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A B S T R A C T   

Guided waves recently have attracted significant interest as a very promising research area. The signals regis
tered by a specially designed sensor network are processed to assess the state of the tested structure. Despite the 
constant development of novel damage detection algorithms employing guided waves, the phenomenon of wave 
propagation still needs detailed recognizing and understanding for the further progress of non-destructive wave- 
based methods. Special attention is paid to guided waves in plate-like structures, but the majority of considered 
cases concern plates with constant thickness. However, in the real world, we often deal with specimens with 
variable thickness. The thickness variability of the specimen is often forced to fulfill the construction re
quirements and optimize stress distribution or is the result of degradation i.e. corrosion. Thus, the development 
of NDT methods forces the need of considering specimens with complex geometry and the problem of wave 
propagation in waveguides with variable thickness is crucial for improving novel as well as so far proposed 
algorithms. 

The article presents the results of the analytical, numerical and experimental analysis of wave propagation in 
plates with variable thickness. The analysis concerns the influence of thickness distribution of plate structure on 
wave velocity, the time course wave packet and amplitude. Moreover, the novel approach based on constrained 
convex optimization for determining the plate thickness distribution has been proposed and verified during 
numerical and experimental campaigns.   

1. Introduction 

Guided waves have attracted significant research interest as means to 
conduct nondestructive inspections in a variety of structures [1–3]. 
Their potential for detection of relatively small damages impossible to 
detect during standard visual inspections has been demonstrated in 
many previous papers. Their ability to travel long distances without 
considerable amplitude decay makes them a suitable tool for diagnostics 
of long objects like pipes, rods, or rails. 

The leading research centers in the world put an enormous effort into 
developing effective methods of nondestructive detection, localization, 
and sizing of the damage. In particular, wave-based SHM has focused 
considerable interest in the field of monitoring plate-like structures 
[4–8]. In many cases, the damage is localized based on the identification 
of reflection from the damage and determining the time lags between 
excited and registered waves. Next, the time of flight and the constant 
velocity determined from dispersion curves were used to localize the 
faulty region. The shape of dispersion curves strongly depends on plate 
thickness and material parameters, while the curves considered were 

determined for an undamaged, isotropic, homogeneous metal plate with 
constant thickness. The assumption about the uniform propagation path 
is one of the main limitations enabling the application of the so far 
developed methods in practice. One of the examples of damage 
requiring considering thickness variability is corrosion degradation. It is 
common damage to the vast majority of engineering structures, as well 
as the machines and their parts. The localized pits can occur simulta
neously with general corrosion affecting not only the geometry of the 
specimen but also the metal microstructure. The assumption about 
isotropy and homogeneity may lead to inaccurate velocity determina
tion and incorrect pits localization. Another recently analyzed examples 
are structures that, depending on the season and temperature, may be 
covered with additional non-uniform ice layers [9,10] or structures 
strengthened with tapered adhesive layers [11]. The local changes in 
wall thickness are common practice in aerospace or hull structures to 
fulfill the construction requirements and optimize stress distribution. 
The development of NDT methods in biomechanics [12] also forces the 
need of considering specimens with complex geometry. For this reason, 
the problem of wave propagation in tapered or non-uniform waveguides 
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has been recently considered by researchers. 
The theoretical analysis of Lamb wave propagation in a waveguide 

with varying heights was conducted by Pageneux and Maurel [13]. The 
technique of rearrangement of the equations of elasticity that provides a 
new system of coupled-mode equations preserving energy conservation 
was applied to the specimen with thickness described by the Gaussian 
function. 

El-Kettani et al. [14] presented experimental and numerical results of 
adiabatic guided wave mode propagation in the plate with slowly line
arly varying thickness. They proved that after reaching the thickness 
cut-off the adiabatic mode may reflect or convert into a different guided 
wave that propagates downslope in the plate. The mode conversion of 
shear horizontal guided wave mode in tapered plates was also observed 
by Nurmalia et al. [15]. Their conclusions were consistent with obser
vations made by El-Kettani [14]: mode conversion of SH modes occurred 
when the thickness of the waveguide abruptly decreased to below the 
cut-off thickness. De Marchi et al. [16] developed a procedure to predict 
the group delay of stress waves propagating in tapered waveguides. 
They compared the predicted curves with those extracted from the time- 
frequency representation of simulated wave propagation in tapered 
waveguides. In [17] De Marchi et al. proposed the double-step method 
based on a warped frequency transform aimed at locating the damages 
in plates. Their algorithm has been validated and tested on irregular 
waveguides composed of uniform, tapered and curved segments. The 
evolution of the guided modes wavenumbers concerning position along 
the direction of propagation in the cortical bone-mimicking wedged 
plate was analyzed by Moreau et al. [18]. They adapted the singular 
value decomposition method usually used for plates with constant 
thickness to the case of waveguides of slowly linearly variable thickness. 
Moll et al. [19] analyzed the antisymmetric wave propagation in the 
tapered multilayered anisotropic structure and determined the thickness 
of particular segments using laser vibrometry and a terahertz time- 
domain system. In [20] Moll presented the damage localization tech
nique taking into account the non-uniform nature of adiabatic wave 
motion in composite structures with smoothly varying thickness. Mar
tinez et al. [21] demonstrated the damage detection procedure in plates 
with variable thickness based on the multi-frequency topological de
rivative. The numerical proof of concept was presented for varying 
numbers and arrangements of piezoelectric transducers mounted very 
close to the plate boundary. In their approach, the mode conversion 
associated with variable thickness and complex planform was naturally 
taken into account by using non-simplified elastodynamic equations 
instead of the Lamb propagation model. 

