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Abstract: As a result of the rapid advancement of mobile and internet technology, a plethora of new
mobile security risks has recently emerged. Many techniques have been developed to address the
risks associated with Android malware. The most extensively used method for identifying Android
malware is signature-based detection. The drawback of this method, however, is that it is unable
to detect unknown malware. As a consequence of this problem, machine learning (ML) methods
for detecting and classifying malware applications were developed. The goal of conventional ML
approaches is to improve classification accuracy. However, owing to imbalanced real-world datasets,
the traditional classification algorithms perform poorly in detecting malicious apps. As a result, in
this study, we developed a meta-learning approach based on the forest penalizing attribute (FPA)
classification algorithm for detecting malware applications. In other words, with this research, we
investigated how to improve Android malware detection by applying empirical analysis of FPA and
its enhanced variants (Cas_FPA and RoF_FPA). The proposed FPA and its enhanced variants were
tested using the Malgenome and Drebin Android malware datasets, which contain features gathered
from both static and dynamic Android malware analysis. Furthermore, the findings obtained using
the proposed technique were compared with baseline classifiers and existing malware detection
methods to validate their effectiveness in detecting malware application families. Based on the
findings, FPA outperforms the baseline classifiers and existing ML-based Android malware detection
models in dealing with the unbalanced family categorization of Android malware apps, with an
accuracy of 98.94% and an area under curve (AUC) value of 0.999. Hence, further development and
deployment of FPA-based meta-learners for Android malware detection and other cybersecurity
threats is recommended.

Keywords: android; malware detection; machine learning; meta-learner

1. Introduction

The emergence and rapid development of the internet and its technologies has led to
a significant shift of human daily activities from conventional to automated or internet-
based infrastructure or solutions [1,2]. In recent years, practically every member of society
has used the internet in their daily activities, whether for social connection, information
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gathering, health-related activities, or learning experiences [3,4]. The surge in internet
usage has fuelled the expansion and popularity of mobile devices such as smartphones and
tablets, as well as the Android operating system (OS), which is commonly found on such
devices. The Android operating system, in particular, has emerged as the leading mobile
OS, with a large global market value and penetration. More than a billion Android devices
have been acquired, with Google Play alone responsible for an estimated 65 billion mobile
software program downloads [5]. As a result, Android’s growing popularity and usage, as
well as the emergence of third-party app stores, have made it vulnerable to a wide range of
malware [6].

Malware is a type of malicious software that is designed to execute damaging payloads
on target devices, such as computers, cell phones, etc. [5,7]. In other words, malware refers
to any software program that conducts undesired or suspicious activity on target devices [8].
Malware is classified into several categories, including viruses, worms, Trojans, rootkits,
and ransomware. Malware variations are capable of effectively stealing private data,
initiating distributed denial of service (DDoS) assaults, and causing disruption to such
systems or devices. Each of these types of malware has the potential to be detrimental
to mobile devices, which has created difficulty and worry in the field of information
security [9,10].

According to the McAfee Labs Threats Report, the amount of mobile malware is
constantly increasing [3,6,11,12]. In a similar study, Kaspersky [13] discovered more than
five million harmful installation packages, including new Trojan and ransomware variants.
Various strategies, including malware detection, vulnerability detection, and application
reinforcement, have been suggested and implemented as feasible methods for protecting the
Android OS [14–16]. Among the recommended security protection solutions for avoiding
malicious apps, malware detection is one of the most common.

Malware detection methods are primarily classified into two types: signature-based
and anomaly-based methods. To identify malicious behaviour, the signature-based strategy
depends on a set of established features of such threats. Whereas this approach may detect
previously known malware, it cannot detect new or unknown harmful behaviours [17–19].
In other words, the signature-based malware detection approach is incapable of detecting
zero-day threats [20,21]. In contrast, the anomaly-based approach seeks to identify ma-
licious network behaviour by continuously detecting any departures from known usual
behaviour. Although anomaly-based approaches do not require much malware information,
they are more successful at detecting previously unknown malware. Malware detection
techniques based on machine learning (ML) techniques outperform classical (i.e., statistical
and knowledge-based) solutions [15,22–24].

According to several studies, security experts and researchers are now focused on
ML solutions for malware detection. The extraction of features from both malicious and
benign Android applications is required for the deployment of ML methods for malware
detection, and the resulting dataset is then utilized to train ML methods and produce
malware detection models. Static and dynamic malware analyses are used to extract the
features.

Static malware analysis examines the code of an Android application without execut-
ing it to find malicious patterns [9]. It is quite efficient at spotting malicious applications.
The disadvantage of this approach is that it does not work against obfuscation tactics [3].
Dynamic malware analysis evaluates the characteristics of the application while it is op-
erating in a simulated environment, such as a sandbox. This approach is effective, but it
requires more resources and time, and it does not allow for the exploration of all execu-
tion routes. Using ML approaches and combining both of these strategies yields superior
outcomes [11,12].

Nonetheless, while generating ML-based Android malware models, it is crucial to
employ clean and well-defined datasets because the effectiveness of the ML model is
heavily dependent on the quality of the dataset [25,26]. In particular, the distribution of
class labels in a dataset is crucial for creating effective ML models. In real-world situations,
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the distribution of class labels is uneven and, in many cases, extremely skewed. This innate
tendency is known as the class imbalance problem [27,28].

The class imbalance problem occurs when one of the class labels in a dataset has a
large number of examples (majority class), whereas the other class has a small number
of instances (minority class) [29]. Insufficiently balanced class labels in a dataset make
ML model classification very complicated and unreliable [27–29]. Because there are more
instances of benign applications than malicious applications, Android malware detection is
considered to have a class imbalance problem [3,16,20].

In this research work, adequate attention is given to the inherent imbalanced class
labels while categorizing Android malware with high detection performance. Specifically,
forest penalizing attributes (FPA) and its enhanced novel meta-learner variants are deployed
for the detection of Android malware.

FPA builds extremely efficient decision trees by using the power of all attributes in
a given dataset, using a weight assignment and weight increment approach. Specifically,
FPA is a decision forest technique that constructs a series of highly accurate decision trees
by using the strength of all attributes available in a dataset, as opposed to tree-based
classifiers, which employ only a selection of non-class attributes. Simultaneously, to foster
significant variety, FPA penalizes attributes that contributed to the most recent tree to
construct subsequent trees.

In addition, enhanced variants of FPA based on cascade generalization and rotation
forest meta-learners are proposed. These meta-learners are proposed to amplify the detec-
tion performance of FPA to generate a robust and generalizable Android malware detection
model (Cas_FPA and RoF_FPA). In addition, the synthetic minority oversampling tech-
nique (SMOTE) is used as a data sampling method to alleviate the class imbalance problem
in Android malware datasets.

The main objective of this research is to develop sophisticated ML-based (FPA and its
variants) Android malware models in the presence of class imbalance problems in Android
malware detection.

The main contributions of this research work are summarized as follows:

1. A detailed empirical analysis of the performance of FPA on balanced and imbalanced
Android malware detection datasets;

2. The development of enhanced variants of FPA based on cascade generalization and
rotation forest meta-learners;

3. An empirical evaluation and comparison of FPA and its enhanced variants with
existing Android malware detection methods.

