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A B S T R A C T

The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-
native speech. Researchers focused on studying various model architectures, such as Bayesian networks and
deep learning methods, as well as on the analysis of different representations of the speech signal. Despite
significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with
high accuracy (only 60% precision at 40%–80% recall). One of the key problems is the low availability of
mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we
had a generative model that could mimic non-native speech and produce any amount of training data, then
the task of detecting pronunciation errors would be much easier. We present three innovative techniques
based on phoneme-to-phoneme (P2P), text-to-speech (T2S) and speech-to-speech (S2S) conversion to generate
correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve
the accuracy of three machine learning models for detecting pronunciation errors, but also help establish a
new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P
conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We,
on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors.
The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors.
Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The
best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41%
from 0.528 to 0.749 compared to the state-of-the-art approach.
1. Introduction

Language plays a key role in online education, giving people access
to large amounts of information contained in articles, books, and video
lectures. Thanks to spoken language and other forms of communica-
tion, such as a sign-language, people can participate in interactive
discussions with teachers and take part in lively brainstorming with
other people. Unfortunately, education is not available to everybody.
According to the UNESCO report, 40% of the global population do not
have access to education in the language they understand (UNESCO,
2016). ‘If you don’t understand, how can you learn?’ the report says.
English is the leading language on the Internet, representing 25.9%
of the world’s population (Statista, 2021). Regrettably, research by EF
(Education First) (EF-Education-First, 2020) shows a large dispropor-
tion in English proficiency across countries and continents. People from
regions of ‘very low’ language proficiency, such as the Middle East,
are unable to navigate through English-based websites or communicate
with people from an English-speaking country.

∗ Corresponding author at: Amazon Speech Research, Poland.
E-mail address: daniel.korzekwa@gmail.com (D. Korzekwa).

Computer-Assisted Language Learning (CALL) helps to improve the
English language proficiency of people in different regions (Levy and
Stockwell, 2013). CALL relies on computerized self-service tools that
are used by students to practice a language, usually a foreign lan-
guage, also known as a non-native (L2) language. Students can practice
multiple aspects of the language, including grammar, vocabulary, writ-
ing, reading, and speaking. Computer-based tools can also be used to
measure student’s language skills and their learning potential by using
Computerized Dynamic Assessment (C-DA) test (Mehri Kamrood et al.,
2019). CALL can complement traditional language learning provided by
teachers. It also has a chance to make second language learning more
accessible in scenarios where traditional ways of learning languages are
not possible due to the cost of learning or the lack of access to foreign
language teachers.

Computer-Assisted Pronunciation Training (CAPT) is a part of CALL
responsible for learning pronunciation skills. It has been shown to help
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people practice and improve their pronunciation skills (Neri et al.,
2008; Golonka et al., 2014; Tejedor-García et al., 2020). CAPT consists
of two components: an automated pronunciation evaluation compo-
nent (Leung et al., 2019; Zhang et al., 2021; Korzekwa et al., 2021c)
and a feedback component (Ai, 2015). The automated pronunciation
evaluation component is responsible for detecting pronunciation errors
in spoken speech, for example, for detecting words pronounced incor-
rectly by the speaker. The feedback component informs the speaker
about mispronounced words and advises how to pronounce them cor-
rectly. This article is devoted to the topic of automated detection of
pronunciation errors in non-native speech. This area of CAPT can take
advantage of technological advances in machine learning and bring
us closer to creating a fully automated assistant based on artificial
intelligence for language learning.

The research community has long studied the automated detection
of pronunciation errors in non-native speech. Existing work has focused
on various tasks such as detecting mispronounced phonemes (Leung
et al., 2019) and lexical stress errors (Ferrer et al., 2015). Researcher
have given most attention to studying various machine learning models
such as Bayesian networks (Witt and Young, 2000; Li et al., 2011)
and deep learning methods (Leung et al., 2019; Zhang et al., 2021),
as well as analyzing different representations of the speech signal such
as prosodic features (duration, energy and pitch) (Chen and Wang,
2010), and cepstral/spectral features (Ferrer et al., 2015; Shahin et al.,
2016; Leung et al., 2019). Despite significant progress in recent years,
existing CAPT methods detect pronunciation errors with relatively low
accuracy of 60% precision at 40%–80% recall (Leung et al., 2019;
Korzekwa et al., 2021c; Zhang et al., 2021). Highlighting correctly
pronounced words as pronunciation errors by the CAPT tool can demo-
tivate students and lower the confidence in the tool. Likewise, missing
pronunciation errors can slow down the learning process.

One of the main challenges with the existing CAPT methods is poor
availability of mispronounced speech, which is required for the reliable
training of pronunciation error detection models. We propose a refor-
mulation of the problem of pronunciation error detection as a task of
synthetic speech generation. Intuitively, if we had a generative model
that could mimic mispronounced speech and produce any amount of
training data, then the task of detecting pronunciation errors would be
much easier. The probability of pronunciation errors for all the words
in a sentence can then be calculated using the Bayes rule (Bishop,
2006). In this new formulation, we move the complexity to learning
the speech generation process that is well suited to the problem of
limited speech availability (Huybrechts et al., 2021; Shah et al., 2021;
Fazel et al., 2021). The proposed method outperforms the state-of-the-
art model (Leung et al., 2019) in detecting pronunciation errors in AUC
metric by 41% from 0.528 to 0.749 on the GUT Isle Corpus of L2 Polish
speakers.

To put the new formulation of the problem into action, we propose
three innovative techniques based on phoneme-to-phoneme (P2P), text-
to-speech (T2S) and speech-to-speech (S2S) conversion to generate
correctly pronounced and mispronounced synthetic speech. We show
that these techniques not only improve the accuracy of three machine
learning models for detecting pronunciation errors, but also help es-
tablish a new state-of-the-art in the field. The effectiveness of these
techniques is assessed in two tasks: detecting mispronounced words
(replacing, adding, removing phonemes, or pronouncing an unknown
speech sound) and detecting lexical stress errors. The results presented
in this study are the culmination of our recent work on speech genera-
tion in pronunciation error detection task (Korzekwa et al., 2021c,b,a),
including a new S2S technique.

In short, the contributions of the paper are as follows:

• A new paradigm for the automated detection of pronunciation
errors is proposed, reformulating the problem as a task of gen-
erating synthetic speech.

• A unified probabilistic view on P2P, T2S, and S2S techniques is
23

presented in the context of detecting pronunciation errors.
• A new S2S method to generate synthetic speech is proposed,
which outperforms the state-of-the-art model (Leung et al., 2019)
in detecting pronunciation errors.

• Comprehensive experiments are described to demonstrate the
effectiveness of speech generation in the tasks of pronunciation
and lexical stress error detection.

The outline of the rest of this paper is: Section 2 presents related
work. Section 3 describes the proposed methods of generating synthetic
speech for automatic detection of pronunciation errors. Section 4 de-
scribes the human speech corpora used to train the pronunciation error
detection models in the experiments. Section 5 presents experiments
demonstrating the effectiveness of various synthetic speech generation
methods in improving the accuracy of the detection of pronunciation
and lexical stress errors. Finally, conclusions and future work are
presented in Section 6.