Despite the enormous effort put into the detailed analysis of the wave 
propagation in waveguides with non-uniform thickness, there are still 
unsolved research gaps that demand consideration for the further 
development of the diagnostics methods. From the point of view of 
structural state evaluation, it is also important to estimate the minimum 
thickness of the non-uniform waveguide, which is critical for load car
rying capacity or tightness of the whole structure. Thus, it is crucial to 
consider the inverse scattering problem dealing with the reconstruction 
of the plate shape based on the measured signals. To the authors’ best 
knowledge, so far the dependency of irregular plate shape and signal 
characteristics, as well as the solution to the inverse problem of shape 
reconstruction has not been described in the literature, yet. 

This article presents the theoretical, experimental, and numerical 
analysis of wave propagation in aluminum plates with non-uniform 
thickness. In the first stage, the influence of plate geometry on wave 
velocity, the shape i.e. time course of the incident wave, and its ampli
tude is analyzed. In the next stage, the attempt of solving the inverse 
scattering problem using the novel approach based on compressed 
sensing is presented. The influence of several measurements on the 
effectiveness of plate thickness variability reconstruction is analyzed. 
One of the greatest advantages of the proposed approach is the limited 
number of measurements and sensors attached to the structure. The 
stepped plate thickness reconstruction based on convex optimization 

requires knowledge only about the input and output signals measured at 
the ends of the plate. 

The study indicates which signal parameters are dependent on 
thickness variability but are independent of exact plate shape. On the 
other hand, some parameters and their derivatives depend strongly on 
the exact specimen shape and they cannot be efficiently used in the 
thickness variability assessment. The results presented in the paper are 
crucial from the point of view of diagnostics of general degradation 
affecting plate geometry because they allow for the evaluation of which 
signal parameter can be efficiently used in the further development of 
dedicated damage indexes. 

2. Theoretical background 

2.1. The influence of geometry on wave propagation velocity 

Guided waves are dispersive waves, which means that their velocity 
depends on excitation frequency. The well-known relation between 
velocity and frequency is described by dispersion equations formulated 
by Lamb in 1917 [1], [22]: 

tan(qd)
tan(pd)

= −

(
k2 − q2

)2

4k2pq
(1)  

tan(qd)
tan(pd)

= −
4k2pq

(
k2 − q2

)2 (2) 

The parameters d and k indicate the plate thickness and the wave
number, respectively. Parameters q and p depend on longitudinal and 
transverse wave velocities. 

The plate thickness d is one of the parameters occurring in Lamb 
equations. Thus, every thickness change involves a change in propaga
tion velocity. Let’s assume that the plate is divided into n divisions with 
a length Δx. The time needed to travel the distance Δx is equal to: 

Δti =
Δxi

cgi

(3) 

The total time of flight along the distance L is a sum of the particular 
times of flight along with the distances Δx: 

ToF =
∑n

i=1
ti =

∑n

i=1

Δx
cgi

= Δx
∑n

i=1

1
cgi

(4) 

The average wave velocity is then described by the equation: 

cg,mean =
L

ToF
=

L
Δx

∑n
i=1

1
cgi

=
n

∑n
i=1

1
cgi

(5) 

Based on the above equation one can conclude that the exact shape of 
the plate surface does not influence the average wave velocity along the 
propagation path L. The average wave velocity is influenced only by the 
thickness distribution, which means that two plates varying in shape can 
be characterized by the same wave velocity. The equation is valid for all 
excitation frequencies, so for other parameters of the input excitation, 
we will get the same results for various plates. Thus, the wave velocity 
cannot be used as an indicative parameter in exact plate shape recon
struction but can be used in thickness distribution determination. 

