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Abstract: Currently, new precatalysts for olefin oligomerization are being sought in the group of
vanadium(IV) complexes. Thus, the aim of our research was to examine the catalytic activity of the
oxovanadium(IV) dipicolinate complex [VO(dipic)(H2O)2] 2 H2O (dipic = pyridine-2,6-dicarboxylate
anion) in 2-propen-1-ol oligomerization as well as to characterize oligomerization products using
matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF-MS),
infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). The oligomerization process
took place at room temperature, under atmospheric pressure and under nitrogen atmosphere to
prevent oxidation of the activator MMAO-12—the modified methylaluminoxane (7 wt.%) aluminum
in toluene. The last point was to determine the catalytic activity of the complex in the oligomer-
ization reaction of 2-propen-1-ol. The aspect that enriches this work is the proposed mechanism of
oligomerization of allyl alcohol based on the literature.

Keywords: oligomerization; oxovanadium(IV) complexes; 2-propen-1-ol; catalysis; mechanism of
oligomerization; dipicolinate anion

1. Introduction

When you hear “polymer”, the first thing that comes to mind is plastics. However,
increasingly in publications, authors write about polymers or oligomers not only meaning
their use in the production of car tires [1,2], packaging [3,4], foil [5,6] or oil [7,8], but also
polyolefins used in the production of medical implants [9,10], anti-HIV (human immunod-
eficiency virus) therapy [11,12], green chemistry [12–14] and Alzheimer’s treatment [15,16].
The synthesis of polymers requires special conditions, therefore, catalysts are used which
lower the activation energy and speed up the process [17–23]. It has become popular to
use metallocenes, e.g., complex compounds containing d-block metals and organic ligands
(precatalyst) [20,21]. The combination of a precatalyst with an activator, i.e., an organoalu-
minum compound, e.g., methylaluminoxane (MAO) or a modified methylaluminoxane
(MMAO-12, 7% aluminum in toluene) creates a Ziegler–Natta catalyst [24–27]. The sixth
generation of Ziegler–Natta catalysts is the most widespread due to high catalytic activity
and attempts to replace MMAO with another activator. The reason is that MMAO changes
its structure and composition during storage. Modified methyl aluminoxane, as an acti-
vator, oxidizes very quickly when there is oxygen in the reaction system and, therefore,
nitrogen is introduced to prevent this.
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The subject of interest of scientists at the beginning of the 20th century was the com-
parison of the trans spatial structure [VO(dipic)(H2O)2] 2 H2O (1) to the known compound
[VO(dipic)(o-phen)] 3 H2O (2) by X-ray crystallography and to obtain (2) from (1) by sub-
stituting two water molecules with 1,10-phenanthroline. It turned out that the coordination
sphere around the oxovanadium(IV) ion was completely transformed during the reaction,
which influenced the kinetic aspect [28]. The oxovanadium(IV) dipicolinate complex com-
pound, in its structure, contains dipic (dipicolinate anion), which acts as a tridentate ligand.
Thanks to the free electron pair on the nitrogen atom, it can form stable chelates with
cations of oxometals from block-d, while showing very different coordination properties. It
is used to remove corrosion, decontaminates nuclear reactors, and takes part in biological
processes as a carrier of electrons and medical bioimaging [29,30].

Oxovanadium(IV) compounds are used as precatalysts in the polymerization of olefins
due to their high catalytic activity and the quality of the products obtained. Vanadium
complex compounds are used as catalysts in industrial production of synthetic rubbers,
elastomers and polyethylene [31]. However, in our case, special attention was given to the
dipicolinate complex of oxovanadium(IV), due to its widely described physicochemical
and biological properties such as combating diabetes type I and II [32], cell metabolism [33],
antioxidant properties [34], plasmid DNA cleavage, chromosomal aberrations and use in an-
ticancer therapy [35,36]. Thorn et al. have reported the application of V-dipic complexes as:
[VO(dipic)(i-PrO)], [VO(dipic)(pinme)], [VO(dipic)(dpheol)] and analogs in stoichiometric
aerobic oxidation of isopropanol and other alcohols as lignin models [37]. Another example
is Gawdzik et al. who reported new oxovanadium(IV) microclusters with 2-phenylpyridine
which showed highly activity for the 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol,
and 2,3-dibromo-2-propen-1-ol oligomerizations [38].