2. Related work

2.1. Pronunciation error detection

2.1.1. Phoneme recognition approaches
Most existing CAPT methods are designed to recognize the

phonemes pronounced by the speaker and compare them with the ex-
pected (canonical) pronunciation of correctly pronounced speech (Witt
and Young, 2000; Li et al., 2016; Sudhakara et al., 2019b; Leung
et al., 2019). Any discrepancy between the recognized and canonical
phonemes results in a pronunciation error at the phoneme level.
Phoneme recognition approaches generally fall into two categories:
methods that align a speech signal with phonemes (forced-alignment
techniques) and methods that first recognize the phonemes in the
speech signal and then align the recognized and canonical phoneme
sequences. Aside these two categories, CAPT methods can be split into
multiple other categories:

Forced-alignment techniques (Li et al., 2011, 2016; Sudhakara et al.,
2019b; Cheng et al., 2020) are based on the work of Franco et al. (1997)
and the Goodness of Pronunciation (GoP) method (Witt and Young,
2000). In the first step, GoP uses Bayesian inference to find the most
likely alignment between canonical phonemes and the corresponding
audio signal (forced alignment). In the next step, GoP calculates the
ratio between the likelihoods of the canonical and the most likely
pronounced phonemes. Finally, it detects mispronunciation if the ratio
drops below a certain threshold. GoP has been further extended with
Deep Neural Networks (DNNs), replacing the Hidden Markov Model
(HMM) and Gaussian Mixture Model (GMM) techniques for acoustic
modeling (Li et al., 2016; Sudhakara et al., 2019b). Cheng et al. (2020)
improves GoP performance with the hidden representation of speech
extracted in an unsupervised way. This model can detect pronunciation
errors based on the input speech signal and the reference canonical
speech signal, without using any linguistic information such as text and
phonemes.

The methods that do not use forced-alignment recognize the
phonemes pronounced by the speaker purely from the speech signal
and only then align them with the canonical phonemes (Minematsu,
2004; Harrison et al., 2009; Lee and Glass, 2013; Plantinga and Fosler-
Lussier, 2019; Sudhakara et al., 2019a; Zhang et al., 2020). Leung
et al. (2019) use a phoneme recognizer that recognizes phonemes
only from the speech signal. The phoneme recognizer is based on
Convolutional Neural Network (CNN), a Gated Recurrent Unit (GRU),
and Connectionist Temporal Classification (CTC) loss. Leung et al.
report that it outperforms other forced-alignment (Li et al., 2016) and
forced-alignment-free (Harrison et al., 2009) techniques in the task of
detecting mispronunciations at the phoneme-level in L2 English.

There are two challenges with presented approaches for pronun-
ciation error detection. First, phonemes pronounced by the speaker

must be recognized accurately, which has been proved difficult (Zhang
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et al., 2021; Chorowski et al., 2014, 2015; Bahdanau et al., 2016).
Phoneme recognition is difficult, especially in non-native speech, as
different languages have different phoneme spaces. Second, standard
approaches assume only one canonical pronunciation of a given text,
but this assumption is not always true due to the phonetic variability
of speech, e.g., differences between regional accents. For example, the
word ‘enough’ can be pronounced by native speakers in multiple ways:
/ih n ah f/ or /ax n ah f/ (short ‘i’ or ‘schwa’ phoneme at the beginning).
In our previous work, we solve these problems by creating a native
speech pronunciation model that returns the probability of the sentence
to be spoken by a native speaker (Korzekwa et al., 2021c).

Techniques based on phoneme recognition can be supplemented
by a reference speech signal obtained from the speech database (Xiao
et al., 2018; Nicolao et al., 2015; Wang et al., 2019) or generated
from the phonetic representation (Korzekwa et al., 2021c; Qian et al.,
2010). Xiao et al. (2018) use a pair of speech signals from a student
and a native speaker to classify native and non-native speech. Nico-
lao et al. (2015) use the speech of the reference speaker to detect
mispronunciation errors at the phoneme level. Wang et al. (2019)
use Siamese networks to model the discrepancy between normal and
distorted children’s speech. Qian et al. (2010) propose a statistical
model of pronunciation in which they build a model that generates
hypotheses of mispronounced speech.

In this work, we use the end-to-end method to detect pronunciation
errors directly, without having to recognize phonemes as an interme-
diate step. The end-to-end approach is discussed in more detail in the
next section.

2.1.2. End-to-end methods
The phoneme recognition approaches presented so far rely on pho-

netically transcribed speech labeled by human listeners. Phonetic tran-
scriptions are needed to train a phoneme recognition model. Human-
based transcription is a time-consuming task, especially with L2 speech,
where listeners need to recognize mispronunciation errors. Sometimes
L2 speech transcription may be even impossible because different lan-
guages have different phoneme sets, and it is unclear which phonemes
were pronounced by the speaker. In our recent work, we have intro-
duced a novel model (known as WEAKLY-S, i.e., weakly supervised)
for detecting pronunciation errors at the world level that does not
require phonetically transcribed L2 speech (Korzekwa et al., 2021b).
During training, the model is weakly supervised, in the sense that in
L2 speech, only mispronounced words are marked, and the data do
not need to be phonetically transcribed. In addition to the primary
task of detecting mispronunciation errors at the world level, the second
task uses a phoneme recognizer trained on automatically transcribed L1
speech.

Zhang et al. (2021) employ a multi-task model with two tasks:
phoneme-recognition and pronunciation error detection tasks. Un-
like our WEAKLY-S model, they use the Needleman–Wunsch algo-
rithm (Needleman and Wunsch, 1970) from bioinformatics to align
the canonical and recognized phoneme sequences, but this algorithm
cannot be tuned to detect pronunciation errors. The WEAKLY-S model
automatically learns the alignment, thus eliminating a potential source
of inaccuracy. The alignment is learned through an attention mech-
anism that automatically maps the speech signal to a sequence of
pronunciation errors at the word level. Wang et al. (2019) propose to
use a multi-task framework in which a neural network model is used to
learn the joint space between the acoustic characteristics of adults and
children. Additionally, Duan et al. (2019) propose a multi-task model
for acoustical modeling with two tasks for native and non-native speech
respectively.

The work of Zhang et al. (2021) and our recent work (Korzekwa
et al., 2021b) are end-to-end methods of direct estimation of pronun-
ciation errors, setting up a new trend in the field of automated pro-
nunciation assessment. In this article, we use the end-to-end method as
well, but we extend it by the S2S method of generating mispronounced
24

speech.
2.1.3. Other trends
All the works presented so far treat pronunciation errors as discrete

categories, at best producing the probability of mispronunciation. In
contrast, Yan et al. (2020) propose a model capable of identifying
phoneme distortions, giving the user more detailed feedback on mispro-
nunciation. In our recent work, we provide more fine-grained feedback
by indicating the severity level of mispronunciation (Korzekwa et al.,
2021b).

Active research is conducted not only on modeling techniques but
also on speech representation. Xu et al. (2021) and Peng et al. (2021)
use the Wav2vec 2.0 speech representation that is created in an un-
supervised way. They report that it outperforms existing methods and
requires three times less speech training data. Lin and Wang (2021) use
transfer learning by taking advantage of deep latent features extracted
from the Automated Speech Recognition (ASR) acoustic model and
report improvements over the classic GOP-based method.

