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ABSTRACT
We consider the problem of identification of communication
channels with a mix of static and time-varying parameters.
Such scenarios are typical, among others, in underwater
acoustics. In this paper, we further develop adaptive al-
gorithms built on the local basis function (LBF) principle
resulting in excellent performance when identifying time-
varying systems. The main drawback of an LBF algorithm
is its high complexity. The subsequently proposed fast LBF
(fLBF) algorithms, based on the preestimation principle, al-
low a significant reduction in the complexity for recursively
computable basis functions, such as the complex exponen-
tials. We propose a debiased fLBF algorithm which exploits
the fact that only a part of the system parameters are time-
varying. We also propose an adaptive technique to identify
whether a particular tap is static or time-varying.

Index Terms— Identification of time-varying systems,
local basis function approach, underwater acoustic channels

1. INTRODUCTION

There are applications that require accurate estimation of pa-
rameters of time-varying linear systems with only a part of the
parameters being time-varying. Such applications are typical
in underwater acoustics (UWA) and include UWA communi-
cations, navigation, and sonar applications, which deal with
estimation of the UWA channel, often modelled as a time-
varying linear system [1–3]. The UWA channel is charac-
terised by multipath propagation and often is described as a
finite impulse response (FIR) filter, whose parameters vary
with time due to the Doppler effect caused by the moving
transmitter, receiver and/or the sea surface [4]. The Doppler
effect is known to be different for different multipaths [5].

If the transmitter and receiver are static, then multipaths
propagated through the water and not interacting with the
∗Partially supported by the National Science Center under the

agreement UMO-2018/29/B/ST7/00325.
†The work of Y. Zakharov was supported in part by the U.K. EP-

SRC through Grants EP/R003297/1 and EP/V009591/1.

moving sea surface will be almost static, whereas multipaths
reflected from the sea surface will be time-varying. This
scenario is typical for full-duplex (FD) UWA communica-
tions [6, 7]. In FD UWA communications, there is a strong
near-end self-interference (SI) from the transmit to receive
antenna within the same transceiver. To allow the FD oper-
ation, i.e., reliable detection of a weak signal from a far-end
transmitter, the near-end SI channel should be accurately
estimated, the SI signal recovered and subtracted from the
received signal. In this way the SI can be cancelled. The SI
channel may include reflections from the sea surface; even
if the SI sea-surface signal components are of a low power
(tens of decibels lower than the signal components due to the
line-of-sight propagation), they still need to be estimated with
a high precision to achieve a level of SI cancellation required
for the FD operation. Therefore, the channel estimation
should deal with a mix of static and time-varying parame-
ters. A similar problem arises in a continuous-wave sonar,
where instead of traditional pulse transmission, a pseudo-
noise wideband signal is transmitted [8, 9].

In this paper, we will show how the mixed-mode property
of UWA channels can be exploited to improve the identifica-
tion performance.

2. PROBLEM STATEMENT

Many communication channels (terrestrial, underwater) can
be well approximated by a time-varying FIR model of the
form [4, 10]

y(t) =
n∑
i=1

θ∗i (t)u(t− i+ 1) + e(t) = θH(t)ϕ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, y(t) the complex-valued system output (a received sig-
nal in a communication system), ϕ(t) = [u(t), . . . , u(t −
n + 1)]T the regression vector made up of past samples
of the complex-valued (transmitted) signal u(t), θ(t) =
[θ1(t), . . . , θn(t)]T is the vector of channel taps, and e(t)
denotes a measurement noise. The sequence {θi(t)} can be
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interpreted as a time-varying impulse response of the channel
to be estimated.

We will assume that: {u(t)} is a sequence of zero-mean
independent and identically distributed circular random vari-
ables with variance σ2

u, {e(t)} is a zero-mean circular white
noise, independent of {u(t)}, with variance σ2

e , and {θ(t)} is
a sequence independent of {u(t)} and {e(t)}.

The LBF principle is based on the assumption that in a
local analysis interval Tk(t) = [t − k, t + k] of length K =
2k + 1, centered at t, system parameters can be expressed
as linear combinations of a certain number of linearly inde-
pendent complex-valued functions of time f1(j), . . . , fm(j),
j ∈ Ik = [−k, k], further referred to as basis functions. In
this paper, we adopt the complex exponential basis set of the
form (see [10–12] for a physical justification of such a choice)

{f1(j), . . . , fm(j), j ∈ Ik}

=

{
1√
K
eijω1 , . . . ,

1√
K
eijωm , j ∈ Ik

}
, (2)

where i =
√
−1, ω1 = 0, m = 2m0 + 1, and

ω2l = −2πl

K
, ω2l+1 =

2πl

K
, l = 1, . . . ,m0 .