Furthermore, with this research work, we seek to provide answers to the following
research questions (RQs):

1. How effective is the FPA algorithm in comparison to baseline classifiers in Android
malware detection?

2. How effective are the enhanced variants of FPA (Cas_FPA and RoF_FPA) in Android
malware detection?

3. How well do the proposed FPA and its variants perform as compared to current
state-of-the-art methods in Android malware detection?

The remainder of the paper is organized as follows. An extensive review of existing
Android malware detection models is presented in Section 2. Section 3 outlines the experi-
mental methodology and elaborates on the proposed methods. Section 4 gives details on
the experimental results, and Section 5 concludes the research.

2. Related Works

In this section, we examine and analyze current Android malware detection solutions
built using various ML approaches.

Malware detection in Android devices and applications using ML algorithms has been
extensively investigated in the literature. Many previous efforts in this research domain
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have used baseline classifiers to detect Android malware. Sen, Aysan, and Clark [11]
proposed SafeDroid, which employed a decision tree (DT) based on structural attributes
instead of API calls and permissions, as is customary in conventional methods. The research
findings showed that the technique based on structural traits detected new malware
better than API-based features. However, the research work focused on structural-based
features only. That is, the approach may not be effective for other families of Android
malware. Moreover, SafeDroid likely inherits the instability and myopic (based on the
greedy approach) problems of the DT algorithm [30]. Cen et al. [31] deployed a regularized
logistic regression (RLR) for Android malware detection. From their results, it was observed
that RLR had an F-1 score of 0.95. However, the problem of parameter tuning (penalty
parameter λ) or RLR persists. Moreover, RLR still has issues with the collinearity of
features. Fereidooni et al. [32] proposed Android Malware detection using STatic analySIs
of Applications (ANASTASIA) for Android malware.

ANASTASIA is practically based on selected ML algorithms, such as support vector
machine (SVM), logistic regression (LR), naïve Bayes (NB), random forest (RF), k-nearest
neighbour (kNN), AdaBoost, XGBoost, and deep learning (DL). The suggested method
outperformed some studied existing methods, but the huge overhead runtime cost is a
drawback. The framework of ANASTASIA is complex and consists of ML methods with
diverse computational characteristics, which invariably increase its computational com-
plexity (time and space). In another context, Sahs and Khan [33] deployed an unsupervised
one-class SVM for Android malware detection. The suggested method was used on be-
nign instances only, which makes it somewhat inadequate for imbalanced classification.
Additionally, Rathore et al. [34] proposed the use of clustering techniques for Android
malware detection. Specifically, K-means, agglomerative, BIRCH, Gaussian mixture model,
and DBSCAN clustering methods were utilized to group malware features based on their
characteristics. However, finding or selecting an optimal number of clusters is a problem
for the selected clustering methods.

In addition, some recent research has concentrated on the application of deep learning
(DL) methods, such as long short-term memory (LSTM), deep convoluted neural network
(DCNN), recurrent neural network (RNN), AlexNet, and Resnet [9,17,35–38]. Karbab,
Debbabi, Derhab, and Mouheb [9] developed an automatic Android malware framework
(MalDozer) based on an artificial neural network (ANN). MalDozer was trained to detect
malware patterns based on collections of raw method calls in the assembly code. The
proposed method recorded high-performance detection on the studied malware datasets;
however, its performance in comparison with other existing Android malware methods
were not included in the study. Aslan and Yilmaz [39] successfully hybridized AlexNet
and Resnet-152 for Android malware detection. They integrated two broad pre-trained DL
methods in an optimized manner. The performance of the proposed hybrid method was
reported to be superior to that of its constituents (AlexNet and Resnet-152, as well as some
existing Android malware detection methods). Nisa, Shah, Kanwal, Raza, Khan, Damaše-
vičius, and Blažauskas [35] developed a feature-fusion solution to categorize Android
malware. In particular, they augmented malware images to address any class imbalance
that may exist and thereafter deployed a DCNN to generate a single-feature vector for An-
droid malware classification. However, their findings lack generalizability, as the authors
only focused on image-based malware, which is not the only form of Android malware. Ad-
ditionally, Vinayakumar, Soman, Poornachandran, and Sachin Kumar [36] utilized LSTM,
which is a form of RNN, for Android malware detection. A stacked LSTM with 32 memory
blocks with a unit cell was used to detect applicable Android malware. The performance of
the proposed LSTM with 1000 epochs at a 0.1 learning rate was superior to that of other
studied baseline classifiers. Yadav et al. [40] conducted a comparative study of more than
20 CNN models on Android malware detection. Their reEfficientNet-B4 CNN-based model
was suggested based on image malware representation. Although studies have shown that
DL methods are somewhat gaining attention and, in some cases, perform better than con-
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ventional ML methods, the issue of platform (hardware) dependence and hyperparameter
tuning are some of their key limitations.

Some studies have proposed graph-based solutions for Android malware detection.
Gao et al. [41] proposed Android malware detection (GDroid) based on a graph convolu-
tional network (GCN). Their main approach is to align apps and APIs into a vast multigraph
and transform the initial problem into a node classification problem. Likewise, Ou and
Xu [42] developed a static-sensitive subgraph method that represents Android apps with
high features. Their proposed method extends the function call graph (FCG) by adding
sensitive nodes to it.

Significant attempts have also been made to improve the performance of baseline
classifiers using ensemble techniques. Rahman and Saha [43] proposed StackDroid, a
two-level architecture for detecting malware in Android smartphones that relies on stack-
ing generalization to decrease the misdetection rate. The basic classifiers at the first level
are extremely randomized tree (ERT), RF, multilayer perceptron (MLP), and stochastic
gradient descent (SGD). By stacking the initial predictions of the baseline classifiers, the
second level uses a meta-estimator/predictor (extreme gradient boosting, EGB) as the final
predictor. StackDroid generated extremely encouraging results on the publicly accessi-
ble DREBIN dataset, with up to 97% AUC and 1.67 FPR values, respectively. Similarly,
Yerima and Sezer [5] developed DroidFusion for detecting malware in mobile Android
devices based on the prediction of fusion-selected baseline classifiers utilizing multiple
classifier rank aggregation techniques. The performance was shown to be superior to
that of previously employed stacked generalization techniques in multilevel architecture
systems. In another study, Christiana et al. [44] used a voting ensemble of RF, SVM, and
K-nearest neighbour (KNN) for Android malware detection. Their findings supported the
voting ensemble’s advantage over individual baseline classifiers in terms of sensitivity and
accuracy. Additionally, Gupta and Rani [45] used several weighted voting and stacking
ensemble algorithms for Android malware detection based on SVM, NB, decision table
(DTable), RF, and kNN. Their experimental results showed that the studied baseline and
stacking ensemble models are inferior to weighted voting ensemble approaches in term of
performance. Collectively, a major drawback of these developed ensemble methods is their
high computational cost. Furthermore, although these ensemble methods can guarantee
high performance, they are hard to explain and interpret due to their black-box operation
mechanism. In addition, ensemble methods have been reported to cope with imbalanced
datasets, although ensembles are not viewed as a viable solution to the class imbalance
problem [28].