In this work, we use a mel-spectrogram as a speech represen-
tation in the pronunciation error detection model. We also use a
mel-spectrogram to represent the speech signal in the T2S and S2S
methods of generating mispronounced speech.

2.2. Lexical stress error detection

CAPT usually focuses on practicing the pronunciation of phonemes
(Witt and Young, 2000; Leung et al., 2019; Korzekwa et al., 2021c).
However, there is evidence that practicing lexical stress improves the
intelligibility of non-native English speech (Field, 2005; Lepage and
Busà, 2014). Lexical stress is a phonological feature of a syllable.
It is part of the phonological rules that govern how words should
be pronounced in a given language. Stressed syllables are usually
longer, louder, and expressed with a higher pitch than their unstressed
counterparts (Jung et al., 2018). The lexical stress is related to the
phonemic representation. For example, placing lexical stress on a dif-
ferent syllable of a word can lead to various phonemic realizations
known as ‘vowel reduction’ (Bergem, 1991). Students should be able
to practice both pronunciation and lexical stress in spoken language.
We study both topics to better understand the potential of using speech
generation methods in CAPT.

The existing works focus on the supervised classification of lex-
ical stress using Neural Networks (Li et al., 2018; Shahin et al.,
2016), Support Vector Machines (Chen and Wang, 2010; Zhao et al.,
2011), and Fisher’s linear discriminant (Chen and He, 2007). There
are two popular variants: (a) discriminating syllables between primary
stress/no stress (Ferrer et al., 2015), and (b) classifying between
primary stress/secondary stress/no stress (Li et al., 2013, 2018). Ra-
manathi et al. (2019) have followed an alternative unsupervised way of
classifying lexical stress, which is based on computing the likelihood of
an acoustic signal for a number of possible lexical stress representations
of a word.

Accuracy is the most commonly used performance metric, and it
indicates the ratio of correctly classified stress patterns on a syllable (Li
et al., 2013) or word level (Chen and Wang, 2010). On the contrary,
Ferrer et al. (2015), analyzed the precision and recall metrics to detect
lexical stress errors and not just classify them.

Most existing approaches for the classification and detection of
lexical stress errors are based on carefully designed features. They
start with aligning a speech signal with phonetic transcription, per-
formed via forced-alignment (Shahin et al., 2016; Chen and Wang,
2010). Alternatively, ASR can provide both phonetic transcription and
its alignment with a speech signal (Li et al., 2013). Then, prosodic
features such as duration, energy and pitch (Chen and Wang, 2010) and
cepstral features such as Mel Frequency Cepstral Coefficients (MFCC)
and Mel-Spectrogram (Ferrer et al., 2015; Shahin et al., 2016) are
extracted. These features can be extracted on the syllable (Shahin et al.,
2016) or syllable nucleus (Ferrer et al., 2015; Chen and Wang, 2010)

level. Shahin et al. (2016) computes features of neighboring vowels,
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and Li et al. (2013) includes the features for two preceding and two
following syllables in the model. The features are often preprocessed
and normalized to avoid potential confounding variables (Ferrer et al.,
2015), and to achieve better model generalization by normalizing the
duration and pitch on a word level (Ferrer et al., 2015; Chen and He,
2007). Li et al. (2018) adds canonical lexical stress to input features,
which improves the accuracy of the model.

In our recent work, we use attention mechanisms to automatically
derive areas of the audio signal that are important for the detection of
lexical stress errors (Korzekwa et al., 2021a). In this work, we use the
T2S method to generate synthetic lexical stress errors to improve the
accuracy of detecting lexical stress errors.

2.3. Synthetic speech generation for pronunciation error detection

Existing synthetic speech generation techniques for detecting pro-
nunciation errors can be divided into two categories: data augmenta-
tion and data generation.

Data augmentation techniques are designed to generate new train-
ing examples for existing mispronunciation labels. Badenhorst and
De Wet (2017) simulate new speakers by adjusting the speed of raw
audio signals. Eklund (2019) generates additional training data by
adding background noise and convolving the audio signal with the
impulse responses of the microphone of a mobile device and a room.

Data generation techniques are designed to generate new training
data with new labels of both correctly pronounced and mispronounced
speech. Most existing works are based on the P2P technique to generate
mispronounced speech by perturbing the phoneme sequence of the
corresponding audio using a variety of strategies (Lee et al., 2016;
Komatsu and Sasayama, 2019; Fu et al., 2021; Yan et al., 2021; Ko-
rzekwa et al., 2021c). In addition to P2P techniques, in our recent
work, we use T2S to generate synthetic lexical stress errors (Korzekwa
et al., 2021b). Qian et al. (2010) introduce a generative model to
create hypotheses of mispronounced speech and use it as a reference
speech signal to detect pronunciation errors. Recently, we proposed a
similar technique to create a pronunciation model of native speech to
account for many ways of correctly pronouncing a sentence by a native
speaker (Korzekwa et al., 2021c).

Synthetic speech generation techniques have recently gained atten-
tion in other related fields. Fazel et al. (2021) use synthetic speech
generated with T2S to improve accuracy in ASR. Huang et al. (2016)
use a machine translation technique to generate text to train an ASR
language model in a low-resource language. At the same time, Shah
et al. (2021) and Huybrechts et al. (2021) employ S2S voice conver-
sion to improve the quality of speech synthesis in the data reduction
scenario.

All the presented works on the detection of pronunciation errors
treat synthetic speech generation as a secondary contribution. In this
article, we present a unified perspective of synthetic speech generation
methods for detecting pronunciation errors. This article extends our
previous work (Korzekwa et al., 2021c,a,b) and introduces a new S2S
method to detect pronunciation errors. To the best of our knowledge,
there are no papers devoted to generating pronunciation errors with
the S2S technique and using it in the detection of pronunciation errors.

3. Methods of generating pronunciation errors

To detect pronunciation errors, first, the spoken language must
be separated from other factors in the signal and then incorrectly
pronounced speech sounds have to be identified. Separating speech
into multiple factors is difficult, as speech is a complex signal. It
consists of prosody (F0, duration, energy), timbre of the voice, and the
representation of the spoken language. Spoken language is defined by
the sounds (phones) perceived by people. Phones are the realizations
25

of phonemes—a human abstract representation of how to pronounce a 𝐫
word/sentence. Speech may also present variability due to the record-
ing channel and environmental effects such as noise and reverberation.
Detecting pronunciation errors is very challenging, also because of the
limited amount of recordings with mispronounced speech. To address
these challenges, we reformulate the problem of pronunciation error
detection as the task of synthetic speech generation.

Let 𝐬 be the speech signal, 𝐫 be the sequence of phonemes that the
user is trying to pronounce (canonical pronunciation), and 𝐞 be the
sequence of probabilities of mispronunciation at the phoneme or word
level. The original task of detecting pronunciation errors is defined by:

𝐞 ∼ 𝑝(𝐞|𝐬, 𝐫) (1)

where the formulation of the problem as the task of synthetic speech
generation is defined as follows:

𝐬 ∼ 𝑝(𝐬|𝐞, 𝐫) (2)

The probability of pronunciation errors for all the words in a
sentence can then be calculated using the Bayes rule (Bishop, 2006):

𝑝(𝐞|𝐬, 𝐫) = 𝑝(𝐞|𝐫)𝑝(𝐬|𝐞, 𝐫)
𝑝(𝐬|𝐫)

(3)

From Eq. (3), one can see that there is no need to directly learn the
probability of pronunciation errors 𝑝(𝐞|𝐬, 𝐫), since the complexity of the
problem has now been transferred to learning the speech generation
process 𝑝(𝐬|𝐞, 𝐫). Such a formulation of the problem opens the way to
the inclusion of additional prior knowledge into the model:

(1) Replacing the phoneme in a word while preserving the original
speech signal results in a pronunciation error (P2P method).

