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Abstract 

In consecutive studies on flexomagneticity (FM), this work investigates 

the flexomagnetic reaction of a vibrating squared multi-physic beam in finite 

dimensions. It is assumed that the bending and shear deformations cause rotary inertia. 

In the standard type of the Timoshenko beam the rotary inertia originated from shear 

deformations has been typically omitted. It means the rotary inertia resulting from shear 

deformation is a new concept considered here. Thus, the novelty in this work is that 

the effect of shear deformation's rotary inertia (SDRI) on the FM response will be 

considered in detail. When it comes to nanosize, the well-posed nonlocal elasticity 

assumption of Eringen can be worth choosing. In this study, the weak form of 

strain-driven nonlocal theory, which means differential form, is taken into hand for 

easiness. The procedure of solution will be in regard to the advantage of the Galerkin 

weighted residual technique based on an analytical flow for the meta beam located 

at simply-simply ends. Verifications of the 
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mathematical model and solving steps come through macro and nanobeams concerning 

reputable literature. In pursuit of this step, several separate studies will show how SDRI 

and FM can influence each other. The observations give some new achievements in the 

series of studies on FM. It has been earned that the SDRI can directly impress the 

flexomagnetic feature of small-scale actuators. 

Keywords: Flexomagneticity; Vibration study; Multi-physic beam; Rotary inertia; 

Nonlocal elasticity 

Nomenclature: 

xx : Axial stress 

xz : Shear stress 

xx : Axial strain 

xz : Shear strain component 

11C : Elastic modulus 

31q : Component of the third-order piezomagnetic tensor 

zH : Component of the magnetic field 

xxz : Component of the higher-order hyper-stress tensor 

31g : Influence of the sixth-order gradient elasticity tensor 

33a : Component of the second-order magnetic permeability tensor 

xxz : Gradient of the axial elastic strain 

31f : Component of the fourth-order flexomagnetic coefficients tensor 

zB : Magnetic flux in the z direction 

ui (i=1,3): Displacement in the x- and z- directions 

z: Thickness coordinate 

u and w: Mid-plane's axial and lateral displacements 

 : Rotation of beam elements around the y-axis 

P : Works performed by external forces 

U : Strain energy 
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K : Kinetic energy 

t: Time 

ρ: Material density 

0
xN : Axial in-plane force 

xN : Axial stress resultant 

xQ : Shear stress resultant 

xM : Moment stress resultant 

xxzT : Hyper stress resultant 

sk : Shear correction factor 

 : Magnetic potential function 

 : External magnetic potential 

mZ : Residue of the equations 

0m ,  
1m , and 

2m : Mass moments of inertia 

( ) ( )
2 2

0nm e a = : Nonlocal parameter 

1. Introduction 

Due to the individual size effect, magnetic nanoparticles (MNP) have different 

mechanical, magnetic, and chemical properties compared to micro and macro MNP 

materials. Therefore, magnetic nanostructures are of great biological, medical, and 

engineering importance. In addition, magnetic nanoparticles have many applications in 

several industries, such as the oil industry, including targeted adsorption, remote sensing, 

transmission, and local heating. For these specific applications, the dispersion and 

stability of magnetic nanoparticles in suspensions are of great significance [1, 2]. 

Among magnetic nanostructured materials, metal oxide nanoparticles have an 

indispensable position due to their exceptional optical, magnetic, and electrical properties. 

The essential applications of metal oxide nanoparticles have been in a wide range from 
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biotechnology to various industries. Magnetic nanostructures are a type of metal oxide 

that can be used through an external magnetic field, and one can employ their properties. 

Due to the widespread use of magnetic nanoparticles in biomedicine, electronics, 

catalysts, and other areas, extensive studies have been conducted on various factors 

affecting their properties [3-6].  

The magnetic properties of nanomaterials depend on the physical structure (size and 

shape of the particles), the softness and flexibility, and the chemical phase of the particles. 

Magnetic nanoparticles are made from a wide range of magnetic materials. Due to their 

cheapness, good biocompatibility, proper magnetic dipole moment, and high stability, 

iron oxide and its related compounds are widely used compared to other metal bases of 

nanoparticles. It is also the most magnetic natural mineral on Earth. Another most helpful 

feature of nanoscale iron oxide is its hyper paramagnetic behavior. This property has 

created a variety of applications for it, such as magnetic resonance imaging, targeted drug 

delivery, cancer treatment, biosensors, optical applications, data storage, and chemical 

applications [7-11]. 