2.2. The influence of plate geometry on wave packet shape 

The time variability of the propagating waveform u(x,t) depends on 
the distance from the excitation point and the dispersion frequency- 
wavenumber dependency. The following form of the basic Dispersion 
Compensation Method equation is known: 

u(x, t) =
∫ ∞

− ∞
F(ω)ei(ωt− k(ω)x)dω (6) 
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where F(ω) describes the frequency spectrum of excitation function 
while x denotes the distance from the wave source. To take into account 
the amplitude decay related to dispersion effects as well as the 
increasing distance from the source, the additional multiplying factor 
has to be introduced in the equation [23]: 

u(x, t) =
e− ξx
̅̅̅̅̅̅̅̅
2πx

√

∫ ∞

− ∞
F(ω)ei(ωt− k(ω)x)dω (7) 

For the sake of simplicity, the exponential factor will be denoted as A 
(x). Then, Eq. (10) can be rewritten as follows: 

u(x, t) = A(x)
∫ ∞

− ∞
F(ω)ei(ωt− k(ω)x)dω (8) 

The same equation can be also rewritten in the frequency domain: 

U(x,ω) = U(0,ω)H(x,ω)

H(x,ω) = A(x,ω)e− iK(ω)x (9)  

where ω is the angular frequency and U(x,ω) and U(0,ω) are the fre
quency spectra of the signal u(x, t) and excitation function u(0,t). H(x,ω)

denotes the transfer function, where K(ω) represents the nonlinear 
relation between wavenumber and the frequency. Because the ampli
tude variability in the frequency domain is not defined and in this sec
tion, only the shape of the propagating wave is considered, the factor 
A(x,ω) will be omitted in the following derivations by assuming that 
A(x, ω) = 1. The amplitude variability will be considered in the next 
section. 

Based on the above equations we can write the expression describing 
the signal at point 1 located at distance x1 from the source (Fig. 1): 

U(x1,ω) = U(0,ω)e− iK1(ω)x1 (10) 

Now, let’s the signal registered in point x1 can be treated as an 
excitation function and we can write the equation describing the signal 
in point 2 located at the distance x2 from point 1: 

U(x2,ω) = U(x1,ω)e− iK2(ω)x2 (11) 

By substituting Eq. (13) into Eq. (14) we obtain: 

U(x2,ω) = U(0,ω)e− iK1(ω)x1 e− iK2(ω)x2 = U(0,ω)e− i(K1(ω)x1+iK2(ω)x2) (12) 

The above equation can be rewritten in the more general form for the 
plate with variable thickness: 

U(xn,ω) = U(0,ω)e− i(
∑n

i=1
Kj(ω)xj) (13) 

Based on the above derivations one can conclude that the shape of 
the wave packet depends on the thickness distribution along the prop
agation path but not on the exact shape of the plate. The time course 
depends on the frequency spectrum of the excitation U(0,ω) and the sum 
of the products of the distances and corresponding wavenumbers K(ω)x 
depending on the actual plate thickness. 

2.3. The influence of plate geometry on wave amplitude 

It is easy to prove that equations defined in the previous section 
cannot be directly transferred for amplitude calculation. From Eq. (14) 
we would obtain that: 

A(x1 + x2,ω) = A(x1,ω)A(x2,ω) (14)  

which is not true: 

e− ξx1

̅̅̅̅̅̅̅̅̅
2πx1

√
e− ξ(x2 − x1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π(x2 − x1)

√ ∕=
e− ξx2

̅̅̅̅̅̅̅̅̅
2πx2

√ (15) 

Moreover, the above expression was proposed based on the 
phenomenological model and despite it correctly predicts the expo
nential amplitude decay, still no instructions on how to set the damping 
parameter ξ have been proposed. The dispersion property of guided 
waves and energy conservation cause different frequency components 
propagate with a different velocity which results in spreading the wave 
packet and decreasing the amplitude. Thus, the amplitude decay may 
not depend only on the distance from the source but also on the pa
rameters of the excitation. 

Practically, it is difficult to compare the amplitude measured for 
different specimens, because it can be also influenced by the method of 
transducers attachment. Thus, in the following study, the amplitude 
variability is analyzed mainly numerically. 

The derivations presented in the following Section indicate that the 
average wave velocity can be used only as an indicative parameter in 
plate thickness distribution, but because it does not depend on the ge
ometry, it cannot be used for exact shape reconstruction. A similar 
observation was made for the shape of the wave packet: it depends on 
thickness distribution but not on the specific geometry. On the contrary, 
the amplitude value depends on the geometry and it varies for specimens 
with the same thickness distribution but different geometry. One can 
conclude that the amplitude value would be not an efficient indicative 
parameter in, for example, global damage assessment (like corrosion) 
leading to changes in all specimen geometry because two objects with 
the same degree of degradation would be characterized by different 

Fig. 1. Wave propagation in plate: excitation by the actuator and registration in points 1 and 2.  

Fig. 2. Stepped plate and its thickness distribution.  
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amplitudes, but on the other hand, the amplitude can be potentially used 
in shape reconstruction, as it is the only sensitive parameter in this case. 

The correctness of the derivations presented above was verified 
during experimental and numerical investigations and is presented in 
the further part of the paper. 