(2) Changing the speech signal while retaining the original pronun-
ciation results in a pronunciation error (T2S method).

(3) There are many variations of mispronounced speech that differ
in terms of the voice timbre and the prosodic aspects of speech
(S2S method).

To solve Eq. (3), we use Markov Chain Monte Carlo Sampling
(MCMC) (Koller and Friedman, 2009). In this way, the prior knowl-
edge can be incorporated by generating 𝑁 training examples {𝐞𝐢, 𝐬𝐢, 𝐫𝐢}
or 𝑖 = 1..𝑁 with the use of P2P (prior knowledge 1), T2S (prior
nowledge 2), and S2S (prior knowledge 3) methods. Accounting for
he prior knowledge, intuitively corresponds to an increase in the
mount of training data, which contributes to outperforming state-
f-the-art models for detecting pronunciation errors, as presented in
ection 5. Eq. (3) can then be optimized with standard gradient-based
ptimization techniques. In the following subsections, we present the
2P conversion, T2S, and S2S methods of generating correctly and
ncorrectly pronounced speech in details.

.1. P2P method

To generate synthetic mispronounced speech, it is enough to start
ith correctly pronounced speech and modify the corresponding se-
uence of phonemes. This simple idea does not even require generating
he speech signal itself. It can be observed that the probability of
ispronunciations depends on the discrepancy between the speech

ignal and the corresponding canonical pronunciation. This leads to the
2P conversion model shown in Fig. 1a.

Let {𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐬, 𝐫} be a single training example containing: the se-
uence of 0𝑠 denoting correctly pronounced phonemes, the speech
ignal, and the sequence of phonemes representing the canonical pro-
unciation. Let 𝐫′ be the sequence of phonemes with injected mispro-
unciations such as phoneme replacements, insertions, and deletions:

′ ′
∼ 𝑝(𝐫 |𝐫) (4)
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Fig. 1. Probabilistic graphical models for three methods to generate pronunciation errors: P2P, T2S and S2S. Empty circles represent hidden (latent) variables, while filled (blue)
circles represent observed variables. 𝐬—the speech signal, 𝐫—the sequence of phonemes that the user is trying to pronounce (canonical pronunciation), the superscript ′ represents
a variable with generated mispronunciations.
then the probability of mispronunciation for the 𝑗th phoneme is defined
by:

𝑒′𝑗 =

{

1 if 𝑟′𝑗 ! = 𝑟𝑗
0 otherwise

(5)

The probabilities of mispronunciation can be projected from the level of
phonemes to the level of words. A word is treated as mispronounced if
at least one pair of phonemes in the word {𝑟′𝑗 , 𝑟𝑗} does not match. At the
end of this process, a new training example is created with artificially
introduced pronunciation errors: {𝐞𝐞𝐫𝐫 , 𝐬, 𝐫′}. Note that the speech signal
𝐬 in the new training example is unchanged from the original training
example, and only phoneme transcription is manipulated.

Implementation
To generate synthetic pronunciation errors, we use a simple ap-

proach of perturbing phonetic transcription for the corresponding
speech audio. First, we sample these utterances with replacement from
the input corpora of human speech. Then, for each utterance, we
replace the phonemes with random phonemes with a given probability.

3.2. T2S method

The T2S method expands on P2P by making it possible to create
speech signals that match the synthetic mispronunciations. The T2S
method for generating mispronounced speech is a generalization of the
P2P method, as can be seen by the comparison of the two methods
shown in Fig. 1a and b.

One problem with the P2P method is that it cannot generate a
speech signal for the newly created sequence of phonemes 𝐫′. As a
result, pronunciation errors will dominate in the training data contain-
ing new sequences of phonemes 𝐫′. Therefore, it will be possible to
detect pronunciation errors only from the canonical representation 𝐫′,
ignoring information contained in the speech signal. To mitigate this
issue, there should be two training examples for the phonemes 𝐫′, one
representing mispronounced speech: {𝐞𝐞𝐫𝐫 , 𝐬, 𝐫′}, and the second one for
correct pronunciation: {𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐬′, 𝐫′}, where:

𝐬′ ∼ 𝑝(𝐬′|𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐫′) (6)

Because we now have the speech signal 𝐬′, another training example
can be created as: {𝐞𝐞𝐫𝐫 , 𝐬′, 𝐫}. In summary, T2S method extends a single
training example of correctly pronounced speech to four combinations
of correctly and incorrect pronunciations:

• {𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐬, 𝐫} – correctly pronounced input speech
• {𝐞𝐞𝐫𝐫 , 𝐬, 𝐫′} – mispronounced speech generated by the P2P method
• {𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐬′, 𝐫′} – correctly pronounced speech generated by the T2S

method
• {𝐞𝐞𝐫𝐫 , 𝐬′, 𝐫} – mispronounced speech generated by the T2S method

Implementation
The synthetic speech is generated with the Neural TTS described

by Latorre et al. (2019). The Neural TTS consists of two modules.
26
The context-generation module is an attention-based encoder–decoder
neural network that generates a mel-spectrogram from a sequence of
phonemes. The Neural Vocoder then converts it into a speech signal.
The Neural Vocoder is a neural network of architecture similar to
Parallel Wavenet (Oord et al., 2018). The Neural TTS is trained using
the speech of a single native speaker. To generate words with different
lexical stress patterns, we modify the lexical stress markers associated
with the vowels in the phonetic transcription of the word. For example,
with the input of /r iy1 m ay0 n d/ we can place lexical stress on the
first syllable of the word ‘remind’.

3.3. S2S method

The S2S method is designed to simulate the diverse nature of
speech, as there are many ways to correctly pronounce a sentence. The
prosodic aspects of speech, such as pitch, duration, and energy, can
vary. Similarly, phonemes can be pronounced differently. To mimic hu-
man speech, speech generation techniques should allow a similar level
of variability. The T2S method outlined in the previous section always
produces the same output for the same phoneme input sequence. The
S2S method is designed to overcome this limitation.

S2S converts the input speech signal 𝐬 in a way to change the pro-
nounced phonemes (phoneme replacements, insertions, and deletions)
from the input phonemes 𝐫 to target phonemes 𝐫′ while preserving
other aspects of speech, including voice timbre and prosody (Eq. (7)
and Fig. 1c). In this way, the natural variability of human speech
is preserved, resulting in generating many variations of incorrectly
pronounced speech. The prosody will differ in various versions of the
sentence of the same speaker, while the same sentence spoken by many
speakers will differ in the voice timbre.

𝐬′ ∼ 𝑝(𝐬′|𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐫′, 𝐬) (7)

Similarly to the T2S method, the S2S method outputs four types of
speech pronounced correctly and incorrectly: {𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐬, 𝐫}, {𝐞𝐞𝐫𝐫 , 𝐬, 𝐫′},
{𝐞𝐧𝐨𝐞𝐫𝐫 , 𝐬′, 𝐫′}, and {𝐞𝐞𝐫𝐫 , 𝐬′, 𝐫}.