In this publication, for the first time the dipicolinate complex of oxovanadium(IV) is
presented as a new precatalyst for an olefin oligomerization. We examined its catalytic prop-
erties in the oligomerization of allyl alcohol. The oligomerization reaction products were
also analyzed using mass spectrometry techniques such as matrix-assisted laser desorp-
tion/ionization time of flight mass spectrometry (MALDI-TOF-MS), infrared spectroscopy
(IR) and nuclear magnetic resonance (NMR). The oligomerization process took place at
room temperature, under atmospheric pressure and under nitrogen atmosphere, so that
the activator, which was MMAO-12, would not oxidize [39]. The aspect that enriches this
work is the proposed mechanism of oligomerization of allyl alcohol based on the literature.

2. Materials and Methods
2.1. Materials

All chemical compounds (vanadyl acetylacetonate, dipicolinic acid, modified methyla-
luminoxane (7% aluminum in toluene), 2-propen-1-ol) used in this work were purchased
from Sigma-Aldrich (Darmstad, Germany). Their purity was between 98% and 100%.

2.2. Dipicolinate Oxovanadium(IV) Complex Synthesis

Aqueous vanadyl acetylacetonate (VO(acac)2) (2.13 mmol, 0.57 g) was added to dipi-
colinic acid (H2dipic) (2.15 mmol, 0.36 g). Then 50 cm3 of water was added to the mixture.
The entire solution was heated at 100 ◦C to reflux for 90 min until the mixture changed
color. It took 30 min to cool down. One month later, the dipicolinate oxovanadium(IV)
complex crystallized in the solution in the form of blue crystals. Crystallization was carried
out at room temperature. Crystallization lasted so long that it prevented the introduction
of impurities that could appear if the process was carried out under conditions of reduced
temperature.
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2.3. Elemental Analysis of the Oxovanadium(IV) Complex Compound with
Pyridine-2,6-Dicarboxylate Anion

Elemental analysis of the complex was performed with the Vario El Cube apparatus.
The samples tested by means of elemental analysis were dry and homogeneous with a
mass of 2 mg.

2.4. Infrared (IR) Spectra

The examination of the the oxovanadium(IV) complex compound with pyridine-2,6-
dicarboxylate anion and the oligomerization product by infrared spectroscopy (IR) was
performed in the range from 4000 cm−1 to 600 cm−1 on a KBr pastil. The measurement was
carried out on a Bruker IFS 66 spectrometer (Evisa, Tucson, AZ, USA). The IFS 66 apparatus
performed infrared spectra in the Fourier transform with a resolution of 0.12 cm−1. DLATGS
was a detector in IR measurements.

2.5. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry
(MALDI-TOF-MS) Spectra

Molecular weights of the 2 propen-1-ol oligomer chains were determined using
MALDI-TOF-MS spectrometer from the Bruker Biflex III company (Billerica, MA, USA).
2,5-Dihydroxybenzoic acid (DHB) was used as a matrix.

2.6. Nuclear Magnetic Resonance (NMR) Spectra

Nuclear magnetic resonance spectra of oligomerization products were recorded with
a Bruker Avance III 500 spectrometer (Billerica, MA, USA). The measurement was carried
out at 25 ◦C. The measured frequency was 126 MHz for 13C NMR and 500 MHz for 1H
NMR. The solvent that was used was deuterated 1,1,2,2-tetrachloroethane.