Piezomagnetic materials release the strain created by the deformation as a magnetic field. 

By attaching electrodes to these materials and then connecting them to a magnetic 

consumer, mechanical energy can be converted to magnetic power and vice versa. This 

phenomenon known as piezomagneticity occurring in a few ferrimagnetic and 

antiferromagnetic non-centrosymmetric crystals. It is characterized by a linear 

relationship between the system's mechanical strain and magnetic polarization. While 

mechanical deformation releases a magnetic field, this situation is called the direct effect 

of such magneto-elastic coupling. However, reversely, appearing mechanical 

deformations by the outer magnetic field is called the converse effect [12-15]. 

Piezomagneticity is a well-used phenomenon for designing sensors/actuators [16-18]. 

Howbeit, a more wonderful magneto-elastic coupling effect has already been discovered, 

called flexomagneticity [19, 20]. This effect is basically a consequence of induced 

magnetization and strain gradient correlation so that it may be found in any crystals with 

less limitation. As a whole, the flexomagnetic influence is still a little-known 
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phenomenon. Inadequate research on this subject is due to more difficulties with 

flexomagneticity than piezomagneticity. Outstanding strain gradients can be observed on 

smaller scales. Some carried out researches have endorsed that the flexomagnetic effect 

can be more important on the nanoscale than a macro one [19, 20].  

In recent years, a few number of groundbreaking investigations have been undertaken in 

the sector of flexomagnetic structures [19-32]. A characteristic relation of the 

flexomagneticity in piezomagnetic (PM) structures has been presented in the work of 

Sidhardh and Ray [19]. An external magnetic field has been produced in the attendance 

of inhomogeneous strain through thickness. The variational concept has been used to 

derive the corresponding boundary conditions and the governing equations for the 

magnetic and mechanical variables. These constitutive equations evaluate the magneto-

elastic (ME) structural response. The influence of FM on the bending response of a 

clamped-free PM nanosize beam is then determined by solving these differential 

equations. The influence of converse and direct flexomagnetic couplings on the ME 

reaction was also investigated using a variety of magnetic boundary conditions. A model 

of Euler-Bernoulli FM nanobeam has been examined in [20], which takes into account 

the impacts of surface elasticity, piezomagneticity, and flexomagneticity. The 

accompanying magnetic boundary conditions and dominant differential equations were 

engendered to examine the effects of reverse and direct FM couplings on the mechanical 

response. Using size-dependent theoretical solutions, the static bending deformations of 

the clamped, simply supported, and cantilever nanobeams have been determined. The 

beam has been exposed to concentrated or uniformly distributed loads. They showed that 

the FM enhances the bending rigidity apart from the boundary conditions. A two-

parameter flexomagnetic model in a cantilever beam has been studied using the 

Timoshenko beam model by [21]. The size effect phenomenon for a piezomagnetic 

substance has been studied using the strain gradient. The generic governing equations 

have been obtained using the virtual work's principle. The influence of FM on the 

Timoshenko piezomagnetic beam was studied by an analytical solution. Compared to the 

classical Timoshenko beam model, the numerical findings show that the deflections are 

diminished upon considering FM. When the beam thickness is reduced, the reduction of 
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deflection will be more severe. Malikan and his colleagues, in a series of publications, 

have investigated FM in copious conditions and extended the FM studies seriously. In the 

framework of the Euler-Bernoulli nanobeam, they captured nonlinear frequencies 

employing a nonlocal strain gradient model [22] for PM-FM nanosize tube structures. On 

the other hand, the first nonlinear bending analysis of PM-FM nanobeams has been 

performed by [23]. The earlier studies hired linear bending equations only. In [23], it was 

obtained that the nonlinear strains are crucial to considering FM. These researches keep 

going on the linear and nonlinear buckling [24], demonstrating this achievement that FM 

is more fundamental in a more minor degree of freedom boundary conditions. Malikan 

and Eremeyev [25] checked FM in a shear deformable PM nanobeam model and revealed 

that FM has been impressed by shear deformations. Malikan et al. [26], through 

microscale PM-FM structures, conducted research on the effect of the thermal 

environment on the stability of the specimen while various temperature distributions have 

been assumed. [27] inspected FM effect in a two-dimensional PM plate under biaxial 

compressions for the first time. The attained results exhibited that aspect ratio (ratio of 

length to width of the plate) can robustly affect FM response. As a preliminary research, 