Implementation
Synthetic speech is generated by introducing mispronunciations into

the input speech, while preserving the duration of the phonemes and
timbre of the voice. The architecture of the S2S model is shown in
Fig. 2. The mel-spectrogram of the input speech signal 𝐬 is forced-
aligned with the corresponding canonical phonemes 𝐫 to get the dura-
tion of the phonemes. The speaker id has to be provided together with
the input speech to enable the source speaker’s voice to be maintained.
Mispronunciations are introduced into the canonical phonemes 𝐫 ac-
cording to the P2P method described in Section 3.1. Mispronounced
phonemes 𝐫′ along with phonemes duration and speaker id are pro-
cessed by the encoder–decoder, which generates the mel-spectrogram
𝐬′. The encoder–decoder transforms the phoneme-level representation
into frame-level features and then generates all mel-spectrogram frames
in parallel. The mel-spectrogram is converted to an audio signal with
Universal Vocoder (Jiao et al., 2021). Without the Universal Vocoder,
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Fig. 2. Architecture of the S2S model to generate mispronounced synthetic speech while maintaining prosody and voice timbre of the input speech. The black rectangles represent
the data (tensors) and the orange boxes represent processing blocks. This color notation is used in all machine learning model diagrams throughout the article. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
it would not be possible to generate the raw audio signal for hundreds
of speakers included in the LibriTTS corpus. Details of the S2S method
are shown in the works of Shah et al. (2021) and Jiao et al. (2021).
The main difference between these two models and our S2S model is
the use of the P2P mapping to introduce pronunciation errors.

3.4. Summary of mispronounced speech generation

Generation of synthetic mispronounced speech and detection of
pronunciation errors were presented from the probabilistic perspective
of the Bayes-rule. With this formulation, we can better understand the
relationship between P2P, T2S and S2S methods, and see that the S2S
method generalizes two simpler methods. Following this reasoning,
we can argue that using the Bayes rule gives us a nice mathematical
framework to potentially further generalize the S2S method, e.g. by
adding a language variable to the model to support multilingual pro-
nunciation error detection. There is another advantage of modeling
pronunciation error detection from the probabilistic perspective—it
paves the way for joint training of mispronounced speech generation
and pronunciation error detection models. In the present work, we
are training separate machine learning models for both tasks, but it
should be possible to train both models jointly using the framework of
Variational Inference (Jordan et al., 1999) instead of MCMC to infer
the probability of mispronunciation in Eq. (3).

4. Speech corpora

4.1. Corpora of continuous speech

Speech corpora of recorded sentences is a combination of L1 and L2
English speech. L1 speech is obtained from the TIMIT (Garofolo et al.,
1993) and the LibriTTS (Zen et al., 2019) corpora. L2 speech comes
from the Isle (Atwell et al., 2003) corpus (German and Italian speakers)
and the GUT Isle (Weber et al., 2020) corpus (Polish speakers). In total,
we used 125.28 h of L1 and L2 English speech from 983 speakers
segmented into 102 812 sentences. A summary of the speech corpora
is presented in Table 1, whereas the details are presented in our recent
work (Korzekwa et al., 2021b).

The speech data are used in all the pronunciation error detection
experiments presented in Section 5. From the collected speech, we held
out 28 L2 speakers and used them only to assess the performance of the
systems in the mispronunciation detection task. It includes 11 Italian
and 11 German speakers from the Isle corpus (Atwell et al., 2003), and
6 Polish speakers from the GUT Isle corpus (Weber et al., 2020). The
human speech training data is extended with synthetic pronunciation
errors generated by the methods presented in Section 3.

4.2. Corpora of isolated words

The speech corpora consist of human and synthetic speech. The
data were divided into training and testing sets, with separate speakers
assigned to each set. Human speech includes native (L1) and non-native
(L2) English speech. L1 speech corpora are made of TIMIT (Garofolo
et al., 1993) and Arctic (Kominek and Black, 2004). L2 corpora contain
27
Table 1
Summary of human speech corpora used in the pronunciation error detection
experiments.

Native language Hours Speakers

English 90.47 640
Unknowna 19.91 285
German and Italian 13.41 46
Polish 1.49 12

aAudiobooks read by volunteers from all over the world (Zen et al., 2019).

Table 2
Details of the training and test sets for the lexical stress error detection model.

Data set Speakers (L2) Words (unique) Stress errors

Train set (human) 473 (10) 8223 (1528) 425
Train set (TTS) 1 (0) 3937 (1983) 2005
Test set (human) 176 (21) 2108 (378) 189

speech from L2-Arctic (Sudhakara et al., 2019a), Porzuczek (Porzuczek
and Rojczyk, 2017), and our own recordings of 25 speakers (23 Polish,
1 Ukrainian and 1 Lithuanian). The synthetic data were generated using
the T2S method and are only included in the training set. The data
are summarized in Table 2. For a more detailed description of speech
corpora, see Section 4 of our recent work (Korzekwa et al., 2021a).
The speech corpora of isolated words are used in the lexical stress error
detection experiment presented in Section 5.3.

5. Experiments

5.1. Generation of mispronounced speech

5.1.1. Experimental setup
The effect of using synthetic pronunciation errors based on the P2P,

T2S and S2S methods is evaluated in the task of detecting pronunciation
errors in spoken sentences at the word level. First, we analyze the
P2P method by comparing it with the state-of-the-art techniques and
measure the effect of adding synthetic pronunciation errors to the
training data. We then compare P2P with T2S and S2S to assess the
benefits of using more complex methods of generating pronunciation
errors. The accuracy of detecting pronunciation errors is reported in
standard Area Under the Curve (AUC), precision and recall metrics.

5.1.2. Overview of our WEAKLY-S model
We use the pronunciation error detection model (WEAKLY-S) re-

cently proposed by us Korzekwa et al. (2021b). To train the model, the
human speech training set is extended with 292,242 utterances of L1
speech with synthetically generated pronunciation errors. To generate
pronunciation errors, the P2P, T2S, and S2S methods described in
Section 3 are used.

The WEAKLY-S model produces probabilities of mispronunciation
for all words, conditioned by the spoken sentence and canonical
phonemes. Mispronunciation errors include phoneme replacement, ad-
dition, deletion, or an unknown speech sound. During training, the
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Fig. 3. Architecture of the WEAKLY-S model for word-level pronunciation error detection trained in the multi-task setup. Task 1—to detect pronunciation errors 𝑒. Task 2—to
recognize phonemes 𝑟𝑜.
model is weakly supervised, in the sense that only mispronounced
words in L2 speech are marked by listeners and the data do not
have to be phonetically transcribed. Due to the limited availability
of L2 speech and the fact that it is not phonetically transcribed, the
model is more likely to overfit. To solve this problem, the model
is trained in a multi-task setup. In addition to the primary task of
detecting mispronunciation error at the word level, the second task uses
a phoneme recognizer which is trained on automatically transcribed L1
speech. Both tasks share components of the model, which makes the
primary task less likely to overfit.