Likewise, recent research has focused on the class imbalance problem in Android
malware datasets. Oak et al. [46] developed an activity-sequencing model to improve
the performance of Android malware detection systems by removing the influence of an
imbalanced dataset. They used a bidirectional encoder representation from transformers
(BERT) to learn the sequence of dynamic actions on a highly skewed dataset of android
malware. The technique was found to be successful in managing highly unbalanced
android malware datasets, with a 0.919 F1 score Also, Xu et al. [47] developed a fuzzy–
synthetic minority oversampling strategy to address imbalanced datasets in Android
malware detection. The authors presented cost-sensitive forest (CS-Forest) as a method
to overcome the data imbalance problem in android malware detection The experimental
results indicated that CS-Forest was superior to similar systems without cost-sensitive
methodologies and outperformed SMOTE and borderline SMOTE techniques. However,
a limitation of CS-Forest is the allocation of misclassification cost (performed manually)
and representation of the cost matrix. In another study, to address the class imbalance
problem in Android malware detection, Dehkordy and Rasoolzadegan [48] successfully
hybridized undersampling with SMOTE. ML methods such as KNN, SVM, and Iterative
Dichotomiser 3 (ID3) were deployed on the balanced dataset in this study. The proposed
technique yielded an encouraging detection result, with detection accuracy as high as 97%.
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Summarily, as shown in Table 1, several solutions have been proposed, from simple
baseline classifiers to sophisticated solutions, such as cost-sensitive learning and DL meth-
ods. However, the development of better approaches for Android malware detection is
ongoing, as novel methods are required to deal with the dynamism of Android malware.
Additionally, the preceding reviews have shown that class imbalance is another issue that
affects the performance of Android malware detection models. As a solution, we propose a
decision forests algorithm known as forest penalizing attributes (FPA) and its enhanced
meta-learner variations (Cas_FPA and RoF_FPA) for Android malware detection. Fur-
thermore, SMOTE data sampling is incorporated to alleviate the inherent class imbalance
problem that may be present in the Android malware datasets.

Table 1. Summary of key-related studies.

References Dataset Technique Class Imbalance Limitations

Sen, Aysan and Clark [11] Drebin and Malgenome SafeDroid: decision tree
(DT) Not applicable Static Features only

Cen, Gates, Si and Li [31] Market Dataset

probabilistic
discriminative model
(regularized logistic

regression)

Not applicable Parameter Tuning and
Collinearity Issue

Fereidooni, Conti, Yao and
Sperduti [32] Drebin and Malgenome

SVM, LR, NB, RF, kNN,
AdaBoost, XGBoost, and

deep learning (DL
Not applicable High over-head runtime

cost

Sahs and Khan [33] Private Dataset One-SVM Not applicable
Inadequate for class

imbalance classification
tasks

Rathore, Sahay, Chaturvedi
and Sewak [34] Drebin and Malgenome Clustering techniques Not applicable The optimum number of

clusters issue

Karbab, Debbabi, Derhab
and Mouheb [9] Drebin and Malgenome MalDozer: ANN Not applicable Not stated

Aslan and Yilmaz [39]
Malimg,

MicrosoftBig2015 and
Malevis

Hybrid AlexNet and
Resnet-152 Not applicable Suitable for image-based

malware only

Nisa, Shah, Kanwal, Raza,
Khan, Damaševičius and

Blažauskas [35]
Malimg Feature fusion based on

DCNN Data augmentation Suitable for image-based
malware only

Vinayakumar, Soman,
Poornachandran and Sachin

Kumar [36]
Not Stated LSTM Not applicable Platform Dependence and

parameter tuning

Yadav, Menon, Ravi,
Vishvanathan and Pham [40] R2-D2 CNN Not applicable Platform Dependence and

parameter tuning

Gao, Cheng and Zhang [41] AMD, Drebin and
Malgenome

GDroid: graph
convolution network Not applicable Suitable for image-based

malware only

Ou and Xu [42] Market Dataset Sensitive function call
graph (SFCG) Not applicable

Continuous configuration
to generate complete

sensitive APIs

Rahman and Saha [43] Drebin
StackDroid: stacking

ensemble based on ERT,
RF, MLP, and SGD

Not applicable High computational cost

Yerima and Sezer [5] Drebin, Malgenome,
and McAfee

DroidFusion: multilevel
weight ranking-based

approach
Not applicable High computational cost

Christiana, Gyunka and
Oluwatobi [44] Private Dataset Voting ensemble based

on RF, SVM, and kNN Not applicable High computational cost
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Table 1. Cont.

References Dataset Technique Class Imbalance Limitations

Gupta and Rani [45] Windows OS Dataset

Stacking and voting
ensemble based on SVM,

NB, decision table
(DTable), RF, and kNN

Not applicable High computational cost

Oak, Du, Yan, Takawale and
Amit [46] Wildfire Dataset BERT Sequence modeling Only applicable to

sequence datasets

Xu, Wu, Zheng, Niu and
Yang [47] UNB ISCX CS-Forest Fuzzy–synthetic minority

oversampling strategy

Allocation of
misclassification cost
(done manually) and
representation of cost

matrix

Dehkordy and
Rasoolzadegan [48] AMD and Drebin ID3, kNN, and SVM Hybrid Undersampling and

SMOTE
Parameter tuning of kNN

and SVM

3. Methodology

In this section, we describe the research approach that was used in this study, specifi-
cally detailing the proposed FPA and its variants. Additionally, the performance evaluation
metrics and the experimental procedure for the Android malware datasets are illustrated.

3.1. Forest Penalizing Attribute (FPA) Algorithm

The forest penalizing attribute (FPA) algorithm, as defined by Adnan and Islam [49],
fosters significant variety by taking weight-related concepts into consideration, which
include but are not limited to weight assignment strategy and weight increment strategy.
FPA is a strategy that typically constructs a collection of highly accurate decision trees by
using the strength found in all non-class characteristics accessible in the supplied dataset.
Algorithmically, FPA changes the weights of features that occur in the most recent tree at
random within a weight range (WR) set as:

WRθ =

{
[0.0000, e−1/θ], θ= 1

[e−1/θ− 1 + δ, e−1/θ], θ> 1
(1)

where θ denotes the feature level, and δ enforces non-overlapping of WR for different
levels. In light of resolving the adverse influence of maintaining weights that are missing
in the latest tree, FPA introduces a general increase in weights of the feature that has not
been evaluated in the succeeding trees. The reason for this is that a lower-level feature
may impact more logic rules than a higher-level feature. Consequently, to uncover a varied
collection of logic rules, features checked at lower levels are meant to be avoided more
carefully in a prospective tree than those assessed at higher levels. Additionally, to enhance
the likelihood of having various weights among features in the same level, FPA chooses an
attribute’s weight at random from the weight range assigned to the attribute’s level.

