value of UTS could be gained. It was also observed that tilt
angle affects the stir zone, maximum temperature, and shear layer under the tool shoulder.
Rajendran et al. [17] studied the effects of tilt angle on strength and hardness of joint in
FSW of AA2024 Aluminum alloy and recognized that at degrees of 1 to 3, a defect-less joint
is achieved. Zheng et al. [18] investigated the effects of plunge depth on mechanical and
microstructural properties of FSW of dissimilar 2A70 Aluminum alloy and Inconel 6000
Nickel-base alloy. The range of 0–0.5 mm was chosen for plunge depth. It was found that
plunge depth strongly affects the joint strength. In another work, Ramachandran et al. [19]
found that the tool offset has a great effect on microstructures and mechanical properties of
HSLA steel and AA5052-H13 Aluminum alloy joint. Naghibi et al. [20] studied the effect of
tool offset on UTS of AISI 304 and AA5052 dissimilar FSW joint. Based on the results, the
maximum of UTS occurs at 2 mm of offset. Kar et al. [21] investigated the tool offset effect
on materials flow in FSW of Aluminum and Titanium and found that by increasing the
tool offset, materials flow increases. Tamjidi et al. [22], by studying the effect of traveling
speed, rotational speed, and tool offset, optimized the FSW process of AA6061 and AA7075
aluminum alloys. They found that by offsetting toward AA7075, the mechanical properties
are improved. Safeen et al. [23] investigated the effect of parameters on FSW of AA6061-T6
statistically. They found that pin shape, rotational speed, travelling speed, and tilt angle
have the most effects on UTS and hardness of joint, respectively. Periyasami et al. [24]
also studied the effect of parameters on FSW of AA6061 and AA7075-T651 aluminum
alloys. Based on the results, it was observed that the pin diameter, tool offset, and tilt angle
have the most effects on UTS of joint, respectively. Derazkola et al. [25] investigated the
effect of rotational speed, travel speed, plunge depth, and tilt angle on UTS of dissimilar
FSW of AA5754 and Polymethyl methacrylate (PMMA) and found the optimum values of
the mentioned parameters. The mentioned papers used single-factor tests, which means
keeping one variable and keeping the other constant. Due to the high costs of experimental
tests and much time consumption, researchers decided to use artificial intelligence (AI) to
decrease the risks of joint production with voids and wasting money. For this reason, they
used different approaches in relation to AI [26]. At the first step, the optimization of FSW
process parameters is used for similar joints and, meanwhile, used for dissimilar joints.
Joints considered are different aluminum alloy joints widely used in automobile industries.
Table 1 presents the primary aluminum dissimilar joints optimized by AI techniques. Due
to available literature, the main FSW factors considered are tool rotational and traverse
velocities [27]. These parameters are the main factors to produce heat during the FSW
process. Other factors such as tool pin size, tool shoulder size, tool tilt angle, and tool
plunge depth are also considered. On the other hand, the CCD and ANOVA are commonly
used to optimize FSW process parameters [28]. It can be concluded that all research outputs
found the highest ultimate tensile strength after FSW of dissimilar aluminum joints.
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Table 1. Summary of optimization of FSW process parameters at various dissimilar aluminum joints.

Aluminum Alloy Joint Optimization
Technique FSW Parameter Output Reference

AA6351-T6 +
AA6061-T6

Central composite
rotatable design method

tool rotational speed, tool
traverse speed and axial force Ultimate tensile strength [29]

AA6351-T6 +
AA5083-H111

Response surface
methodology

tool pin profile, tool rotational
speed, welding speed, and

axial force
Ultimate tensile strength [30]

AA6082-T6 +
AA5754-H111

Taguchi-based grey
relational analysis

Tool shoulder diameter, pin
diameter, tool rotational, and

welding speeds
Ultimate tensile strength [31]

AA5083-H111 +
AA6082-T6

The central composite
design (CCD) technique
with response surface
methodology (RSM)

Tool pin profile, tool rotational
speed, welding speed, and

axial force
Ultimate tensile strength [32]

AA2024-T351 +
AA7075-T651

Central composite
rotatable design (CCRD)

Tool rotational speed, welding
speed, and plunge depth Ultimate tensile strength [33]

AA2219-T87 +
AA7075-T73

Taguchi mixed factorial
design matrix

Tool rotational speed, welding
speed, tool profile, and tilt angle Ultimate tensile strength [34]

AA6082-T6 +
AA7050-T7

Grey-based Taguchi
technique

Tool rotational speed and
welding speed Ultimate tensile strength [35]