The architecture of the pronunciation error detection model is
shown in Fig. 3. The model consists of two sub-networks. The Mis-
pronunciations Detection Network (MDN) detects word-level pronun-
ciation errors 𝐞 from the audio signal 𝐬 and canonical phonemes 𝐫,
while the Phoneme Recognition Network (PRN) recognizes phonemes
𝐫𝐨 pronounced by a speaker from the audio signal 𝐬. The detailed model
architecture is presented in Section 2 of our recent work (Korzekwa
et al., 2021b).

5.1.3. Results—P2P method
We conducted an ablation study to measure the effect of remov-

ing synthetic pronunciation errors from the training data. We trained
four variants of the WEAKLY-S model to measure the effect of us-
ing synthetic data against other elements of the model. WEAKLY-S
is a complete model that also includes synthetic data during train-
ing. In the NO-SYNTH-ERR model, we exclude synthetic samples of
mispronounced L1 speech, significantly reducing the number of mis-
pronounced words seen during training from 1,129,839 to just 5273 L2
words. The NO-L2-ADAPT variant does not fine-tune the model on L2
speech, although it is still exposed to L2 speech while being trained on
a combined corpus of L1 and L2 speech. The NO-L1L2-TRAIN model
is not trained on L1/L2 speech, and fine-tuning on L2 speech starts
from scratch. This means that this model will not use a large amount
of phonetically transcribed L1 speech data and ultimately no secondary
phoneme recognition task will be used.

L2 fine-tuning (NO-L2-ADAPT) is the most important factor influ-
encing the performance of the model (Fig. 4 and Table 3), with an
AUC of 0.517 compared to 0.686 for the full model. Training the
model on both L2 and L1 human speech together is not enough. This is
because L2 speech accounts for less than 1% of the training data and the
model naturally leans towards L1 speech. The second most important
feature is training the model on a combined set of L1 and L2 speech
(NO-L1L2-TRAIN), with an AUC of 0.565. L1 speech accounts for over
99% of training data. These data are also phonetically transcribed,
and therefore can be used for the phoneme recognition task. The
phoneme recognition task acts as a ‘backbone’ and reduces the effect of
overfitting in the main task of detecting errors in the pronunciation of
words. Finally, excluding synthetically generated pronunciation errors
(NO-SYNTH-ERR) reduces an AUC from 0.686 to 0.615. Although, the
synthetic data provides the least improvement to the model, it still
increases the accuracy of the model by 11.5% in AUC, contributing to
setting up a new state-of-the-art.

We compare the WEAKLY-S model with two state-of-the-art base-
lines. The Phoneme Recognizer (PR) model by Leung et al. (2019) is our
28
Fig. 4. Precision–recall curve for the ablation study on the GUT Isle corpus, illustrating
the effect of using synthetic pronunciation errors generated by the P2P method.

first baseline. The PR is based on the CTC loss (Graves, 2012) and out-
performs multiple alternative approaches of pronunciation assessment.
The original CTC-based model uses a hard likelihood threshold applied
to the recognized phonemes. To compare it with two other models,
following our recent work (Korzekwa et al., 2021c), we have replaced
the hard likelihood threshold with a soft threshold. The second baseline
is PR extended by the pronunciation model (PR-PM model Korzekwa
et al., 2021c). The pronunciation model takes into account the phonetic
variability of the speech spoken by native speakers, which results in
greater precision in detecting pronunciation errors. The results are
shown in Table 4. It turns out that the WEAKLY-S model outperforms
the second-best model in terms of an AUC by 30% from 0.528 to 0.686
and precision by 23% from 0.612 to 0.752 on the GUT Isle Corpus
of Polish speakers. We are seeing similar improvements on the Isle
Corpus of German and Italian speakers. The use of synthetic data is an
important contribution to the performance of the WEAKLY-S model.

5.1.4. Results—T2S and S2S methods
The main limitation of the P2P method is that it does not generate a

new speech signal. The method introduces mispronunciations by oper-
ating only on the sequence of phonemes for the corresponding speech.
In this experiment, we demonstrate the T2S and S2S methods that
can directly generate a speech signal to overcome this limitation. The
S2S method introduces mispronunciations into the input native speech
while preserving the prosody (phoneme durations) and timbre of the
voice. Preserving speech attributes other than pronunciation increases
speech variability during training and makes the pronunciation error
detection model more reliable during testing. The T2S method can be
considered as a simplified variant of the S2S method, in which there is
only text as input.

The T2S and S2S methods are compared with the P2P method.
Three WEAKLY-S models are trained, differing in the technique of
generating mispronounced speech contained in the training data. The
S2S method outperforms the P2P method by increasing an AUC score
by 9% from 0.686 to 0.749 in the Gut Isle corpus of Polish speakers
(Table 5). Additionally, an AUC increases from 0.815 to 0.834 for
major pronunciation errors (Table 6), according to a similar experiment
presented in Section 3.4 of Korzekwa et al. (2021b). Interestingly, the
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Table 3
Ablation study for the GUT Isle corpus to show the effect of using synthetic data and other elements of the WEAKLY-S model.
Model Description AUC Precision [%] Recall [%]

NO-L2-ADAPT No fine-tuning on L2 speech 0.517 57.89 40.11
NO-L1L2-TRAIN No pretraining on L1&L2 speech 0.565 59.73 40.20
NO-SYNTH-ERR No synthetically generated pronunciation errors in the training data 0.615 67.22 40.38
WEAKLY-S Complete model 0.686 75.25 40.38
Table 4
Accuracy metrics of detecting word-level pronunciation errors. WEAKLY-S vs. baseline
models.

Model AUC Precision [%,95%CI] Recall [%,95%CI]

Isle corpus (German and Italian)

PR 0.555 49.39 (47.59–51.19) 40.20 (38.62–41.81)
PR-PM 0.480 54.20 (52.32–56.08) 40.20 (38.62–41.81)
WEAKLY-S 0.678 71.94 (69.96, 73.87) 40.14 (38.56, 41.75)

GUT Isle corpus (Polish)

PR 0.528 54.91 (50.53–59.24) 40.29 (36.66–44.02)
PR-PM 0.505 61.21 (56.63–65.65) 40.15 (36.51–43.87)
WEAKLY-S 0.686 75.25 (71.67–78.59) 40.38 (37.52–43.29)

Table 5
Comparison of the P2P, T2S and S2S methods in the task of pronunciation error
detection assessed on the GUT Isle corpus.

Model AUC Precision [%] Recall [%]

P2P 0.686 75.25 (71.67–78.59) 40.38 (37.52–43.29)
T2S 0.695 76.15 (72.59–79.36) 40.25 (37.44–43.22)
S2S 0.749 80.45 (76.94–83.47) 40.12 (37.12–43.02)

Table 6
Comparison of the P2P, T2S and S2S methods in the task of pronunciation error
detection assessed on the GUT Isle corpus only for major pronunciation errors.

Model AUC Precision [%] Recall [%]

P2P 0.815 91.67 (88.55–94.45) 40.31 (37.43–43.23)
T2S 0.819 92.11 (89.09–94.83) 40.21 (36.81–43.31)
S2S 0.834 93.54 (90.53–96.23) 40.15 (37.26–43.11)

T2S method is only slightly better than the P2P method, which suggests
that the variability of the generated mispronounced speech provided by
the S2S method is really important. The presented experiments show
the potential of the S2S method in improving the accuracy of detecting
pronunciation errors. The S2S method is able to control voice timbre,
phoneme duration, and pronunciation, opening the door to transplant-
ing all three properties from non-native speech and potentially further
improving the accuracy of the model.