In comparison to the random forest (RF), random subspace (RS), and extremely ran-
domized trees (ERT), FPA aims to ensure that high-performing attributes/features/nodes
are selected or maintained on the ensuing tree. RF, RS, and ERT are primarily based on the
random feature weight mechanism that randomly generates and assigns weights, which
often leads to a mismatch in the weights of attributes. Consequently, there is no guarantee
that high-performing attributes/features/nodes will be regularly selected or maintained.
However, FPA introduces an exponent (known as p value) to the weight values to enhance
the impact of the weights [50]. Additionally, unlike RS and ERT, FPA does not deploy
subspacing of feature sets, which often leads to irregular performances for low- and high-
dimensional datasets. Ultimately, FPA is more suitable for ML processes. To the best of our
knowledge, FPA has not been used in the context of Android malware detection.
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3.2. Meta-Learners
3.2.1. Cascade Generalization

Cascade generalization is a fast method that works at both the base and meta levels. A
meta-level classifier trains a model directly from the projections of base-level classifiers in
this stage to evaluate the eventual ensemble result [51]. The predictions of the base-level
classifier (in this case, FPA) are used to expand the dimensionality of the input space in
cascade generalization. This is achieved by attaching the output of FPA to each training
sample as a new function. The corollary of this is that the initial input features are used
by FPA and meta-level classifiers, with the meta-level classifiers having access to extra
characteristics (predictions from the FPA classifier) [51]. The pseudocode for the Cas_FPA
approach is shown in Algorithm 1.

Algorithm 1: Cascade Generalization based Forest Penalizing Attributes (Cas_FPA).

Input: The training set, S = {xi , yi}, i = 1 . . . m, yi ∈ Y, Y = {c1, c2, . . . , ck }, ck , is the class label;
The number of Iterations, I = 100;
U:= Initial unlabelled instances
L:= Initial labelled instances
A:= Acceptance Threshold
Mi:= Instance with Most Confident Prediction
Base Learner B:= FPA
1 Initializing weights distribution of D1(i) = 1/m
2 Train FPA as base learner B
3 For i = 1 to I
4 For each iteration, deploy FPA to identify instances with MCP
5 Remove Mi from U and append to Y
6 Retrain FPA as B on new L
Output: Predicted class label

3.2.2. Rotation Forest

The rotation forest (RoF) meta-learner uses feature extraction to construct classifier
models. By randomly partitioning the feature set into N subsets, RF generates training
data for a baseline learner, and principal component analysis (PCA) is used for each of
the produced subsets [52,53]. All primary components are preserved to maintain the
variability in the data. As a result, N axis rotations occur to provide new features for the
baseline learner (in this case, FPA). The rotation’s essence is to allow for contemporaneous
independent accuracy and variety within the ensemble. FPA’s diversity is achieved by
feature extraction. In Algorithm 2, the proposed RoF_FPA algorithm is provided on the
premise that X is the training dataset, Y is the class label, and F is the feature sets.

Algorithm 2: Rotation Forest-based Forest Penalizing Attribute (RoF_FPA) Algorithm.

Input: The training set, X = {xi , yi}, i = 1 . . . m, yi ∈ Y, Y = {c1, c2, . . . , ck }, ck , is the class label;
Baseline Learner: FPA

1. Choose a value for K that is a factor of n; let F be randomly divided into K parts of the distinct subsets;
each subset must contain N = n/k number of features.

2. Select the corresponding columns of attributes in the subset, Ti,j, from the training dataset, X; then, form
a new matrix, Xi,j. Extract a bootstrap subset of objects 3/4 of X to make a new training dataset, X′i,j

3. Use Matrix X′i,j as feature transform to produce the coefficient in the matrix, Pi,j, in which the jth column
coefficient is the characteristic component, jth.

4. Construct a sparse rotation matrix, Si using the coefficient obtained in the matrix, Pi,j.

Output: classifier Ti of di,j
(
XSf

i
)

to determine x belongs to the class yi .
Then, calculate class confidence:

αj(x) = 1
L

L
∑

i=1
di,j
(
XSf

i
)

Assign the category with the largest αj(x) value to x.
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3.3. Experimental Framework

In this section, we review the experimental procedure that was used in this study
(Figure 1). The procedure was designed to experimentally evaluate and validate the
effectiveness of FPA and its enhanced variants for detecting Android malware. Specifically,
two scenarios were evaluated and explored, and the resultant Android detection model
performances were compared in a non-biased and consistent manner.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 25 
 

(WEKA) machine learning library [61] and R programming language [62] were used for 
the experimentation on an Intel(R) Core™ machine equipped with i7-6700, running at a 
speed of 3.4 GHz CPU with 16 GB RAM. 

 
Figure 1. Experimental Framework. 

3.4. Android Malware Datasets 
Two Android malware datasets (Drebin and Malgenome) were used in the experi-

mentation phase of this study. These datasets are publicly accessible and are often used 
in contemporary Android malware studies [9,63–66]. 

The Drebin malware dataset, which was collected between August 2010 and October 
2012, is composed of a total of 15,036 samples, of which 5560 are malware and 9476 are 
benign, with 215 distinct features. The 5560 malware instances contain samples from 179 
different malware families [5]. Additionally, Drebin is made up of 53% manifest permis-
sion and 33% API signature, whereas other forms of API call signature (such as intent and 
command signature) comprise 14% of the dataset [67]. Table 2 presents the top 10 families 
of malware present in the Drebin dataset. 

  

Figure 1. Experimental Framework.

Scenario 1: First, FPA and selected ML algorithms with varying computational char-
acteristics were specifically applied to the original Android malware datasets. The result
of this experiment will empirically validate FPA’s performance and efficacy in detecting
Android malware. Furthermore, to resolve the inherent class imbalance in the Android mal-
ware datasets, a data sampling technique was deployed. In other words, data over-sampling
(SMOTE) was employed to resolve the class imbalance in the malware datasets. SMOTE
is a notable data sampling approach used to solve the issue of class imbalance [27,28].
The results of these tests will show the influence of the data sampling approach in FPA in
Android malware detection.

Scenario 2: In this case, FPA and its enhanced variants were applied to the balanced
datasets. The enhanced variants of FPA are the cascade generalization-based FPA (Cas_FPA)
and rotation forest-based FPA (RoF_FPA). The performance of FPA and its variants were
analysed and compared with existing Android malware detection models.

The observed findings and conclusions derived from the experimental results (Scenar-
ios 1 and 2) were utilized to address the research questions listed in Section 1.
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For training and testing models based on the scenarios, the datasets were divided
into test (30%) and train datasets (70%). Thereafter, the training datasets were balanced
using SMOTE and later used to train the experimented models using the 10-fold cross-
validation (CV) technique. The K-fold (where k = 10) CV approach was used for the
development and evaluation of the Android malware detection models. The 10-fold CV
option is based on the ability to create Android malware detection models with a low
impact on the issue of class imbalance [28,54–57]. The training and testing datasets were
randomly generated, with no duplicates or shared values. Eventually, for each studied
dataset, the average of the returned outcomes was utilized as the final assessment criterion.
In addition, each experimental process was repeated 10 times; that is, each experiment
was conducted 100 times to avoid bias [58–60]. The Waikato Environment for Knowledge
Analysis (WEKA) machine learning library [61] and R programming language [62] were
used for the experimentation on an Intel(R) Core™ machine equipped with i7-6700, running
at a speed of 3.4 GHz CPU with 16 GB RAM.

3.4. Android Malware Datasets

Two Android malware datasets (Drebin and Malgenome) were used in the experi-
mentation phase of this study. These datasets are publicly accessible and are often used in
contemporary Android malware studies [9,63–66].