3. Determination of thickness distribution of plate structure 
using CS approach 

This section contains the description of the novel approach to 
thickness distribution of the stepped plates. The thickness distribution of 
any plate along the propagation path can be described by two vectors. 
The first vector d = {d1, d2, ..., dn}

T contains the thickness values, while 
the second vector l = {l1, l2..., ln}T contains the distances corresponding 
to certain thicknesses (Fig. 2). 

Let’s define now the dictionary matrix Φ, which contains the re
ciprocals of the group velocity cg: 

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
cf1 ,d1

g
…

1
cf1 ,dn

g

⋮ ⋱ ⋮
1

cfm ,d1
g

⋯
1

cfm ,dn
g

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(16) 

Each column is associated with one thickness, while each row cor
responds to one excitation frequency. Based on the derivations pre
sented in Section 3.1 we can formulate the following equation: 

Φl = t (17)  

where vector t contains the times of flight calculated for the particular 
frequencies propagating along with the plate with variable thickness. 
The dictionary matrix can be determined based on theoretical or nu
merical analysis, as well as may contain the experimental measure
ments. Vector t is the result of the experimental tests. The only unknown 
in the above equation is the vector l describing plate thickness vari
ability. Unfortunately, the solution to the above problem is not 
straightforward, because the matrix Φ does not have to be square. In 
such a case it cannot be easily inverted. If the number of unknowns is 
greater than the number of equations, which is the common case, 
especially if the thickness reconstruction has to be accurate, then Eq. 
(20) describes the underdetermined system of equations with an infinite 
number of possible solutions. The solution to this problem can be ach
ieved using a sparsity-promoting optimization technique. It is easy to 
notice that in the case of the stepped plate the vast majority of elements 
in vector l will be equal to zero and thus, the vector l can be considered 
sparse in the thickness domain. Once the compressed sensing problem is 
formulated, we can add the additional conditions, which must be set. 
The recovery of the plate thickness distribution is conducted by 
searching for the sparsest coefficient vector l, which agrees with the time 
of flight measurements, which can be presented by the following 
formulation: 

min
l
‖l‖0 such that Φl = t (18)  

where ℓo norm ‖l‖0 is the number of non-zero elements in vector l. 
Unfortunately, Eq. (21) is non-convex and represents NP-hard ill-posed 
inverse problem [24]. Based on the compressed sensing theory the so
lution can be efficiently approximated by minimizing ℓ1 norm, which is 
the sum of non-zero entities in vector l: 

min
l
‖l‖1 such that Φl = t (19) 

Furthermore, if the possible inaccuracies in time of flight determi
nation are taken into account, Eq. (22) can be rewritten as [25]: 

min
l
‖l‖1 such that |Φl − t| < ε (20)  

where ε is the inaccuracy level. We additionally know that all elements 
of vector l have physical meaning. They represent the distances with the 
same thickness and therefore every element must be positive. Moreover, 
their sum must be equal to the total distance L between the excitation 
and registration point. The final set of equations that have to be solved 
can be presented in the following form: 
⎧
⎪⎪⎨

⎪⎪⎩

min
l
‖l‖1 such that |Φl − t| < ε

min l⩾0
∑

i=1
li = L

(21) 

The above description already demonstrated the possible advantages 
of the proposed CS-based approach. First of all, it does not require 
extensive measurements. Usually, the detailed mapping of the structure 
requires using laser vibrometry and capturing the signals on the plate 
surface. The CS-based approach requires using the network comprised of 
two transducers attached at the ends of the propagation path. Moreover, 
the proposed procedure does not demand extensive signal processing: 
the only parameter extracted from captured signals is the time of flight. 
The last advantage of the novel method is the lack of assumption about 
the constant plate thickness. The assumption that the non-uniform 
thickness can be approximated by the averaged thickness is not 
applied here. 

Despite the above advantages, the possible drawbacks of the CS- 
based method must be mentioned here. First of all, the proposed 
method requires a dictionary matrix containing the information about 
determined parameter dependent on plate thickness. In this case wave 
velocity is considered, which can be determined using dispersion re
lations. However, usually, the experimental measurements are affected 
by some inaccuracies, which in turn influence the reconstruction of 
thickness distribution. The possible solution would be the experimen
tally determined dictionary matrix but the measurements made on 
plates with various thicknesses are not always possible. Thus, the ac
curacy of the developed approach based on an analytically determined 
matrix and experimental measurements will be tested in the next section 
(see Section 5.4). 

The next limitation is the fact that the thickness distribution is 
investigated only alongside the propagation path between actuator and 
sensor. If the plate has an irregular surface cause i.e. by general degra
dation, the thickness reconstruction obtained using one pair actuator- 
sensor should be considered only as rough information. The detailed 
mapping probably would demand a more extensive transducers network 
(but still the number of processed signals would be smaller than in the 
case of scanning by laser). 