2.7. The Oligomerization Process

The oligomerization process was carried out in a glass flask closed with a stopper
(Figure 1). First, the precatalyst which was [VO(dipic)(H2O)2] 2 H2O (Figure 2) (3 µmol,
0.912 mg) was dissolved in 1 mL of toluene and 1 mL of anhydrous DMSO (anhydrous
dimethyl sulfoxide). The solution was then mixed with a magnetic stirrer. In the next step,
the following reagents were added: 3 mL of MMAO-12 (modified methylaluminoxane, 7%
aluminium in toluene) and 3 mL of 2-propen-1-ol. The whole oligomerization process was
undertaken at ambient pressure (1013 hPa), at room temperature and in nitrogen air. After
90 min of oligomerization, a white gel was obtained and then it was washed with a mixture
of 1 M hydrochloric acid and 1 M methanol in a 1:1 molar ratio.

Figure 1. A process flow diagram for the oligomerization system.
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Figure 2. Chemical structure of [VO(dipic)(H2O)2] 2 H2O.

3. Results and Discussion

The structure of the complex is well known and described in the literature [40]. Table 1
shows the percentages of elements obtained by exploiting the elemental analysis (AE)
technique and theoretical calculations.

Table 1. Results of elemental analysis of the synthesized complex [VO(dipic)(H2O)2] • 2H2O (AE
means experimental data, T denotes theoretical data).

Complex Compound

Percentage [%]

%C %H %N

AE T AE T AE T

[VO(dipic)(H2O)2] 2 H2O 27.64 27.46 3.60 4.25 4.70 4.58

Theoretical data have been calculated according to the following procedure:
Mass of [VO(dipic)(H2O)2] 2 H2O = 305.9 g/mol; %C = 84/305.9 × 100% = 27.46%;

%H = 13/305.9 × 100% = 4.25%; %N = 14/305.9 × 100% = 4.58%.
In order to confirm the structure of the synthesized crystal of complex compound, we

described the IR spectrum of the dipicolinate oxovanadium(IV) complex (Figure 3) [41].

1 
 

 
Figure 3. Infrared (IR) spectrum of [VO(dipic)(H2O)2] 2 H2O [41].
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The characterization results presented in Tables 1 and 2 and their validation with
theoretical calculations and literature data indicate that the vanadium complex synthesis
was correct [41,42]. The synthesized complex was used for 2-propen-1-ol oligomerization.
Analysis of the IR spectrum (Figure 4) of the product of 2-propen-1-ol oligomerization is
presented in Table 3. The absorption of infrared radiation is accompanied by changes in
the vibrational energy of the molecules. Since this energy is quantified, only radiation with
certain energies, specific to the functional groups performing the vibrations, is absorbed.
This makes it possible to determine which functional groups are present in the analyzed
sample. The condition for absorption of radiation is the change in the dipole moment of
the molecule during the process. The results of the IR studies showed that the end product
of the oligomerization contained a double bond and a hydroxyl group. The IR studies
confirmed the structure of the oligomerization products [43,44].

Table 2. Characteristic IR spectrum absorption bands of [VO(dipic)(H2O)2] 2 H2O [41,42].

Wavenumber [cm−1] Type of Vibration with Function Group

3571 v(OH)
1665 v(COO) of dipic
1352 v(COO) of dipic
983 V=O stretching frequency
452 stretching vibration of the V-N

Figure 4. IR spectrum of the 2-propen-1-ol oligomerization product.

Table 3. Characteristic IR spectrum absorption bands for the 2-propen-1-ol oligomerization prod-
uct [43,44].

Wavenumber [cm−1] Type of Vibration Function Group

3425 stretching vibrations −OH
2992 stretching vibrations −CH
1651 stretching vibrations C=C
1438 bending vibrations −CH2

Using the MALDI-TOF-MS method, we characterized certain peaks, thus allowing the
identification of the number of units present in the oligomer chains using [VO(dipic)(H2O)2]
2 H2O as a precatalyst (Figure 5).
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Figure 5. The matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-
TOF-MS) spectrum of the products of the oligomerization process.