The Drebin malware dataset, which was collected between August 2010 and October
2012, is composed of a total of 15,036 samples, of which 5560 are malware and 9476 are benign,
with 215 distinct features. The 5560 malware instances contain samples from 179 different
malware families [5]. Additionally, Drebin is made up of 53% manifest permission and
33% API signature, whereas other forms of API call signature (such as intent and command
signature) comprise 14% of the dataset [67]. Table 2 presents the top 10 families of malware
present in the Drebin dataset.

Table 2. Top 10 malware families in the Drebin dataset.

Malware Family Number of Instances

Fake Installer 925
DroidKungFu 667

Plankton 625
Opfake 613

Ginmaster 339
BaseBridge 330

Iconosys 152
KMin 147

FaceDoc 132
Geinimi 92

Concerning the Malgenome dataset, it has 3799 samples, of which 1260 are malware
and 2539 are benign. This malware was classified methodically based on factors such as
installation techniques, activation mechanisms, and the type of malicious content conveyed.
According to research, this malware evolves quickly to avoid detection by conventional
mobile antivirus software [68]. Similar to Drebin, Malgenome contains 215 features derived
from 49 different Android malware families [5]. Table 3 presents the top 10 Android
malware families present in the Malgenome dataset.

Extended details on the Drebin and Malgenome Android malware datasets are publicly
available online [5,67,68].

Table 4 illustrates the characteristics of the experimented Drebin and Malgenome
Android malware datasets, and Table 5 presents the prominent feature names and categories
present in both datasets.
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Table 3. Top 10 malware families in the Malgenome dataset.

Malware Family Number of Instances

DroidKungFu3 309
AnserverBot 187
BaseBridge 122

DroidKungFu4 96
Geinimi 69
Pjapps 58
KMin 52

GoldDream 47
DroidDreamLight 46

DroidKungFu3 30

Table 4. Details of Android malware datasets.

Algorithm Number of
Features

Number of
Instances

Number of
Benign

Number of
Malware

Drebin 215 15,036 9476 5560
Malgenome 215 3.799 2539 1260

Table 5. Feature details of malware in Malgenome and Drebin datasets.

Feature Name Feature Category Number of Features

WRITE_SETTINGS
SET_TIME

ADD_VOICEMAIL . . .
Manifest Permission 113

URL ClassLoader
PathClassLoader

. . .
API Calls 73

Remount
Chown Commands 6

Intent.action.BOOT_COMPLETED
Intent.action.TIME_SET

Intent.action.Action_SHUTDOWN
Intents 23

3.5. Performance Evaluation Metrics

In this study, accuracy, F-measure, and area under the curve (AUC) were used to assess
the detection performances of Android malware models. The selection of these assessment
measures was based on current research, which shows widespread and regular use of these
evaluation metrics for Android malware detection.

i. Accuracy measures the overall rate at which the actual labels of all instances are
correctly predicted [69]. It is calculated using Equation (2):

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

ii. F-measure is the weighted average of both the recall (R) and precision (P) metrics.
It emphasizes how good a classifier is at maximizing both the precision and recall
values simultaneously. F-measure can be computed as defined in Equation (3):

Fmeasure =
2× TP

2× TP + FP + FN
(3)

iii. The area under the curve (AUC) plots the FP rate on the X-axis and the TP rate on the
Y-axis. AUC is not susceptible to majority class bias and does not ignore the minority
class during its evaluation.
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4. Results and Discussion

In this section, we present and discuss our results based on the experimental frame-
work as outlined in Section 3.3. Tables 6 and 7 compare the detection performances of
FPA against baseline classifiers (NB, BN, conjunctive rule (CR), decision table (DTable),
alternating decision tree (ADT), and decision stump (DS)) on the original Android mal-
ware datasets. It should be noted that the selection of the baseline classifiers was based
on their diverse computational characteristics and performance as reported in existing
studies. Furthermore, Tables 8 and 9 present the detection performances of FPA against the
baseline classifiers on SMOTE-balanced Android malware datasets. The purpose of this is
to showcase the effect of the data sampling method (SMOTE) on the performance of FPA.
Tables 10 and 11 present analyses of the detection performance of FPA and its enhanced
variants (Cas_FPA and RoF_FPA) on the SMOTE-balanced Android malware datasets.
Lastly, the detection performance of FPA, Cas_FPA, RoF_FPA, Cas_FPA+SMOTE, and
RoF_FPA+SMOTE was compared with existing state-of-the-art Android malware models.
This section also includes some figures to illustrate the significance of the research findings.
The top results are highlighted in bold, whereas the suggested methods are denoted by an
asterisk.

Table 6. Detection performances of FPA and baseline classifiers on the Malgenome dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

NB 92.58 0.926 0.926 0.926 0.926 0.926 0.048
BN 92.73 0.927 0.927 0.927 0.927 0.927 0.046
CR 75.44 0.754 0.754 0.754 0.754 0.754 0.139

DTable 91.81 0.911 0.911 0.911 0.911 0.938 0.066
ADT 95.89 0.991 0.959 0.959 0.959 0.959 0.056
DS 74.65 0.795 0.754 0.813 0.747 0.747 0.177

* FPA 98.94 0.998 0.989 0.989 0.989 0.989 0.016

Table 7. Detection performances of FPA and baseline classifiers on the Drebin dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

NB 82.42 0.824 0.824 0.824 0.824 0.824 0.125
BN 82.78 0.828 0.828 0.828 0.828 0.828 0.124
CR 75.55 0.756 0.758 0.833 0.756 0.756 0.159

DTable 90.2 0.922 0.922 0.924 0.922 0.922 0.077
ADT 93.73 0.981 0.937 0.937 0.937 0.937 0.063
DS 75.31 0.787 0.756 0.823 0.753 0.753 0.169

* FPA 98.13 0.997 0.981 0.981 0.981 0.981 0.025

Table 8. Detection performances of FPA and baseline classifiers on the SMOTE-balanced Malgenome
dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

NB 95.26 0.994 0.953 0.954 0.954 0.953 0.047
BN 94.50 0.994 0.945 0.948 0.945 0.945 0.055
CR 81.42 0.809 0.809 0.857 0.814 0.814 0.185

DTable 93.64 0.986 0.936 0.937 0.936 0.936 0.063
ADT 96.05 0.993 0.960 0.961 0.960 0.960 0.040
DS 78.88 0.796 0.794 0.828 0.800 0.800 0.200

* FPA 98.85 0.999 0.989 0.989 0.989 0.989 0.011
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Table 9. Detection performances of FPA and baseline classifiers on the balanced (SMOTE) Drebin
dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

NB 85.61 0.945 0.945 0.945 0.945 0.856 0.144
BN 85.58 0.942 0.942 0.942 0.942 0.856 0.144
CR 80.10 0.840 0.840 0.840 0.801 0.801 0.199

DTable 92.41 0.976 0.976 0.976 0.976 0.976 0.024
ADT 93.73 0.981 0.937 0.937 0.937 0.937 0.063
DS 79.44 0.787 0.79 0.825 0.794 0.794 0.205

* FPA 98.37 0.997 0.984 0.984 0.984 0.984 0.016

Table 10. Detection performances of FPA, Cas_FPA, and RoF_FPA on the Malgenome dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

* FPA 98.94 0.998 0.989 0.989 0.989 0.989 0.016
* Cas_FPA 99.45 1 0.994 0.994 0.994 0.994 0.008
* RoF_FPA 99.00 0.999 0.990 0.990 0.990 0.990 0.018

Table 11. Detection performances of FPA, Cas_FPA, and RoF_FPA on the Drebin dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

* FPA 98.13 0.997 0.981 0.981 0.981 0.981 0.025
* Cas_FPA 98.83 0.999 0.988 0.988 0.988 0.988 0.016
* RoF_FPA 98.38 0.997 0.984 0.984 0.984 0.984 0.023

4.1. Android Malware Detection Performance Comparision of FPA and Baseline Classifiers

In this section, the Android malware detection performance of FPA is compared with
that of the selected baseline classifiers on original and SMOTE-balanced Malgenome and
Drebin datasets, as depicted in Section 3.3 (Scenario 1).