The correctness of the proposed CS-based approach will be analyzed 
numerically and experimentally. The results presented in the further 
part of the paper faithfully demonstrate both advantages and disad
vantages mentioned above. 

4. Materials and methods 

4.1. Numerical simulation 

Numerical simulations of guided wave propagation in the stepped 
plate were conducted in the commercial FEM-based program Abaqus. 
The numerical models were developed using eight-node brick finite el
ements with reduced integration (C3D8R). The size of the elements was 
adjusted based on the mesh convergence study. The dimensions of the 
elements were the same and were equal to 1 mm × 1 mm. The transient 
wave propagation problem was solved with the integration time step 
equal to 10− 7 s. The excitation was applied as a concentrated force in the 
middle at the edge of the plate. The wave excitation performance was 
conducted by applying a five-cycle sine function modulated by the 
Hanning window. The plate material was elastic and isotropic. Both, 
material parameters and the employed frequency range were set based 
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on the experimental data. The numerical simulations and experimental 
tests were conducted for three cases described in the next section. 

4.2. Experimental models 

Experimental tests were conducted for three aluminum plates vary
ing in shape but with the same material parameters (elastic modulus E =
70 GPa, density ρ = 2700 kg/m3, Poisson’s ratio v = 0.33). The geometry 
of the tapered plates is presented in Fig. 3. As we can see, the thickness 
distribution of the plates is exactly the same (the half of the plate has 8 
mm, and the second half has 4 mm) but their shapes are different. The 
length of the plates was 400 mm, while the was 200 mm. 

4.3. Experimental procedure 

In the experimental tests, guided waves were propagated along with 
the tapered plates. Guided waves were excited and registered by using 
the oscilloscope, amplifier function generator connected with rectan
gular transducers attached by glue in the middle points at both ends of 
each plate (Fig. 4). The excitation was in the form of ten cycle sine 
modulated by the Hanning window. The carrier frequency was equal 
from 50 kHz to 150 kHz with a step of 10 kHz. In total, 16 carriers were 
used. 

5. Results 

5.1. Numerical results – The influence of thickness variability on wave 
velocity and packet shape 

In the first step, the results for plates #1, #2 and #3 (see Fig. 3) for 
various excitation frequencies (50, 100 and 150 kHz) were collected and 
compared in Fig. 5. In the left column, time-domain signals registered at 

the plate end after excitation at the opposite end are presented. In each 
case, the initial part of the signal containing the incident wave has been 
highlighted by a grey color. Regardless of the various geometries of all 
three plate models, the time course of the initial part of the signal is 
exactly the same, which stays in agreement with derivations presented 
in Section 2.2. In the case of higher frequencies 100 and 150 kHz (Fig. 5b 
and c, respectively) because of wave overlapping it was impossible to 
extract only incident waves and thus not only the first incident wave was 
highlighted. However, the shape even of the following wave packets 
remained the same. 

In the remaining time range, the signals for particular plates are 
different, but the differences are caused by the presence of reflections 
from edges and waves triggered in the “fault line”. 

The right column contains signal envelopes plotted using the Hilbert 
transform. The first peak of each signal was marked by a black dot to 
indicate that the time of flight of the first arriving waves is also the same. 
As previously, in the case of higher frequencies, namely 100 and 150 
kHz, the times of flight of the two first peaks were indicated in the figure, 
to demonstrate that the equality of average velocities affects both 
antisymmetric and symmetric modes, which could be triggered by the 
irregularities in geometry. Wave velocity of antisymmetric modes is 
used in the further part of the paper to determine the thickness 
distribution. 

5.2. Numerical results – the influence of thickness variability on signal 
amplitude 

The last analyzed parameter is the amplitude. As derived, it is 
strongly dependent on the plate shape. The notably lowest amplitude is 
observed in the case of plate #2. One can say that the more intense 
amplitude decay in the case of plate #2 is associated with the double 
change of the cross-section, which in turn results in wave diffractions, 

Fig. 3. Geometry of tested specimens a) plate #1, b) plate #2 and c) plate #3.  

Fig. 4. Experimental setup: a) configuration of the transducers and b) used instrumentation.  
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mode conversions, and dissipation of a higher amount of energy. 
However, the highest amplitude was registered for plate #3 also with a 
double change of the cross-section. 

To analyze the impact of thickness variability on wave amplitude the 
peak values along the propagation paths representing the distance- 
amplitude relationship were collected in Fig. 6. The signals were regis
tered in each node lying on the propagation path and next the maximum 
value of the envelope of the incident wave was extracted. For compar
ison, the curves determined for plates with a constant thickness of 4 and 
8 mm were additionally depicted. 