It is straightforward to check that the basis (2) is orthonor-
mal, i.e.,

∑k
j=−k f(j)f

H(j) = Im where f(j) = [f1(j), . . . ,

fm(j)]T and Im denotes the m×m identity matrix. We will
denote f0 = f1(j) = 1/

√
K, j ∈ Ik.

Unlike [13–16], we will assume that only some of the es-
timated parameters θi(t) in (1) vary in the local analysis in-
terval Tk(t), while the remaining parameters are constant.

Denote by S the set indicating, within Ω = {1, . . . , n},
positions of time-invariant taps, and by S̄ = Ω − S the set
of time-varying taps. Furthermore, let nS = card{S}, nS̄ =
card{S̄}, then nS + nS̄ = n, and denote ` = nS +mnS̄ .

In the sequel we will adopt the following mixed-mode
model of local parameter variation within the interval Tk(t):

θi(t+ j) =

{
f0ai1(t) if i ∈ S∑m

l=1 f
∗
l (j)ail(t) if i ∈ S̄

j ∈ Ik, i = 1, . . . , n.

(3)

In agreement with the local estimation paradigm, estima-
tion of parameter trajectories, based on the hypermodel (3),
will be carried out independently for each location of the anal-
ysis interval Tk(t), i.e., it will be performed in the sliding win-
dow manner. Therefore, even though system hyperparameters
(expansion coefficients) ail are assumed to be constant in the
interval [t−k, t+k], their values are allowed to change along
with the position of the analysis window. For this reason they
are written down as functions of t.

The hypermodel (3) can be expressed in a more compact
form

θ(t+ j) = F(j)α(t), j ∈ Ik, (4)

where α(t) = [αT
1 (t), . . . ,αT

n (t)]T is an `-dimensional vec-
tor of hyperparameters,

αi(t) =

{
ai1(t) if i ∈ S

[ai1(t), . . . , aim(t)]T if i ∈ S̄

and F(j) = bl diag{F1(j), . . . ,Fn(j)} denotes the n × `
matrix, where

Fi(j) =

{
f0 if i ∈ S

fH(j) if i ∈ S̄

Using (4), the system model (1) in the local analysis interval
Tk(t) can be written in the form

y(t+ j) = αH(t)ψ(t, j) + e(t+ j), j ∈ Ik, (5)

where ψ(t, j) = FH(j)ϕ(t + j) denotes the generalized re-
gression vector.

3. LBF AND FAST LBF ESTIMATORS

In this section we will assume that the support sets S and S̄
are known. Later, in Section 4, we will propose an adaptive
estimation scheme capable of identifying the support.

The LBF estimator has the form [13]

α̂LBF(t) = arg min
α

k∑
j=−k

|y(t+ j)−αHψ(t, j)|2

θ̂LBF(t) = F0α̂
LBF(t),

(6)

where F0 = F(0).
As shown in [14], under the assumptions made above, the

LBF estimates α̂LBF(t) and θ̂LBF(t) can be approximated by
the fLBF estimates

α̂fLBF(t) = arg min
α

k∑
j=−k

||θ̃(t+ j)− F(j)α||2

=

k∑
j=−k

FH(j)θ̃(t+ j),

θ̂fLBF(t) = F0α̂
fLBF(t),

(7)

where ||x||2 = xHx, and {θ̃(t)} denotes a sequence of prees-
timated system parameters. The fLBF estimates can be ob-
tained in a significantly more computationally efficient way
than the LBF estimates, thus the word ‘fast’.

Fast LBF estimators can be rewritten in a decomposed
form as follows. For i ∈ S, we have

α̂fLBF
i (t) = f0

k∑
j=−k

θ̃i(t+ j),

θ̂fLBF
i (t) = f0α̂

fLBF
i (t) =

1

K

k∑
j=−k

θ̃i(t+ j),

(8)
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and, for i ∈ S̄,

α̂fLBF
i (t) =

k∑
j=−k

θ̃i(t+ j)f(j),

θ̂fLBF
i (t) = fH

0 α̂
fLBF
i (t) =

k∑
j=−k

h(j)θ̃i(t+ j),

(9)

where f0 = f(0) and h(j) = fH
0 f(j), j ∈ Ik, denotes the

impulse response of an FIR filter associated with the LBF es-
timator.