Based on the literature survey, three factors named tilt angle, plunge depth, and tool
offset were investigated individually or combined with rotational speed, traveling speed,
and tool geometry, in which this combination leads to a lack of understanding of these
parameters’ effectiveness. It should be noted that three mentioned factors are determinative
of tool positioning in FSW process. Investigating the effect of these factors simultaneously
with other parameters such as process speeds (rotational speed and translational speed)
and tool geometry leads to a poor understanding of the impact of these factors on the FSW
process. Because three mentioned parameters have same origin, they should be studied
separately from other process parameters. Due to lack of investigation in this field, a
deliberation seems to be necessary. Therefore, in this paper the effects of tilt angle, plunge
depth, and tool offset on UTS of newly FSW joint between AA6061-T6 and AA7075-T6 have
been investigated. In this manner, to design the experiments, optimization, and statistical
analysis, Response Surface Methodology (RSM) has been used.

2. Materials and Methods

In the current study, AA6061-T6 and AA7075-T6 Aluminum alloys were used for
performing FSW. The raw materials were provided from the local market (AmaLcast, Arak,
Iran) and the properties of base metals were used from manufacturing company data sheets.
Chemical composition and mechanical properties of mentioned alloys have been illustrated
in Tables 2 and 3, respectively. The dimensions of workpieces were 100 × 50 × 5 mm3

and the welded surfaces were machined before welding and washed with Acetone to
decrease the probability of aluminum oxide forming at weld nugget and consequently
defect forming.

Table 2. Chemical composition of AA6061-T6 and AA7075-T6 Aluminum alloys [36].

Aluminum Alloy Chemical Composition (%)

AA6061-T6
Al Mg Si Cu Fe Cr Mn Zn Ti

Balance 0.81 0.61 0.29 0.2 0.13 0.03 0.02 0.01

AA7075-T6
Al Zn Mg Cu Fe Si Cr Ti Mn

Balance 5.11 2.04 1.11 0.61 0.33 0.229 0.027 0.014
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Table 3. Mechanical properties of AA6061-T6 and AA7075-T6 Aluminum alloys [36].

Aluminum Alloy Yield Stress (MPa) UTS (MPa) Elongation (%)

AA6061-T6 268 311 17
AA7075-T6 485 568 11

To perform friction stir welding, modified convectional milling machine (FU450R,
Tabriz, Iran) was used (Figure 1a). Raw materials were fixed in steel-made fixtures during
the FSW procedure. In accordance with the suggested procedure in the literature review, the
harder alloy (AA7075-T6) was inset at retreating side to increase the joint strength and avoid
defects forming [37]. It should be mentioned that in FSW of dissimilar materials, it is better
to set the tool offset toward harder material where this instruction was performed in current
study [38]. In this study, travelling speed and rotational speed were set at 90 mm/min and
1180 rpm for all experiments, respectively. A tool with a flat pin and shoulder was used to
perform FSW for all experiments in which its shape and dimensions have been shown in
Figure 1b. The tool is made of H13 work-hardened steel. After producing the tool, it was
exposed to thermal hardening procedure based on related standards [3,39]. Dwelling time
for all experiments were 5 s. All experiments (process parameters) were repeated three
times and the average value was reported as the experimental test result.
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Figure 1. (a) FSW machine, (b) Tool used in FSW process.

To study the mechanical properties of friction stir welded specimens, standard tensile
test was used. In this manner, three tensile test coupons for each specimen were prepared
due to ASTM-E8 standard [40,41]. After performing the test by SANTAM-25KN apparatus
(SANTAM, Tabriz, Iran) at 1 mm/min speed, the average of measured data was considered
for each specimen. The schematic view and image of specimens and related tensile test
coupons have been shown in Figure 2a,b, respectively.
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Figure 2. (a) The schematic view and (b) image of tensile test samples.

3. Design of Experiments

In this section, the design of experiments and important variables have been discussed.
To study the main and interaction effects, Central Composite Design (CCD) has been
utilized, and to implement this design, Analysis of Variance (ANOVA), Minitab (12, Minitab
LLC, State College, PA, USA), and Design Expert software (12, Minitab LLC, State College,
PA, USA) were performed.

In the current study, three variables named tilt angle, plunge depth, and tool offset have
been considered as independent variables and UTS has been considered as a dependent
variable. As discussed before, this FSW tool offset refers to shifting of tool axis from base
metals interfaces (Figure 3a), and the tool tilt angle refers to the tilting of FSW tool axis
from raw metals normal axis (Figure 3b). Based on CCD, every variable had five levels
which have been illustrated in Table 4.
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Table 4. Considered variables and their level.