Table 6 presents the detection performance of FPA and the selected baseline classifiers
on the Malgenome dataset. FPA outperformed the baseline classifiers based on the evalua-
tion metrics that were considered. Specifically, based on detection accuracy values, FPA
had a 98.94% accuracy value, which is +3.15% higher than that of the best-performing base
classifier, ADT, with a 95.89% detection accuracy. Just below ADT, the Bayesian models
(NB and BN) also recorded good detection accuracy values of more than 92% detection
accuracy. The high detection accuracy value achieved by FPA, even on the unbalanced
Malgenome dataset, emphasizes its robustness and efficacy for Android malware detection.
FPA achieved the highest AUC value, at 0.998, followed closely by ADT (0.991). In addition,
FPA achieved a very good balance between precision and recall, recording an F-measure
value of 0.989. This observation further affirms the detection performance consistency of
FPA as compared to other experimented baseline classifiers. Although ADT had a good
F-measure value, it is still inferior to FPA (+3.12%). Considering the misclassification rate,
FPA obtained the lowest score in FPR, with only a 0.016 chance of misclassifying any
instance. This very low FPR shows that FPA is not prone to the misclassification errors
often observed in other base classifiers. It can also be observed that the Bayesian models
(NB and BN) outperformed the rest of the base classifiers in terms of FPR. Figure 2 presents
a graphical representation of the performance comparison.

Similar performance patterns were observed on the Drebin dataset (Table 7), as FPA
recorded superior detection performances based on accuracy (98.13%), AUC (0.997), F-
measure (0.981), and FPR (0.025) values when compared with the baseline classifiers. It
was also observed that the detection performances of the classifiers on the Malgenome
dataset are somewhat better than those on the Drebin dataset. Among the base classifiers,
ADT recorded the highest detection accuracy (93.73%), AUC (0.981), and F-measure (0.937)
values and the lowest FPR (0.063). It can also be observed that DTable closely follows
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the performance of ADT concerning accuracy (90.20%), AUC (0.922), F-measure (0.922),
and FPR (0.077) values. That is, DTable showed a better performance than the Bayesian
algorithms (BN and NB) on the Drebin dataset in contrast to the Malgenome dataset.
Generally, all the algorithms achieved good performance on the original datasets, except
CR and DS, the performances of which were relatively low. Figure 3 shows the Android
malware detection performances of FPA and the baseline classifiers on the Drebin dataset.
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We then proceeded to investigate the performance of FPA and baseline classifiers
on SMOTE-balanced Android malware datasets. The essence of the deployment of the
SMOTE data sampling technique is to remove the inherent class imbalance problem in the
Android malware datasets. Moreover, the preference for SMOTE is based on its usage and
efficacy, as reported in existing studies. Tables 8 and 9 present the experimental results of
FPA and the baseline classifiers on the SMOTE-balanced Malgenome and Drebin datasets,
respectively.

As presented in Table 8, FPA still outperformed the baseline classifiers on all perfor-
mance metrics evaluated. Specifically, FPA had a detection accuracy value of 98.85% and
an FPR as low as 0.011. However, based on evaluation metrics (AUC and F-measure), the
detection performance of the baseline classifiers was comparable to FPA. This observa-
tion can be attributed to the deployment of data sampling (SMOTE) to address the class
imbalance problem. That is, the detection performances of the classifiers evaluated in
the experiment improved as compared to their respective detection performances on the
original Malgenome dataset. In particular, CR (+7.9%) and DS (+5.7%) achieved the greatest
improvement in accuracy values. Additionally, a notable improvement in accuracy was
observed in NB (+2.9%), BN (+1.9%), and DTable (+2.0%). ADT (+0.2%) recorded a slight
improvement in its detection accuracy. Regardless, the detection accuracy performance
of FPA is still superior. Concerning AUC values, DTable (+8.2%) achieved the greatest
improvement, closely followed by NB (+7.34%), CR (+7.29%) and BN (+7.22%). Slight
improvements were noticed in the AUC values of ADT (+0.20%), DS (+0.12%), and FPA
(+0.10). A similar occurrence was observed with F-measure, as CR (+7.29%), DS (+5.31%),
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NB (2.92%), DTable (2.74%), and BN (1.94%) had improved F-measure values. However,
concerning the FPR metric, FPA (−31.25%) achieved the greatest improvement, with a
reduction of 31.25% in FPR value. It should be noted that the lower the FPR value, the
better the detection performance. Similarly, ADT (28.57%), DTable (4.55%), and NB (2.08%)
exhibited a relative reduction in their FPR values. In general, the detection performances of
FPA and the baseline classifiers improved on the SMOTE-balanced Malgenome dataset,
but FPA still achieved the best overall performance. Figure 4 illustrates the Android mal-
ware detection performances of FPA and the baseline classifiers on the SMOTE-balanced
Malgenome dataset.
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Figure 3. Android malware detection performance of FPA and baseline classifiers on the Drebin
dataset.

Furthermore, on the SMOTE-balanced Drebin dataset (Table 9), FPA still achieved the
highest detection performance results in all performance measures considered. A similar
finding to that observed in the experimental results on the SMOTE-balanced Malgenome
dataset was also observed in the SMOTE-balanced Drebin dataset. That is, all classifiers
recorded an improvement in their respective detection performance. As shown in Table 5,
FPA (+0.24%), CR (+6.02%), DS (+5.48%), NB (+3.87%), BN (+3.38%), and DTable (+2.45%)
had improved accuracy values when compared to their respective detection performances
on the original Drebin dataset. Additionally, concerning AUC values, the Bayesian models
(NB (+14%), BN (+14%), CR (+11.11%), and DTable (+5.86%)) each recorded significant
improvement. The analysis based on the F-measure metric showed similar findings. Both
FPA and the base classifiers had improved F-measure values, except those of ADT, for
which results remain unchanged. FPA and DTable had a 36.00% and 68.83% reduction in
FPR values, respectively. Other classifiers (NB, BN, DS, ADT, and CR) also had an increased
FPR value. Figure 5 graphically represents the detection performances of FPA and baseline
classifiers on the SMOTE-balanced Drebin dataset.
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Figure 4. Android malware detection performance of FPA and baseline classifiers on the SMOTE-
balanced Malgenome dataset.
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Figure 5. Android malware detection performance of FPA and baseline classifiers on the SMOTE-
balanced Drebin dataset.