The preestimates, proposed in [17] and further developed
in [14, 18], can be obtained by ‘inverse filtering’ of estimates
yielded by the short memory exponentially weighted least
squares (EWLS) algorithm [19, 20]

θ̂EWLS(t) = arg min
θ

t∑
j=1

λt−j |y(j)− θHϕ(j)|2 (10)

where λ, 0 < λ < 1, is a forgetting factor. The recommended
value of λ is: λ = max{0.9, 1− 2/n} [16].

For large values of t, when the effective width of the ex-
ponential windowM(t) =

∑t
i=1 λ

t−i reaches its steady state
value M∞ = 1/(1− λ), inverse filtering has the form

θ̃(t) =
1

1− λ

[
θ̂EWLS(t)− λθ̂EWLS(t− 1)

]
. (11)

The nonasymptotic version of (11) can be found in [14]. As
shown there, when the sequence {ϕ(t)} is (locally) station-
ary with exponentially decaying autocorrelation function, the
preestimates are approximately unbiased, i.e. E[θ̃(t)] ∼= θ(t)
where the expectation is over {e(t)} and {ϕ(t)}. Under the
assumptions made, the preestimation noise z(t) = θ̃(t)−θ(t)
is approximately white with a high variance.

4. ADAPTIVE TIME-INVARIANCE TEST

A clear advantage of the preestimation approach is that it al-
lows the system dynamics to be ’X-rayed’ prior to its formal
identification. We will use this property to adaptively decide,
at each time instant t, which parameters can be regarded as
time-invariant and which are time-varying.

To assess existence of a trend in the sequence of preesti-
mates (which justifies choosing m > 1), one can use the clas-
sical approach based on counting the number of sign changes
amongst residuals [21]. When the system parameter θi(t) is
constant in the analysis interval Tk(t), the residual noise de-
fined as

εi(t+ j|t) = θ̃i(t+ j)− θ̄i(t), j ∈ Ik, (12)

where

θ̄i(t) =
1

K

k∑
j=−k

θ̃i(t+ j),

is approximately equal to the preestimation noise zi(t) =

θ̃i(t+ j)− θi(t), which is zero-mean and white.
Consider the real part of the residual noise:

εR
i (t+ j|t) = Re{εi(t+ j|t)}.

and denote by qR
i (t) the number of sign changes of εR

i (·|t)
observed in the analysis interval Tk(t). By qI

i(t) we will de-
note the analogous count for εI

i(t+ j|t) = Im{εi(t+ j|t)}.
For a real-valued white noise sequence, the sign change

can be observed on average every second sample. Hence,
when the number of sign changes is smaller than some thresh-
old, one has to assume that the parameter trajectory is not
constant inside the analysis window.

Consider the following null hypothesis:

HR
0 (t): {εR

i (t+ j|t), j ∈ Ik} is a sequence of independent
random variables obeying the condition

P
(
εR
i (t+ j|t) > 0

)
= P

(
εR
i (t+ j|t) ≤ 0

)
, ∀j ∈ Ik,

where P (·) is a probability. Note that this hypothesis is true
when the sequence {εR

i (·|t)} is uncorrelated, zero-mean and
Gaussian, but the requirements are in fact much weaker.

If the null hypothesis is true, qR
i (t) is a discrete random

variable with an “almost binomial” distribution (as remarked
by Geary [21], since the sum of residuals in the interval Tk(t)
is - by construction - zero, the value qR

i (t) = 0 is inadmissi-
ble) characterized by the probability of success 0.5:

P (qR
i (t) = q|HR

0 (t)) =
(K − 1)!

(2K−1 − 1)q!(K − 1− q)!
. (13)

Furthermore, for any q0 ∈ [1,K − 1] it holds that

P (qR
i (t) ≤ q0|HR

0 (t))

=

q0∑
q=1

(K − 1)!

(2K−1 − 1)q!(K − 1− q)!
= η0 . (14)

The sign statistic qR
i (t) can be used to verify the null hypoth-

esis for a given probability of Type I error η0:{
acceptHR

0 (t) if qR
i (t) > q0

rejectHR
0 (t) if qR

i (t) ≤ q0
(15)

The exemplary thresholds evaluated for the significance level
η0 = 0.01 are q0 = 83, 176 and 366 for K = 2k + 1 =
201, 401 and 801, respectively. For η0 = 0.01 and K ∈
[200, 1000], a tight approximation of the threshold is given
by q0 = b0.95k − 14c where b·c denotes the floor function.