Factors Unit Level 1 Level 2 Level 3 Level 4 Level 5

Tool Offset mm 0 0.5 1 1.5 2
Tilt Angle Degree 0 1 2 3 4

Plunge Depth mm 0 0.1 0.2 0.3 0.4

4. Results and Discussion
4.1. Model Deliberation and Variables Effectiveness

CCD was used to develop the design matrix. In this manner, twenty specimens were
prepared and welded and their relative UTS values were measured. Design matrix and
measured UTS have been illustrated in Table 5.

Table 5. Design matrix and UTS values.

Run Tilt Angle (Degree) Plunge Depth (mm) Tool Offset (mm) UTS (MPa)

1 1 0.1 0.5 265
2 1 0.1 1.5 230
3 3 0.1 0.5 278
4 3 0.1 1.5 244
5 1 0.3 0.5 241
6 1 0.3 1.5 204
7 3 0.3 0.5 233
8 3 0.3 1.5 215
9 2 0.2 0 244
10 2 0.2 2 196
11 0 0.2 1 235
12 4 0.2 1 260
13 2 0 1 265
14 2 0.4 1 185
15 2 0.2 1 262
16 2 0.2 1 265
17 2 0.2 1 268
18 2 0.2 1 265
19 2 0.2 1 266
20 2 0.2 1 272

In statistical studies, the R-Squared and Adjusted R-Squared values determine the
accuracy of obtained regression equation. The coefficients of the statistical model have
been illustrated in Table 6. In statistical analysis, 95% of confidence level was considered
and ANOVA was used to study the main and interaction effects of variables. ANOVA test
for UTS has been shown in Table 7.

Table 6. The statistical magnitude of regression model.

Source Std. Dev. R2 Adjusted
R2

Predicted
R2 Press

Linear 18.54 0.6061 0.5322 0.4008 8370.62
2FI 20.30 0.6166 0.4396 0.2786 10,077.16

Quadratic 5.07 0.9816 0.9651 0.8788 1692.37 Suggested
Cubic 3.20 0.9956 0.9861 0.9353 904.23 Aliased

To test the statistical model, normalization of statistical distribution of residuals and
lack of self-correlation and independency among residuals are needed. Due to Table 6,
quadratic regression model was chosen. The main factors, square, and interaction items
constitute the ANOVA form or test. To evaluate the model, one must test it statistically, in
which its results have been shown in Figure 4. Figure 4a,c are representative of scattering of
residuals around the normal line. Thus, the model residuals have the normal distribution
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process pattern. This result can be obtained by the Kolmogorov–Smirnov test. Figure 4b,d
shows normal and independent distribution of residuals and lack of self-correlation among
residuals, respectively.

Table 7. ANOVA test for UTS.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value

Model 13,711.71 9 1523.52 59.32 <0.0001 Significant
A-Tool Offset 3025.00 1 3025.00 117.78 <0.0001 Significant
B-Tilt Angle 400.00 1 400.00 15.57 0.0027 Significant

C-Plunge
Depth 5041.00 1 5041.00 196.27 <0.0001 Significant

AB 50.00 1 50.00 1.95 0.1932 Not significant
AC 24.50 1 24.50 0.9539 0.3518 Not significant
BC 72.00 1 72.00 2.80 0.1250 Not significant
A2 3424.44 1 3424.44 133.33 <0.0001 Significant
B2 578.19 1 578.19 22.51 0.0008 Significant
C2 2730.16 1 2730.16 106.30 <0.0001 Significant

Residual 256.84 10 25.68
Lack of Fit 199.51 5 39.90 3.48 0.0987 Significant
Pure Error 57.33 5 11.47
Cor Total 13,968.55 19
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Through regression, UTS model was obtained as Equation (1):

UTS = 216.6 + 48.9A + 25.18B + 264.3C − 46.68A2 − 4.80B2 − 1042C2 (1)

where A, B, and C are tool offset, tilt angle, and plunge depth, respectively. Due to ANOVA
and Equation (1), the main factors affect the UTS directly. In Figure 5, the effectiveness of
factors has been illustrated as normal plot and Pareto chart. The Pareto chart highlights
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the most important among a set of factors. Based on Figure 5, the most important factor
among a set of factors on UTS are plunge depth, tool offset, and tilt angle, respectively.
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4.2. Tool Offsetting