One downside of the S2S method is its complexity. Compared to
the straightforward P2P method, the 9% improvement in an AUC
is associated with high costs. The method involves training a com-
plex multi-speaker S2S model to convert between input and output
mel-spectrograms and requires training a Universal Vocoder model to
convert a mel-spectrogram into a raw speech signal.

To better understand what prevents the model from achieving
higher accuracy, we measure the performance of the model on synthetic
pronunciation errors. We divide all synthetic pronunciation errors into
four categories to reflect the severity of pronunciation errors. The ‘low’
category includes mispronounced words with only one mismatched
phoneme between the canonical and pronounced phonemes of the
word. The ‘medium’ category includes two mispronounced phonemes.
The ‘high’ category gets three, and the ‘very high’ category includes
four mispronounced errors. The AUC across different severity levels
varies from 0.928 (low severity) to 1.00 (very high severity) as shown
in Table 7. These AUC values are significantly higher than the results
for non-native human speech, suggesting that making synthetic speech
errors more similar to non-native speech may improve the accuracy of
detecting pronunciation errors.
29
Table 7
Accuracy (AUC) in detecting pronunciation errors assessed in synthetic speech at
different severity levels of mispronunciation for the best S2S method.

Severity AUC

Low (phoneme distance = 1) 0.928
Medium (phoneme distance = 2) 0.974
High (phoneme distance = 3) 0.993
Very High (phoneme distance = 4) 1.00

5.2. Model of native speech pronunciation

5.2.1. Experimental setup
The P2P, T2S, and S2S are generative models that provide the

probability of generating a particular output sequence. This probability
can be used directly to detect pronunciation errors without generating
the mispronounced speech and adding it to the training data. In this
experiment, we show how to apply this approach in practice.

One of the challenges in detecting pronunciation errors is that a
native speaker can pronounce a sentence correctly in many ways. The
classic approach for detecting pronunciation errors is based on iden-
tifying the difference between pronounced and canonical phonemes.
All pronunciations that do not correspond precisely to the canonical
pronunciation will result in false pronunciation errors. One way to
solve this problem is to use the P2P technique to create a native
speech Pronunciation Model (PM) that determines the probability that
a sentence is pronounced by a native speaker. A low likelihood value
indicates a high probability of mispronunciation.

To evaluate the performance of the PM model, the pronunciation
error detection model has been designed such that the PM model can
be turned on and off. To disable the PM, we are modifying it so that it
only takes into account one way of correctly pronouncing a sentence.
In an ablation study, we measure whether the PM model improves the
accuracy in detecting pronunciation errors at the word level. Note that
in this experiment, synthetically generated pronunciation errors are not
used explicitly. Instead, the native speech pronunciation model is used
to implicitly represent the generative speech process.

5.2.2. Overview of the pronunciation error detection model
The design of the pronunciation error detection model consists of

three subsystems: a Phoneme Recognizer (PR), a Pronunciation Model
(PM), and a Pronunciation Error Detector (PED), shown in Fig. 5.
First, the PR model estimates a belief over the phonemes produced
by the student, intuitively representing the uncertainty in the student’s
pronunciation. The PM model transforms this belief into a probability
that a native speaker would pronounce the sentence this way, given
the phonetic variability. Finally, the PED model decides which words
were mispronounced in the sentence by processing three pieces of
information: (a) what the student pronounced, (b) how likely it is that
the native speaker would pronounce it that way, and (c) what the
student was supposed to pronounce. Details of the entire model of
pronunciation error detection are presented in Section 3 of our recent
work (Korzekwa et al., 2021c). We will now only show the details of

the PM model that are relevant to this experiment.
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Fig. 5. Architecture of the system for detecting mispronounced words in a spoken sentence based on the native speech pronunciation model.
5.2.3. Overview of the native speech pronunciation model
PM is an encoder–decoder neural network, following Sutskever et al.

(2014). Instead of building a text-to-text translation system between
two languages, we use it for the P2P conversion. The sequence of
phonemes 𝐫 that the native speaker was supposed to pronounce is con-
verted to the sequence of phonemes 𝐫′ they had pronounced, denoted
as 𝐫′ ∼ 𝑝(𝐫′|𝐫). Once trained, PM acts as a probability mass function,
computing the probability sequence 𝝅 of the recognized phonemes 𝐫𝐨
pronounced by the student conditioned by the expected (canonical)
phonemes 𝐫. PM is denoted as in Eq. (8).

𝝅 =
∑

𝐫𝐨
𝑝(𝐫𝐨|𝐨)𝑝(𝐫′ = 𝐫𝐨|𝐫) (8)

The PM model is trained on P2P speech data generated automatically
by passing the speech of the native speakers through the PR. By using
PR to annotate the data, we can make the PM model more robust
against possible phoneme recognition inaccuracies in PR at the time
of testing.

5.2.4. Results
The complete model with PM enabled is called PR-PM that stands

for a Phoneme Recognizer + Pronunciation Model. The model with
PM turned off is called PR-LIK that stands for Phoneme Recognizer
outputting the likelihoods of recognized phonemes. PR-LIK is an exten-
sion of the PR-NOLIK model—the mispronunciation detection model
proposed by Leung et al. (2019) that only returns the most likely
recognized phonemes and does not use phoneme likelihoods to detect
pronunciation errors. PR-NOLIK detects mispronounced words based
on the difference between the canonical and recognized phonemes.
Therefore, this system does not offer any flexibility in optimizing the
model for higher precision by fine-tuning the threshold applied to the
phoneme recognition probabilities.

Turning off PM reduces the precision between 11% and 18%, de-
pending on the decrease in recall between 20% to 40%, as shown in
Fig. 6. One example where the PM helps is the word ‘enough’ that can
be pronounced in two similar ways: /ih n ah f/ or /ax n ah f/ (short
‘i’ or ‘schwa’ phoneme at the beginning.) The PM can take into ac-
count the phonetic variability and recognize both versions as correctly
pronounced. Another example is coarticulation (Hieke, 1984). Native
speakers tend to merge phonemes of adjacent words. For example, in
the text ‘her arrange’ /hh er - er ey n jh/, two adjacent phonemes /er/
can be pronounced as one phoneme: /hh er ey n jh/. The PM model
can correctly recognize multiple variations of such pronunciations.

Complementary to the precision–recall curve shown in Fig. 6, we
present in Table 8 one configuration of the precision and recall scores
for the PR-LIK and PR-PM systems. This configuration is chosen in a
way to: (a) make the recall for both systems close to the same value,
and (b) to illustrate that the PR-PM model has much greater potential to
increase precision than the PR-LIK system. A similar conclusion can be
drawn by checking various different precision and recall configurations
in the precision and recall plots for both Isle and GUT Isle corpora.

5.3. Lexical stress error detection

5.3.1. Experimental setup
The full CAPT learning experience includes both the detection of

pronunciation and lexical stress errors. To investigate the potential of
30
Table 8
Precision and recall of detecting word-level mispronunciations. CI—Confidence Interval.
PR-PM—full model with the PM enabled. PR-LIK—the PR-PM model with the PM
disabled.