The presence of oligomer chains of a specific length was confirmed by using mass
spectrometry. The appropriate units were assigned to the peaks in the spectra formed in
the process of 2-propen-1-ol oligomerization catalyzed by [VO(dipic)(H2O)2] 2 H2O. The
649.9 m/z peak was derived from 2,5-dihydroxybenzoic acid—the matrix and molecular
peak were identified with a mass/charge ratio of 703.9 m/z that contained 2-propen-1-ol
12 units. The next peaks at m/z = 876.9 (15 units), m/z = 1066 (18 units) were observed in
the attached mass spectrum. This was a confirmation that in the obtained 2-propen-1-ol
mixture, the oligomers contained chains consisting of 12, 15 and 18 allyl alcohol units.

Analysis of 2-propen-1-ol oligomerization products was conducted using nuclear
magnetic resonance spectroscopic techniques. The 1H NMR spectrum is shown in Figure 6
and the 13C NMR spectrum is shown in Figure 7.

In order to illustrate the structure of 2-propen-1-ol oligomers more precisely, the
Tables 4 and 5 based on the 1H NMR and 13C NMR spectra were prepared. The peak values
corresponding to specific carbon and hydrogen atoms depending on the type of spectrum
have been highlighted. NMR spectroscopy is based on the observation of transitions
between magnetic energy levels of the 1H hydrogen isotope in the case of 1H NMR. A lot
of information about the structure of the molecule under study can be obtained from the
NMR spectra. The number of signals provides information about the number of protons
lying in the same environment. The intensity of the signals is proportional to the number
of protons associated with this signal. On the other hand, the values of chemical shifts
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of signals in the spectrum depend on the environment in which the protons are located.
The larger the peak, the stronger the coupling of the interaction between adjacent electron
nuclei, the so-called spin-spin couplings. NMR and IR test results confirm the structure of
the oligomers obtained consisting of linked units of allyl alcohol.

Figure 6. 1H nuclear magnetic resonance (NMR) spectrum for 2-propen-1-ol oligomerization products
obtained with the application of [VO(dipic)(H2O)2] • 2 H2O + MMAO-12.

Figure 7. 13C NMR spectrum for 2-propen-1-ol oligomerization products obtained with the applica-
tion of [VO(dipic)(H2O)2] 2 H2O + MMAO-12.

Table 4. Peak values and the corresponding hydrogen atoms derived from the 1H NMR spectrum for
the products of 2-propen-1-ol oligomerization catalyzed by [VO(dipic)(H2O)2] • 2 H2O + MMAO-12.

Peak Value Assigned Hydrogen Atoms

6.04 CH2=CH- (oligomer)
2.63 CH2=CH- (monomer)
1.71 HO-CH2- (oligomer)
1.30 -OH (oligomer)
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Table 5. Peak values and the corresponding hydrogen atoms derived from the 13C NMR spectrum for
the products of 2-propen-1-ol oligomerization catalyzed by [VO(dipic)(H2O)2] 2H2O + MMAO-12.

Peak Value Assigned Carbons Atoms

70.79 HO-CH2-CH-CH2- (oligomer)

70.76–70.31 HO-CH2-CH-CH2- (oligomer)

37.64 -CH2-OH (oligomer)

The catalytic activity (Ca) for the [VO(dipic)(H2O)2] • 2 H2O complex compound can
be calculated from the formula:

Ca =
m

n · p · t= 191.53
g

mmol · bar · h (1)

where: m—mass of obtained oligomer [g]; n—number of mmoles of V4+ [mmol]; p—
pressure [bar]; t—oligomerization time [h].

The literature values were compared in Table 6 with the result of the calculations to
find out how effective the precatalyst was. The number of mmole of V4+ used to calculate
the catalytic activity (Ca) was calculated theoretically. In these calculations there is the
lack of mass balance calculation, thus the calculation has uncertainties that can lead to
misleading comparisons with the data presented in Table 6.