The same analysis can be carried out for the imaginary
components of the residuals εI

i(·|t). Combining both infer-
ences, one arrives at the following decision rule, which can
be used to determine whether a given parameter θi(t) should
be regarded as constant or time-varying in the analysis inter-
val Tk(t):{

i(t) ∈ S(t) if qR
i (t) > q0 and qI

i(t) > q0

i(t) ∈ S̄(t) otherwise
(16)
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5. DEBIASING

It was observed that the estimated parameter trajectory, ob-
tained using the fLBF approach, lags behind the true param-
eter trajectory, and that the size of this delay depends on the
forgetting factor λ used in the preestimation stage. This effect
is evidently caused by the estimation delay feature [19] of the
EWLS algorithm used to generate preestimates.

We propose a simple adaptive scheme for minimization
of the time shift between θ̂fLBF(t) and θ(t). The search will
be carried out around ∆, where ∆ = int[λ/1− λ] denotes
the nominal (low-frequency) delay introduced by the EWLS
algorithm [19] (the nominal delay is only an approximation
of the true delay); int[x] denotes the integer closest to x.

Let

εδ(t) = y(t)− [θ̂fLBF(t+ δ)]Hϕ(t) (17)

andD = [∆−δ0,∆+δ0]. Define the exponentially weighted
sum of squares of εδ(t) evaluated recursively for every t and
every δ ∈ D

J(t, δ) = λ0J(t− 1, δ) + |εδ(t)|2, 0 < λ0 < 1 .

The (approximately) debiased fLBF estimates can be ob-
tained using the formula

θ̂dfLBF(t) = θ̂fLBF(t+ d(t)) , (18)

where d(t) = arg minδ∈D J(t, δ).

6. EXPERIMENTAL RESULTS

In the real experiment the true impulse response is not avail-
able. We therefore investigate the SI cancellation (SIC) per-
formance measured using the SIC factor, which shows how
much the signal-to-interference ratio (SIR) at the output of
the SI canceller is reduced compared to the SIR at the input
of the canceller; the methodology of measuring the SIC factor
is described in [6].

The FD experiment was conducted in a lake of depth 8 m.
The distance between the transmitter and receiver, both posi-
tioned at a depth of 4 m, is 7 cm. In the experiment, binary-
shift keying (BPSK) symbols are transmitted with a rate of
1000 symbols/s at the carrier frequency 32 kHz; a root raised
cosine filter with a roll-off factor of 0.2 is used for the pulse
shaping [22]. The received signal after analog-to-digital con-
version is down shifted in frequency, low-pass filtered and
down sampled to the sampling rate 1 kHz. These samples are
applied to the adaptive filter as the desired signal. The same
operation is performed on the analogue signal applied to the
transmit antenna [23]; these samples are used as the regressor
in the adaptive filter.

In the experiment, the self-interference to noise ratio is
60.4 dB and the number of taps is n = 80. The SIC fac-
tor is computed over a 10-s interval after the convergence of

Fig. 1. The performance of the compared algorithms in can-
celling the self-interference in the real UWA FD experiment.

the adaptive filter (see more details on the procedure in [6]).
When applying the EWLS algorithm to the experimental data,
the highest SIC factor is 50.9 dB.

Fig. 1 shows the SIC factor achieved, for different val-
ues of m, by the original state-of-the-art LBF and fLBF algo-
rithms, and by the proposed adaptive dfLBF algorithm with
online parameter mode selection. Since in the real experi-
ment the support set S is unknown and possibly time-varying,
in the first two algorithms all estimated parameters are re-
garded as time-dependent. The design parameters were set to
λ = 0.975, λ0 = 0.98 and δ0 = 30.

The original fLBF algorithm provides a SIC factor of
53.8 dB, 53.9 dB, and 53.8 dB for m = 3, 5, 7, respectively.
The analogous values for the LBF algorithm and the adaptive
dfLBF algorithm are 56.0 dB, 55.8 dB, 55.9 dB and 57.8 dB,
58.1 dB, 58.2 dB, respectively. Note that adaptive selec-
tion of time-varying taps yields performance improvement of
1.8 dB–2.3 dB against the LBF algorithm and 4.0 dB–4.4 dB
against the fLBF algorithm. Finally, when compared against
the EWLS algorithm, the dfLBF algorithm increases the SIC
factor by 6.9 dB–7.3 dB. Thus, we can conclude that the
proposed technique allows significant improvement in the SI
cancellation performance in this lake experiment.

7. CONCLUSION AND RELATION TO PRIOR
WORK

The paper extends results presented in [14] and [6]. To the
best of our knowledge this is the first attempt to apply the lo-
cal basis function approach to identification of systems (chan-
nels) with mixed static and time-varying parameters. Experi-
mental results confirm that the proposed debiased fLBF algo-
rithm with online parameter mode selection yields improve-
ment over the current state-of-the-art.
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