Model Precision [%,95%CI] Recall [%,95%CI]

Isle corpus (German and Italian)

PR-LIK 49.39 (47.59–51.19) 40.20 (38.62–41.81)
PR-PM 54.20 (52.32–56.08) 40.20 (38.62–41.81)

GUT Isle corpus (Polish)

PR-LIK 54.91 (50.53–59.24) 40.29 (36.66–44.02)
PR-PM 61.21 (56.63–65.65) 40.15 (36.51–43.87)

speech generation in the lexical stress error detection task, we evaluate
the T2S method, which is a simpler version of the S2S method evaluated
in Section 5.1.4.

The lexical stress error detection model is trained to measure the
benefits of employing synthetic mispronounced speech. The first model,
denoted as Att_TTS is based on an attention mechanism and is trained
on both human and synthetic speech with pronunciation errors. In this
model, 1980 the most popular English words (Michel et al., 2011) were
synthesized with correct and incorrect stress patterns using the method
outlined in Section 3.2, and added to the speech corpora of isolated
words presented in Section 4.2. The Att_NoTTS model is trained only
on human speech. Each of the two models presented has its simpler
version without the attention mechanism, marked as NoAtt_TTS and
NoAtt_NoTTS. Both models will help to understand whether the benefits
of using synthetic pronunciation errors depend on the model capacity.

The accuracy of detecting lexical stress errors is measured in terms
of an AUC metric. To be comparable to the study by Ferrer et al. (2015),
we use precision as an additional metric, while setting recall to 50%.

5.3.2. Overview of the lexical stress detection model
As shown in Fig. 7, the lexical stress error detection model consists

of three subsystems: Feature Extractor, Attention-based Classification
Model, and Lexical Stress Error Detector. The Feature Extractor ex-
tracts prosodic features and phonemes from the speech signal 𝐬 and
the forced-aligned canonical phonemes 𝐫. Prosodic features include:
F0, intensity [dB SPL] and duration of phonemes. The F0 and inten-
sity features are computed at the frame level. The Attention-based
Classification Model uses the attention mechanism (Vaswani et al.,
2017) to map frame-level and phoneme-level features to a syllable-
level representation. It then produces lexical stress error probabilities
at the syllable level. The Lexical Stress Error Detector reports a lexical
stress error if the expected (canonical) and estimated lexical stress for a
given syllable do not match and the corresponding probability is higher
than the specified threshold. The detailed architecture of the model is
presented in Section 3 of our recent work (Korzekwa et al., 2021a).

The NoAtt_TTS and NoAtt_NoTTS models do not have the attention
mechanism. Instead, as a representation at the syllable level, they
use the average acoustic feature values for the corresponding syllable
nucleus. The hypothesis is that synthetic data will not be beneficial to
a simpler model due to its limited capacity.
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Fig. 6. Precision–recall curves for the evaluated systems to measure the effect of using the PM model in detecting pronunciation errors. PR-PM— full model with the PM enabled.
PR-LIK—the PR-PM model with the PM disabled. PR-NOLIK—non-probabilistic variant of the PR-LIK model proposed by Leung et al. (2019).
Fig. 7. Attention-based model for the detection of lexical stress errors.
Fig. 8. Precision–recall curves for lexical stress error detection models.

5.3.3. Results
Enriching the training set with the incorrectly stressed words in-

creases an AUC score from 0.54 to 0.62 (Att_TTS vs. Att_NoTTS in Fig. 8
and Table 9). Data augmentation helps because it increases the number
of words with incorrect stress patterns in the training set. This prevents
the model from using the strong correlation between phonemes and
lexical stress in the correctly stressed words. Using data augmentation
in the simpler model without the attention mechanism slightly reduced
an AUC score from 0.45 to 0.44 (NoAtt_NoTTS vs. NoAtt_TTS). The
NoAtt_TTS model has limited capacity due to not using the attention
mechanism to model prosodic features, and thus is unable to benefit
from synthetic speech.

We compare our results with the work of Ferrer et al. (2015). There
were 46.4% (191 out of 411) of incorrectly stressed words in their
corpus, well over 9.4% (189 out of 2109) words in our experiment.
The fewer lexical stress errors that users make, the more difficult it is to
detect them. Under these conditions, we can state that our lexical stress
detection model based on T2S generated synthetic speech achieves
higher scores in precision and recall compared to the work of Ferrer
et al. (2015).
31
6. Conclusions

We propose a new paradigm for detecting pronunciation errors in
non-native speech. Rather than focusing on detecting pronunciation
errors directly, we reformulate the detection problem as a speech
generation task. This approach is based on the assumption that it is
easier to generate speech with specific characteristics than to detect
those characteristics in speech with limited availability. In this way, we
address one of the main problems of the existing CAPT methods, which
is the low availability of mispronounced speech for reliable training of
pronunciation error detection models.

We present a unified look at three different speech generation
techniques for detecting pronunciation errors based on P2P, T2S and
S2S conversion. The P2P, T2S, and S2S methods improve the accu-
racy of detecting pronunciation and lexical stress errors. The methods
outperform strong baseline models and establish a new state-of-the-
art. The best S2S method outperforms the baseline method (Leung
et al., 2019) by improving the accuracy of detecting pronunciation
errors in AUC metric by 41% from 0.528 to 0.749. The S2S method
has the ability to control many properties of speech, such as voice
timbre, prosody (duration), and pronunciation. This opens the door to
the generation of mispronounced speech that can mimic certain aspects
of non-native speech, such as voice timbre. The S2S method can be seen
as a generalization of the simpler methods, T2S and P2P, providing a
general framework for building a first-class models of pronunciation
assessment. For better reproducibility, in addition to using publicly
available speech corpora, we recorded the GUT Isle corpus of non-
native English speech (Weber et al., 2020). The corpus is available to
other researchers in the field.

In the future, we plan to extend the S2S method in order to generate
synthetic speech as close as possible to non-native speech: (a) we will
extract the voice timbre from the speech of non-native speakers and
transfer it to native speech, following the paper of Merritt et al. on text-
free voice conversion (Merritt et al., 2022), and (b) we will mimic the
distribution of pronunciation errors in non-native speech. We expect
both changes to increase the accuracy of detecting pronunciation errors
in non-native speech. In the long run, we hope to demonstrate that
‘‘synthetic speech is all you need’’ by training the model with synthetic
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Table 9
AUC, precision and recall [%, 95% Confidence Interval] metrics for lexical stress error detection models.
Model Model with attention Synthetic mispronunciations AUC Precision [%] Recall[%]

Att_TTS Yes Yes 0.62 94.8 (89.18–98.03) 49.2 (42.13–56.3)
Att_NoTTS Yes No 0.54 87.85 (80.67–93.02) 49.74 (42.66–56.82)
NoAtt_TTS No Yes 0.44 44.39 (37.85–51.09) 50.26 (43.18–57.34)
NoAtt_NoTTS No No 0.45 48.98 (42.04–55.95) 50.79 (43.70–57.86)
Ferrer et al. (2015) na na na 95.00 (na–na) 48.3 (na–na)
speech only and achieving state-of-the-art results in the pronunciation
error detection task. This may revolutionize computer-assisted English
L2 learning and CAPT. Moreover, such a paradigm may be transferred
to the whole domain of computer-assisted foreign language learning.
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