Table 6. Catalyst efficiency classification based on their catalytic activity [45].

Catalyst Efficiency Catalytic Activity [g·mmol−1·bar−1·h−1]

Very low <1
Low 1–10

Moderate 10–100
High 100–1000

Very high >1000

Comparing the calculated results with the literature values, we concluded that the
precatalyst [VO(dipic)(H2O)2] 2 H2O belonged to the group of catalysts with high catalytic
activity. The highest catalytic activity in the research to date had been noticed with olefins
containing chlorine in their structure, for example 2-chloro-2-propen-1-ol. Thus, by achiev-
ing high purity, process efficiency could be increased. The use of ligands also played an
important role. Too extensive chains of organic clusters caused steric barrier and thus low
selectivity.

4. The Proposed Mechanism of the Oligomerization Reaction of 2-Propen-1-ol
Catalyzed by [VO(dipic)(H2O)2] 2 H2O + MMAO-12

The mechanism of the oligomerization reaction of 2-propen-1-ol catalyzed by [VO(dipic)
(H2O)2] 2 H2O, with the participation of an activator (MMAO-12), followed the mechanism
of coordination polymerization based on the literature [46–49] (Figure 8). The approach of
allyl alcohol to the center of oxovanadium(IV) with the participation of MMAO-12 caused
the formation of the π complex between the alcohol’s double bond and the active center
(Step 1). In the next step, coupling took place between the terminal carbon atom and the
active center of oxovanadium(IV), at the expense of the water molecule from the precatalyst,
which migrated to the activator. The resulting electrophilic center—carbocation—then
underwent a nucleophilic attack by the π bond of allylic alcohol and thus propagated
the alkyl chain (Step 2). In the elimination stage, the obtained oligomer separated from
the dipicolinate complex of oxovanadium(IV) and modified methylaluminoxane, through
the migration of a water molecule from MMAO-12 to the active center (Step 3). Washing
the oligomer with a mixture of diluted hydrochloric acid and methanol removed residual
catalyst and activator. The washing step was important because the activator also reverted
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to its native form and the cleaved oligomer, due to the momentary and opposite polarity on
the carbon atoms, could produce a polymeric structure written according to the standard
that could restore the stable structure of the catalyst under hydrolytic conditions. Another
fact confirmed the correctness of the proposed termination step, involving the experiment,
in which we added water to the reaction mixture after the oligomerization process. As a
result, we observed a free activator molecule precipitating out from a solution, suggesting
that it was not bound to the catalyst any more. It is worth emphasizing that this mechanism
was also based on the fact that the greater the weight of a polymer, the better the properties
as a leaving group it constituted, thus making this reaction self-limiting [46–49].

Figure 8. Cont.
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Figure 8. The proposed mechanism of 2-propen-1-ol oligomerization with the application of
[VO(dipic)(H2O)2] 2 H2O + MMAO-12. Step 1 (Initiation), Step 2 (Propagation), Step 3 (Termi-
nation) [46–49].

5. Conclusions

The oxovanadium(IV) dipicolinate complex compound is an effective precatalyst
for the oligomerization process of 2-propen-1-ol carried out at room temperature, under
nitrogen atmosphere and at atmospheric pressure. Several methods—IR, MALDI-TOF-
MS, 1H and 13C NMR—confirmed that the obtained mixture of 2-propen-1-ol oligomers
contained 12, 15 and 18 units of allyl alcohol. It can be stated that the dipicolinate complex
of oxovanadium(IV) was a highly active precatalyst with 191.53 g mmol−1 bar−1 h−1

catalytic activity value. Our results showed that further examinations towards the potential
olefin oligomerization precatalysts need to be undertaken, especially those derived from
the dipocolinate oxovanadium(IV) complex.
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