In general, in the FSW of dissimilar materials, the portion of participation of materi-
als determines the joint properties [42,43]. Imbalance in the volume ratio of plastic flow
leads to inappropriate material mixing at weld nugget and finally increment in defects
density [44–46]. The tool offset in the dissimilar joint is an essential issue because it in-
creases FSW tool life and base metal mixing. It is proved that the FSW tool offsets in the
harder metal side have crucial effects to improve the final joint quality in a dissimilar
joint [47]. In this regard, the FSW tool is offset in AA7075 aluminum alloy in this study. The
tensile strength of AA7075 is more than the AA6061 aluminum alloy. The proper volume
ratio of materials depends on different materials’ mechanical properties and, generally,
the plastic flow portion of material with greater UTS. As mentioned before, this factor is
unique for every pair of dissimilar materials. In Figure 6, the UTS vs. tool offset for welded
specimens have been shown. According to the results, the tool offset from 0 mm until
0.7 mm increased as the tensile strength of the joint increased. With the increasing tool
offset of more than 0.7 mm, the interaction at the interface of base metals decreased. Due
to rising tool offset inside the AA7075 aluminum alloy, the FSW pin tool stirring action
decreased in the AA6061 alloy side, and for this reason, the tensile strength of the final joint
that welded more than 0.7 mm tool offset was decreased.

Based on the obtained results, it is clear that tool offsetting leads to significant in-
crements in joint efficiency. The mean UTS had an increasing trend until 0.7 mm on the
AA7075-T6 side, and after that, the UTS of the joint decreased. In addition, due to obtained
results and statistical analysis, it was shown that the maximum joint efficiency could be
achieved at 0.7 mm of offset toward AA7075-T6. The results show that the maximum
tensile strength in 0.7 mm tool offset was ~270 MPa, and the minimum tensile strength
obtained at 2 mm tool offset was ~185 MPa.

4.3. Tool Tilt Angle

The presence of tilt angle causes the plasticized materials under the tool shoulder
while tool traveling comes back to weld nugget by forging force [48]. The forging force
condenses plasticized metals in the stir zone by intense pressure and forms the joint area. It
should be noted that the tilt angle has an optimum value. By receding from the optimum
point, the contact area between tool shoulder and workpiece decreases, which leads to
decrement in heat and vertical plastic flow generated by tool shoulder, and consequently,
mechanical metallurgical properties drop. Proper compression and interference occur
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by forging the plastic flow in tool tilt angle, leading to decrement in volume defects like
porosity at weld nugget. On the other hand, using a proper tilt angle causes an increment
in UTS and the development of a homogenous and uniform microstructure at the weld
nugget. The results from UTS vs. tilt angle plot are shown in Figure 7.
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that the lowest tensile strength joint was formed by 0◦ tool tilt angle and the highest tensile
strength joint was formed by 2.6◦ tool tilt angle.

The least UTS occurs at specimen with low tilt angle. One of the common defects
that happens in inappropriate tilt angle is the lack of fill defect. In the case of zero or
inappropriate tilt angle, because of inopportune forging, longitudinal slits with various
depths are composed at tool tilt.

The surfaces of friction stir welded specimens with various tilt angles have been
shown in Figure 8. Based on the results, specimens with zero and one degrees of tilt angle
exhibit a lack of fill defects. It is approved that the forging force is not enough at a low tool
tilt angle to fill the joint line [39]. For this reason, the lack of filling of the joint line at the
surface can be seen. By increasing the tilt angle, the length of longitudinal slits decreases
and at two degrees of tilt angle, the surface defect disappears completely. At a high tool tilt
angle, the tool prevents material’s extrusion from advancing side into retreating side. For
this reason, the plasticized material condensed in the vicinity of the joint line and formed
a surface flash. On the other hand, at a higher tool tilt angle, surface flash forms in the
vicinity of the joint line. The obtained results indicate that the surface flash formed from
a 3◦ tilt angle and increased at a 4◦ tool tilt angle. The surface defects (lack of filling) and
side flash are the main reasons that decrease the strength of welded samples.
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4.4. Tool Plunge Depth

The area beneath the workpiece experiences the least heat because of being locating at
a further distance from the tool shoulder, and a little thermal softening and hard plastic
flow take place [49].