When the wave is excited in the plate with a thickness of 4 mm 
(Fig. 6b and d) the curve coincides perfectly with the curve traced for the 
plate with a constant thickness of 4 mm but when the cross-section 
changes and the thickness increases we observe the sudden drop of 
the curve. However, after the amplitude decrease, the curve does not 
coincide with the curve traced for the plate with a constant thickness of 
8 mm and the amplitude is higher than predicted. The situation is 
symmetric for results presented in Fig. 6a and c. After initial concurrence 
of the curves for plate with variable thickness and plate with a constant 
thickness of 8 mm, the amplitude increase is observed when the plate 
thickness decreases. After amplitude amplification, the curve does not 
coincide with the curve for 4 mm and is significantly lower. These 
changes, which were indicated in the figure by dashed vertical lines, can 

be explained by the decreasing or increasing volume in which the wave 
spreads. But the amplitude increase associated with the reduction of 
plate thickness is significantly less observable than the amplitude drop 
caused by thickness increase. The effect of amplitude decreasing and 
increasing is clearly visible in the visualization of wave propagation 
presented in selected time instants (Fig. 7). The visualization was per
formed for plates #1 and 3# for comparison and in the case of plate#1 
additionally, both configurations of actuator and sensor were 
considered. 

The first snapshots illustrate wave excitation (t = 0.0035 ms) in all 
three cases. In the second snapshot, we can see the wave interaction with 
the fault line. Because of differences in wave propagation velocity and in 
plate geometry, the visualizations were performed for different time 
instants in this case. To observe the differences in wave amplitude, we 
used the cut view and zoomed the fault line region. In the first and third 
case (Fig. 7a, t = 0.105 ms and Fig. 7c, t = 0.06 ms) we can observe wave 
propagation from the thinner part to the thicker part, which is associated 
with an amplitude decrease visible in visualization. The thinner the 
plate is more susceptible to deformation and if we assume that propa
gating wave is characterized by a certain amount of energy transferred 
from point to point, one can conclude that the deformations caused by 
wave motion should be smaller in plates with greater thickness. The 
same effect is also observable for the subsequent reflections i.e. in 

Fig. 5. Numerical signals and their envelopes obtained for plates #1, #2 and 3# for frequency of a) 50 kHz, b) 100 kHz, and c) 150 kHz.  
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Fig. 7a, t = 0.115 ms. 
The opposite situation takes place in cases presented in Fig. 7b, t =

0.105 ms and Fig. 7c, t = 0.135 ms. Propagation from thicker to thinner 
part is related to amplitude increase but it is less visible than amplitude 
decrease. The explanation might be the disruption of energy transfer 
through the “fault line”. The part of wave energy is reflected from the 
perpendicular surface and propagates back alongside the plate (Fig. 7b, 
t = 0.14 ms). 

Thus, one can conclude that the problem is not straightforward and 
the amplitude change is not linearly dependent on the plate thickness. 
The sequence of amplitude decreasing and increasing caused by thick
ness variability occurring at different distances from the source makes 
the issue of its prediction very complex. 

5.3. Numerical determination of plate thickness distribution 

In the next stage, the possibility of determining plate thickness 
variability using the convex optimization method described in Section 3 
was investigated. To avoid additional inaccuracies, the dictionary ma
trix was created based on numerical results. It contains the velocity re
ciprocals for thickness varying from 1 mm to 20 mm with a step of 1 mm 
and for frequencies from 50 kHz to 150 kHz with a step of 10 kHz. The 
method of tracing the numerical dispersion curves using FFT has been 
described in detail in [26,27]. 

Because the time of flight was independent of the plate shape, the 
vector t was the same in all cases and thus the resulting vector l has also 
the same representation. The numerically obtained thickness distribu
tion is presented in Fig. 8. Vector l contained only two non-zero elements 
corresponding to thicknesses of 4 and 8 mm. Both lengths were equal to 
20 cm, which perfectly fits the geometry of the performed models. 

In Fig. 9 the thickness distributions for various formulations of dic
tionary matrix have been collected. The solutions in Fig. 7a and b have 
been obtained based on the limited number of measurements, while the 
dictionary matrix was not modified. In the first step (Fig. 9a) the mea
surements were made for frequencies from 50 kHz to 150 kHz with a 
step of 20 kHz. Thus, the size of the dictionary matrix and vector t was 

twice smaller than previously. The solution in Fig. 9b has been obtained 
for measurements made only for three frequencies: 50, 100 and 150 kHz. 
According to the obtained solutions, the longest parts of the plates are 
characterized by the thickness of 4 and 7 mm, and 4 and 6 mm, 
respectively. It would be considered a good approximation of the exact 
thickness distribution but in both cases also other elements of vector l 
are non-zero and the solutions are less sparse and more complex than the 
actual plate shape. 