Based on the foregoing experimental results on the Malgenome and Drebin datasets,
the following findings were observed:
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1. FPA recorded a higher performance than the baseline classifiers for Android malware
detection. The baseline classifiers were selected based on their usage and perfor-
mances, as reported in existing studies.

2. The deployment of a data sampling method (in this case, SMOTE) not only alleviated
the class imbalance problem but also improved the detection performances of the FPA
and baseline classifiers.

3. FPA can perform well for Android malware detection with or without the application
of a data sampling method.

These findings authenticate and validate the selection of FPA for Android malware
detection. However, to amplify the FPA detection performances, FPA variants based on
meta-learning (Cas_FPA and RoF_FPA) concepts were developed. Empirical analysis of the
experimental results is presented in Section 4.2.

4.2. Android Malware Detection Performance Comparison of FPA, Cas_FPA and RoF_FPA

In this section, the Android malware detection performance of FPA is compared with
that of its enhanced variants (Cas_FPA and RoF_FPA) on original and SMOTE-balanced
Malgenome and Drebin datasets, as shown in Tables 10–13, respectively. Thereafter, the de-
tection performance of FPA, Cas_FPA, RoF_FPA, Cas_FPA+SMOTE, and RoF_FPA+SMOTE
was compared with that of existing state-of-the-art Android malware detection models
(Tables 14 and 15), as described in Section 3.3 (Scenario 2).

Table 12. Detection performance of FPA, Cas_FPA, and RoF_FPA on the SMOTE-balanced Malgenome
dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

* FPA+SMOTE 98.85 0.999 0.989 0.989 0.989 0.989 0.011
* Cas_FPA+SMOTE 99.42 1 0.994 0.994 0.994 0.994 0.006
* RoF_FPA+SMOTE 99.07 1 0.991 0.991 0.991 0.991 0.009

Table 13. Detection performance of FPA, Cas_FPA, and RoF_FPA on the SMOTE-balanced Drebin
dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

* FPA+SMOTE 98.37 0.997 0.984 0.984 0.984 0.984 0.016
* Cas_FPA+SMOTE 98.94 0.999 0.989 0.990 0.989 0.989 0.011
* RoF_FPA+SMOTE 98.49 0.998 0.985 0.985 0.985 0.985 0.015

Tables 10 and 11 present the detection performances of FPA, Cas_FPA, and RoF_FPA
on the Malgenome and Drebin datasets. On the Malgenome dataset (Table 10), both
Cas_FPA and RoF_FPA recorded superior detection performance over FPA. Specifically,
Cas_FPA achieved a detection accuracy value of 99.45%, an AUC value of 1, an F-measure
value of 0.994, and an FPR value of 0.008. RoF_FPA had a similar performance, with a
detection accuracy value of 99%, an AUC value of 0.999, an F-measure value of 0.990,
and an FPR value of 0.018. Notably, the AUC values of 1 and 0.999 recorded by Cas_FPA
and RoF_FPA, respectively, indicate the effectiveness of the two models (Cas_FPA and
RoF_FPA) in distinguishing Android malware applications from benign applications with
approximately 100% certainty. Additionally, a very low FPR of almost zero recorded by
Cas_FPA (0.008) showed its reliable counteraction towards false Android malware detection.
Furthermore, on the Drebin dataset (Table 11), Cas_FPA and RoF_FPA outperformed FPA in
terms of evaluation metrics. Cas_FPA (98.83%) and RoF_FPA (98.38%) showed a +0.71% and
+0.25% increment, respectively, in detection accuracy value over FPA (98.13%). Concerning
FPR value, significant improvements were observed; Cas_FPA (0.016) and RoF_FPA (0.023)
had a 36% and 8% reduction in FPR, respectively, when compared with FPA (0.025).
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Furthermore, the detection performance of FPA, Cas_FPA, and RoF_FPA on the
SMOTE-balanced Malgenome and Drebin datasets was compared. With this compari-
son, we aimed to ascertain whether the Cas_ FPA and RoF_FPA algorithms can be further
enhanced by deploying the SMOTE data sampling method. Tables 12 and 13 present the de-
tection performances of FPA, Cas_FPA, and RoF_FPA on the SMOTE-balanced Malgenome
and Drebin datasets, respectively.

As presented in Table 12, it can be observed that Cas_FPA and RoF_FPA performed
better than FPA on the SMOTE-balanced Malgenome dataset. In particular, Cas_FPA and
RoF_FPA recorded +0.57% and +0.22% increments in detection accuracy values over FPA.
Additionally, Cas_FPA and RoF_FPA had 45% and 18% reductions, respectively, in FPR
values over FPA. In addition, a similar occurrence was observed on the SMOTE-balanced
Drebin dataset. As shown in Table 13, Cas_FPA and RoF_FPA recorded +0.58% and +0.12%
increments in detection accuracy values and 31.25% and 6.25% reductions, respectively, in
FPR values over FPA.

Based on the analyses presented here, it can be deduced that the enhanced variants
(Cas_FPA and RoF_FPA), especially Cas_FPA, are more effective in detecting Android
malware than FPA. In other words, the meta-learners (cascading generalization and rotation
forest) that were deployed amplified the detection performance of FPA.

For generalizability, the detection performance of FPA, Cas_FPA, RoF_FPA,
Cas_FPA+SMOTE, and RoF_FPA+SMOTE were compared with that of existing state-of-
the-art Android detection models. Tables 14 and 15 display the detection performance
of the proposed methods and existing models on the Malgenome and Drebin datasets,
respectively.

In Table 14, the results of the proposed methods are compared with findings from
Lopez and Cadavid [70]; Yerima, Sezer, McWilliams, and Muttik [71]; Su, Chuah, and
Tan [72] (DT); and Sen, Aysan and Clark [11]. Specifically, Lopez and Cadavid [70] de-
veloped a kNN-based Android malware model with a detection accuracy of 94% and an
F-measure value of 0.940. SAFEDroid, developed by Sen, Aysan, and Clark [11], achieved a
detection accuracy of 98.30% and an FPR value of 0.02. Additionally, the Bayesian-based
Android malware model by Yerima, Sezer, McWilliams, and Muttik [71] had a detection
accuracy of 92.10% and AUC and FPR values of 0.972 and 0.061, respectively. All these
methods were trained and tested using the Malgenome dataset. Clearly, the proposed
models (FPA, Cas_FPA, and RoF_FPA) showed significant improvement over the existing
Android malware detection solutions.

Table 14. Detection performances of proposed methods and existing models on the Malgenome
dataset.