The possibility formation of weld root defects, like tunneling in the lower area of the
joint line and beneath of workpieces, is high [50,51]. To remove root defects in the FSW
joint line, controlling plunge depth is very important. FSW tool plunge depth can increase
the stirring action of materials in the stir zone and control heat input in the joint line. Using
proper plunge depth leads to better plastic flow and increased heat transfer to bottom
of pin [3,9,39]. By penetration of tool shoulder in specimen, friction interaction between
specimen and tool increases extremely and causes significant increment in heat generation
and vertical plastic flow. Forming a proper vertical plastic flow leads to the improvement
of the microstructure and mechanical properties. In Figure 9a, UTS vs. plunge depth plot
for welded specimens has been illustrated. Based on Figure 9, using the optimum value
of plunge depth can cause increment in UTS of joint. In the current study, a tool with
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4.6 mm of length and workpiece with 5 mm of thickness was used. Had plunge depth
not been used, a thickness of 0.4 mm of bottom of specimen would have been without
any significant stirring and could have been like a support for deformed materials. Using
plunge depth can lead to better plastic flow at bottom of specimen and decrement in
support area. By applying large plunge depths, plastic flow concentration at weld nugget
misses and material ejection from the bottom of specimen takes place, which leads to
extreme decrement in metallurgical and mechanical properties. In Figure 9b, the bottom
view of specimens with various plunge depths have been shown. As seen, at 0 mm of
plunge depth, the bottom slit has not been connected, while at 1 mm of plunge depth,
the situation of bottom slit is different and complete connection can be seen. In addition,
material ejection is not observed. By increasing the plunge depth, material ejection takes
place, based on Figure 9a, and UTS decreases intensely.
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4.5. Optimization

In Figure 10a–c, three-dimensional plots and contour plots of variables affecting UTS
have been illustrated. Based on obtained results, all variables (plunge depth, tool offset,
and tilt angle) and their interaction had significant effects on UTS of joint. In Figure 10d,
the optimum values of mentioned variables and maximum UTS have been illustrated. Due
to statistically obtained results, 0.7 mm of tool offset, 2.7 degrees of tilt angle, and 0.1 mm
of plunge depth were the optimum values which lead to 281 MPa of UTS and 90% of joint
efficiency. This situation could be used to determine the tool positioning.

To validate the model output, a specific specimen was friction stir welded with opti-
mum parameters proposed by the model. For production of this joint, the FSW tool offset,
plunge depth, and tilt angle selected 0.7 mm, 0.1 mm, and 2.6◦, respectively. Figure 11
presented the surface flow and bottom of the FSWed joint with optimum parameters. The
UTS of the FSWed sample was measured and compared with the optimization result. A
comparison between predicted and measured UTS has been done in Table 8. The results
revealed that the predicted UTS was 272 MPa, and the FSWed sample UTS was 281 MPa.
The predicted model and experimental results were ~3% (near 9 MPa). This result shows
good agreements of predicted model and experimental data.
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Table 8. The statistical and experimental UTS magnitudes of optimized model.

Tool Offset
(mm)

Tilt Angle
(Degrees)

Plunge Depth
(mm)

UTS (MPa)
Predicted

UTS (MPa)
Experimental

0.7 2.7 1 272 281

5. Conclusions

In this paper, the effects of plunge depth, tool offset, and tilt angle on UTS of FSW joint
of AA6061-T6 and AA7075-T6 were investigated experimentally and statistically. RSM was
used for designing the experiments, optimization, and analysing the results. The following
outcomes were obtained:

1. Experimental tests were carried out to find the maximum achievable UTS of joint.
Based on optimization procedure, the optimum values were determined as 0.7 mm
of tool offset, 2.7 degrees of tilt angle, and 0.1 mm of plunge depth. These values
resulted in a UTS of 281 MPa. In comparison to UTS of base metals, the joint efficacy
of FSW sample was near 90 percent.

2. The low tool plunge depth and tilt angle can form a lack of filling in the surface of the
joint, and on the other hand, the high value of tool plunge depth and tilt angle caused
the surface flash. Both types of defects decrease the properties of the final joint.

3. In the welded cases with no plunge depth, the connection of specimens at the bottom
were not properly performed, while at 1 mm of the plunge depth, two specimens
were connected completely and by exceeding the plunge depth, material ejection from
the bottom of specimens took place.

4. In the case of using small tilt angle, longitudinal slits with various depths were formed
at tool tail and the lack of filling-in defect was observed. By increasing the tilt angle
to 2 degrees, mentioned defects vanished completely. The FSW tool offset from 0
until 0.1 mm shows a slight increase, and after that, from 0.1 until 0.4 mm, the UTS
decreased. The obtained results indicated that the sensitivity of FSW tool offset on
UTS is more than FSW tool plunge depth and FSW tool tilt angle in this joint.
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