The next two graphs present the solutions obtained for the limited 
number of considered thicknesses in the dictionary matrix. The mea
surements were made for frequency from 50 to 150 kHz with a step of 
10 kHz, but the plate thickness varied from 2 mm to 20 mm with a step 2 
mm (Fig. 9c), or from 4 mm to 20 mm with a step 4 mm (Fig. 9d). The 
vectors were more sparse than previously, but it should be noted that the 
possible solution range was significantly limited. Even though the dis
tribution in Fig. 9d corresponds to the actual model shape, it was 
“forced” by the conditions set for the resulting vector l. 

The obtained results indicate that the reconstruction of the thickness 
distribution of tapered or stepped plates based on wave velocity and 
constrained convex optimization method is possible and it requires the 
proper construction of a dictionary matrix. In the case of a very limited 
number of measurements, the representation of vector l does not 
correspond to the actual plate shape. However, as already mentioned the 
particularly important parameter is the minimal plate thickness, which 
has been predicted with a very high agreement in every case. 

5.4. Experimental results - the influence of thickness variability on wave 
velocity and packet shape 

The experimental comparison presented in Fig. 10 with the FEM 
equivalent in Fig. 5 leads to the following observations. Firstly, the 
equality of the time of flight and the shape of the wave packets repre
senting antisymmetric modes are observable in each case. Also, the time 
of flight of triggered symmetric modes is the same, which proves the 
correctness of the theoretical derivations which states that the time of 
flight and time representation of propagating wave does not depend on 

Fig. 6. Amplitude of propagating incident wave registered at different distances from the source in a) plate #1, b) plate #1 (reversed configuration of actuator and 
sensor), c) plate #2 and d) plate #3. 
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the exact plate shape but only on thickness distribution. Fig. 10 depicts 
the results only for three cases (50, 100 and 150 kHz) but a similar 
observation was made also for other excitation frequencies. 

Secondly, the shapes of symmetric mode registered for 100 kHz are 
not perfectly the same and also the time range within the signals for 
various plates overlap is shorter than in the case of numerical signals. 
However, this may be the result of material and geometric imperfections 
or imperfect sensor attachment which do not occur in numerical models. 

Thirdly, for the same frequencies, significant differences in ampli
tudes are observed. As in the case of numerical studies, the lowest 
amplitude was noted for plate #2 and the highest for plate #3 which 
stays in agreement with numerical results. 

5.5. Experimental determination of plate thickness distribution 

The thickness reconstruction was proceeded by creating the dictio
nary matrix. As mentioned, the matrix can be created using analytical, 
numerical, or experimental data. However, in the case of the experi
mentally determined matrix, the following studies would require the 

measurements conducted on twenty aluminum plates with various 
thicknesses. Therefore, in the first step the dictionary was created based 
on the solution of the dispersion Lamb equation (see Eq. (1) and (2)). 

The experimental velocities usually do not coincide perfectly with 
the analytical curve so to estimate the possible inaccuracies in time of 
flight determination and the value of the parameter ε, the measurements 
were first carried out on plates with a constant thickness of 4 and 8 mm 
(Fig. 11). For comparison, the analytically determined dispersion curves 
were added in the figure. The slight deviations between theoretical and 
analytical results might lead to inaccuracies in plate thickness recon
struction which is the main limitation of the proposed method (see 
Fig. 12). 

The results of the thickness reconstruction based on an analytically 
determined dictionary matrix are presented in Fig. 13. As previously, 
because the times of flights for all plates were the same, the results in the 
form of thickness distribution were also the same. For clarity and to 
avoid duplication, the article contains only one set of results. The 
maximal length corresponds to a thickness of 6 mm (34.17 cm). The 
nonzero lengths were obtained also for thicknesses 4 mm (5.14 cm) and 

Fig. 7. Visualization of wave propagation in plate #1 a) after excitation at the thicker part and) after excitation at the thinner part and c) in the plate #3.  
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5 mm (0.69 cm). The significant length for thickness of 6 mm can be 
explained by the fact that the average thickness of the considered plates 
is equal to 6 mm. The minimum plate thickness (4 mm) has also been 
correctly specified but the corresponding length was underestimated. A 
similar thickness distribution was obtained also for the limited number 
of measurements (Fig. 13a). Fig. 13a and Fig. 13b depict the results for a 
twice and a three times smaller number of measurements, respectively 

(50–150 kHz with a step of 20 kHz or 30 kHz). The thickness recon
struction made only based on three measurements (Fig. 13b) resulted in 
the less sparse vector l. It contains the non-zero lengths for thicknesses 
from 3 to 8 mm, but the lengths corresponding to thicknesses 3, 7, and 8 
are negligible and are shorter than 0.5 cm. On the other hand, the 
possible thickness range was estimated correctly. 

The reduction of the dictionary matrix resulted in the detection of 

Fig. 8. Numerically obtained thickness distribution of stepped plate.  