Accuracy AUC F-Measure Precision Recall TPR FPR

* FPA 98.94 0.998 0.989 0.989 0.989 0.989 0.016
* Cas_FPA 99.45 1 0.994 0.994 0.994 0.994 0.008
* RoF_FPA 99.00 0.999 0.990 0.990 0.990 0.990 0.018

* Cas_FPA+SMOTE 99.42 1 0.994 0.994 0.994 0.994 0.006
* RoF_FPA+SMOTE 99.07 1 0.991 0.991 0.991 0.991 0.009

Lopez and Cadavid [70] 94.00 - 0.940 0.950 0.950 - -
Yerima et al. [71] 92.10 0.972 - 0.937 - 0.904 0.061
Su et al. [72] (DT) - - - - - 0.916 -

Su, Chuah and Tan [72] (RF) - - - - - 0.967 -
Sen, Aysan and Clark [11] 98.30 - - - - - 0.020

Furthermore, as presented in Table 15, the proposed methods were compared with
findings from Frenklach, Cohen, Shabtai, and Puzis [73]; Rana, Rahman, and Sung [64];
Tanmoy, Pierazzi, and Subrahmanian [74]; Salah, Shalabi, and Khedr [75]; Rana and
Sung [66]; and Rathore, Sahay, Chaturvedi, and Sewak [34]. These existing Android
malware detection models were trained and tested using the Drebin dataset used in the
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present research. An Android malware detection model-based similarity graph proposed
by Frenklach, Cohen, Shabtai, and Puzis [73] had an F-measure value of 0.869, which is
lower than the F-measure values of the proposed models. Rana, Rahman, and Sung [64]
developed a tree-based model with a detection accuracy of 97.92%. Additionally, Tanmoy,
Pierazzi, and Subrahmanian [74] suggested an ensemble of classification and clustering
(EC2) method with an F-measure value of 0.970. Salah, Shalabi, and Khedr [75] utilized
a feature-selection-based framework for Android malware detection with a detection
accuracy value of 94%. Similarly, the solutions produced by Rana and Sung [66], as well as
Rathore, Sahay, Chaturvedi, and Sewak [34], had detection accuracy values of 97.24% and
97.92%, respectively. Although these existing methods achieved relatively good detection
performances, they were still outperformed by the proposed FPA and its enhanced variants
(Cas_FPA and RoF_FPA).

Table 15. Detection performances of proposed methods and existing models on the Drebin dataset.

Accuracy AUC F-
Measure Precision Recall TPR FPR

* FPA 98.13 0.997 0.981 0.981 0.981 0.981 0.025
* Cas_FPA 98.83 0.999 0.988 0.988 0.988 0.988 0.016
* RoF_FPA 98.38 0.997 0.984 0.984 0.984 0.984 0.023

* Cas_FPA+SMOTE 98.94 0.999 0.989 0.990 0.989 0.989 0.011
* RoF_FPA+SMOTE 98.49 0.998 0.985 0.985 0.985 0.985 0.015
Frenklach et al. [73] - - 0.869 - - 0.939 -

Rana, Rahman and Sung [64] 97.92 - - - - - -
Tanmoy et al. [74] - - 0.970 - - - -

Salah et al. [75] 94.00 - - - - - -
Rana and Sung [66] 97.24 - 0.972 0.976 - 0.969 0.239

Rathore, Sahay, Chaturvedi and Sewak [34] 97.92 - - - 0.976 - -

4.3. Findings Based on Research Questions

In response to the research question raised in the introductory section, the following
conclusions were drawn based on the experiments conducted.

RQ1: How effective is the FPA algorithm in comparison to baseline classifiers in Android
malware detection?

It was observed from the experimental results that FPA produced significantly im-
proved detection performance when compared with the baseline classifiers. This superior
detection performance was observed on both the Malgenome and Drebin datasets.

RQ2: How effective are the enhanced variants of FPA (Cas_FPA and RoF_FPA) in Android
malware detection?

According to the experimental results and analyses, Cas_FPA and RoF_FPA performed
better than FPA alone on both the original and SMOTE-balanced Malgenome and Drebin
datasets. Additionally, it was observed that the deployed data sampling method resolved
the latent class imbalance problem and subsequently improved the detection performances
of the models evaluated, especially FPA, Cas_FPA, and RoF_FPA.

RQ3: How well do the proposed FPA and its variants perform as compared to current
state-of-the-art methods in Android malware detection?

It was gathered from the experimental results that the proposed FPA, Cas_FPA, and
RoF_FPA algorithms, in most cases, had superior detection performance compared to
existing state-of-the-art Android malware detection models.

5. Threats to Validity

Threats to validity encountered throughout the experiment are described in this section.
According to Pan et al. [76], Android malware detection is becoming more relevant, and
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a critical component of every empirical research is analysing and mitigating risks to the
validity of experimental findings.

External validity: External validity is primarily concerned with the capacity to gen-
eralize the experimental investigation. The type and number of datasets used in the
experimentation process may have an impact on the generalizability of the research find-
ings. As such, two prominent and widely used Android malware datasets with varied
numbers of malware families (Malgenome, 49; Drebin, 179) were investigated. These
datasets are publicly available and are regarded as de facto Android malware datasets
for training and testing Android detection models. In addition, we presented a detailed
analysis of the experimentation process, which can aid in replication and validation of our
experimental processes on various Android malware datasets.

Internal validity: Internal validity emphasizes the importance and consistency of
datasets, ML methods, and empirical analysis. To address this issue, prominent ML meth-
ods developed and implemented in existing studies were utilized in this research work. The
ML methods were chosen based on their performance and heterogeneity. Additionally, to
eliminate unintended mistakes in experimental results, the investigated Android malware
models were carefully deployed on the selected malware datasets using the cross-validation
method, repeating each experiment 10 times for completeness. Nonetheless, future research
should consider alternative model evaluation approaches and strategies.

Construct validity: Construct validity is concerned with the selection of performance
measurements used to assess the efficacy of experimental Android malware detection
models. In this research work, accuracy, AUC, F-measure, precision, recall, FPR, and TPR
were utilized. These metrics provided an elaborate and comprehensive detection analysis
of the experimented Android malware detection models. Additionally, the investigated
models for Android malware detection were designed to exclusively identify whether an
app is benign or malicious.

6. Conclusions and Future Work

In this study, forest penalizing attributes (FPA) and its enhanced novel variants
were deployed for the detection of Android malware. Specifically, cascade generalization
(Cas_FPA) and rotation-forest-based FPA (RoF_FPA) were implemented and empirically
evaluated on imbalanced and SMOTE-balanced Android malware detection datasets. Ex-
periments were carried out to investigate the effectiveness and usefulness of the proposed
approaches. Results from empirical evaluation revealed that FPA produced a significantly
improved detection performance when compared with the baseline classifiers, such as
NB, BN, CR, DTable, ADT, and DS, on the original and SMOTE-balanced Malgenome and
Drebin datasets. This observation supports the applicability of FPA for Android malware de-
tection. Additionally, the enhanced variants of FPA (Cas_FAP and RoF_FPA) convincingly
outperformed FPA on original and balanced datasets, demonstrating their effectiveness
in Android malware detection. It is worth noting that the deployment of a data sampling
method (SMOTE) in this research work did not only resolve the latent class imbalance
problem but positively enhanced the detection performance of the proposed models. For
generalizability, the proposed models (FPA, Cas_FPA, RoF_FPA, Cas_FPA+SMOTE, and
RoF_FPA+SMOTE) also outperformed the state-of-the-art models in the existing literature
on the Malgenome and Drebin malware datasets. Therefore, we recommend the proposed
models for use in Android malware detection and the use of the data sampling method for
addressing the class imbalance problem.

In the future, we plan to extend this work by introducing ensemble methods to the
model and by considering hybrid (dynamic and static) features of malware applications.
More real-life datasets should also be considered in future work. The high dimensionality
of Android malware datasets is another issue that needs to be addressed. Specifically, the
combination of data sampling and feature selection methods as solutions to class imbalance
and high-dimensionality problems in Android malware detection will be investigated.
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