Fig. 9. Numerically obtained thickness distribution of tapered plate for various formulations of dictionary matrix: a) measurements made for frequencies from 50 to 
150 kHz with a step of 20 kHz, b) measurements made for frequencies from 50 to 150 kHz with a step of 50 kHz, c) measurements made for a plate thickness from 2 
mm to 20 with a step of 2 mm and d) measurements made for a plate thickness from 4 mm to 20 with a step of 4 mm. 
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Fig. 10. Experimental signals and their envelopes obtained for plates #1, #2, and 3# for frequency of a) 50 kHz, b) 100 kHz, and c) 150 kHz.  

Fig. 11. Experimentally determined group velocities in plates with constant and variable thickness compared with theoretical dispersion curves.  
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two major thicknesses. Fig. 13c presents the vector l determined using 
an analytical dictionary matrix built for plate thickness varied from 2 
mm to 20 mm with a step 2 mm. As in the case of numerical results 
presented in the previous section the distribution in Fig. 13d reflects best 
the actual model shape but the dictionary matrix was built only for five 
thicknesses (4, 8, 12, 16 and 20 mm) and the sparse representation of 
vector l is partly caused by the matrix form. 

One can say that in any case, regardless of the size of the dictionary 

matrix or the number of measurements, the exact thickness distribution 
was not obtained based on experimental data. However, it must be noted 
that the inaccuracies in plate thickness reconstruction were mainly 
caused by the differences between the experimentally determined ve
locities and analytical velocities, which were used to build the dictio
nary matrix (Fig. 11). The influence of the discrepancies between 
experimental and theoretical results is demonstrated in Fig. 14 which 
presents the thickness distribution obtained by using experimental 

Fig. 12. Experimentally obtained thickness distribution of stepped plate.  

Fig. 13. Experimentally obtained thickness distribution of tapered plate for various formulations of dictionary matrix: a) measurements made for frequencies from 
50 to 150 kHz with a step of 20 kHz, b) measurements made for frequencies from 50 to 150 kHz with a step of 50 kHz, c) measurements made for a plate thickness 
from 2 mm to 20 with a step of 2 mm and d) measurements made for a plate thickness from 4 mm to 20 with a step of 4 mm. 
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measurements but to do this, the dictionary matrix was modified. The 
theoretically determined reciprocals of velocities for plates with a con
stant thickness of 4 and 8 mm were replaced with experimental results. 
For such a case, the plate thickness distribution was determined 
perfectly. 

This analysis unambiguously proved that the proposed approach is 
correct and efficient but the results strongly depend on the dictionary 
matrix (its size and the kind of data used to build it). 

6. Discussion and conclusions 

In this study, the inherent dispersive properties of guided waves were 
used to propose a novel approach for plate thickness distribution 
determination. The analysis of the possibility of using a compressed 
sensing approach in thickness variability assessment was proceeded by 
analytical analysis resulting in important conclusions. 

First of all, it was proved that wave velocity as well as the time course 
of the incident wave propagating alongside the plate with variable 
thickness do not depend on the exact shape of this plate, but only on the 
thickness distribution. On the other hand the other parameter – ampli
tude – strongly depends on the plate shape and plates with exactly the 
same thickness distribution may be characterized by significantly 
different wave amplitude. These findings are crucial in the context of the 
further development of diagnostics methods aimed at i.e. corrosion 
degradation assessment. Based on the obtained results we can notice 
that wave propagates with the same velocity and has the same shape in 
the two specimens characterized by the same thickness distribution and 
thus, the same degradation level and mass loss. These parameters may 
be used in the assessment of total thickness reduction or thickness dis
tribution but they cannot be used for the reconstruction of the exact 
plate shape. The dependency of wave velocity and thickness distribution 
was used to propose a novel approach based on constrained convex 
optimization to determine the plate thickness variability. Both, numer
ical and experimental results unambiguously proved that the convex- 
based method allows, among others, to estimate the minimal thickness 
of the plate, which is particularly important in the context of structural 
strength and load capacity. However, because of the insensitivity of 
wave velocity on plate shape, it is impossible to indicate where exactly 
the cross-section with minimal thickness is localized. 

On the other hand, the third considered parameter i.e. amplitude 
demonstrated high sensitivity to plate shape and thus we can conclude 
that the potential damage indexed dedicated to e.g. corrosion 

assessment should not be based solely on the amplitude variability, 
especially in the case of non-constant monitoring. In the future 
perspective, the exact plate shape reconstruction the advantage of both, 
amplitude, velocity or wave shape should be taken into account. 

Ethical statement 

Author states that the research was conducted according to ethical 
standards. 

CRediT authorship contribution statement 

Beata Zima: Conceptualization, Methodology, Software, Validation, 
Formal analysis, Investigation, Writing – original draft, Writing – review 
& editing, Visualization, Supervision, Project administration, Funding 
acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The author greatly acknowledges the support of the Foundation for 
Polish Science (FNP). The financial support of these studies from Gdańsk 
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