ref [28] evaluated FM in functionally graded (FG) PM micro/nanostructures. More 

visibility of FM has been displayed in some particular FG nanobeams. Lastly, the surface 

effect as a dominant one on the nanoscale has been studied for a PM-FM nanobeam 

subjected to nonlinear deflections [29]. The prepared work ensured that the surface effect 

is efficacious in FM response. The influence of materials' imperfections inside the 

piezomagnetic-flexomagnetic structures has been discussed by dint of [30]. The 

imperfection has been assumed in the framework of porous and vacancies. A new scheme 

of study on flexomagnetic structures has been presented by [31]. The thermo-elastic 

coupling investigation has been modeled on the way of Lord-Shulman thermal 

conductivity theorem. The results promised new aspects to the studies of mechanics of 

multi-physics materials. Through the medium of a new fundamental flexomagnetic 

characteristic free energy relation, ref [32] based on both nonlocal integral and differential 

models, presented new findings in the category of meta structures. 
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The size effect shall be considered while the discussion focuses on the flexomagnetic 

response. The nanoscale is a finite-size domain promising a wide range of new aspects 

for mechanical analyses of meta structures. It can be analyzed theoretically in the body 

of advanced continuum mechanics. Hence, the effect of this minute size can be evaluated 

using several state-of-the-art elasticity approaches. Potent literature can be easily found 

on different nanoscale static and dynamic analyses. The nonlocal effect as the major 

impact at the nanoscale, in accord with the literature, is divided into two forms, stress-

driven nonlocal elasticity (SDM) proposed by Romano and Barretta [33] and strain-driven 

one expressed by Eringen [34]. The approaches such as strain-driven nonlocal elasticity 

are derived into two categories; the nonlocal differential model (NDM) and the nonlocal 

integral one (NIM). The first one is an approximation of the second one. What is more, 

the SDM is a well-posedness nonlocal model recently expanded further by [35-49]. 

Within this paper, we have employed the NDM of Eringen. In comparison with Eringen's 

NIM, the NDM is not always in a well-conditioned state. For example, some literature 

proved that for cantilever nanobeams, there would be some conflicts in the NDM results 

[50-52]. This meant that for clamped-free nanobeams in the dynamic conditions, the 

increase in value of the nonlocal coefficient causes increase in the material's stiffness. 

This is a paradoxical result compared with the other boundary conditions with the same 

status of the forces and material. Despite that, the NIM obliterates this inconsistency [53]. 

In addition to this, the SDM model also eliminates the aforesaid contradiction and can be 

well-dedicated to the mathematical modeling of nanoscale structures [35-49]. 

Nevertheless, on the use of NDM, in this paper, the simply-supported conditions will be 

taken into consideration only, which give consistent results based on the above-mentioned 

nonlocal models. Considering other boundary conditions is out of the scope of this study. 

Given that nanobeams are known as one of the main elements in nanostructures and have 

several applications in the field of nanotechnology, they should be studied in terms of 

properties and mechanical behavior under different conditions. The purpose of 

investigating the vibrations of magnetic nanobeams is to evaluate the performance of 

piezomagnetic/flexomagnetic features in an oscillating state. However, a nanobeam may 

be consciously or unconsciously exposed to an external magnetic field, and this field will 
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undoubtedly affect the performance of the nanobeam. Therefore, in this research, the free 

vibrations of piezo-flexomagnetic meta beams under the effect of external magnetic load 

are investigated to prevent errors in nanobeam applications and perform a more 

appropriate design. To investigate the vibration behavior of finite beams, first, using the 

traditional Timoshenko model the constitutive relations established. Then the modified 

Timoshenko beam based on adding rotary inertia effect caused by shear deformations 

supplies new equilibrium equations. All governing equations and boundary conditions 

have been extracted using Hamilton's principle. The Timoshenko beam is improved by 

considering the shear deformations' rotary inertia (SDRI), and the results of both beam 

theories are compared to each other. Cause that the derivation of equations takes into 

account the geometric effect (von Kármán strain), the final governing equations, which 

are in the form of magneto-elastic coupling, are also linear. To solve these equations, the 

weighted residual method has been used. In the results section, first, the results of this 

paper are validated, and then the magnetic field generated under external load is extracted. 

In addition, the flexomagnetic response of the beam under the presence of SDRI is also 

compared with when the SDRI is absent. 

2. Mathematical modeling 

The simply-supported nanobeam has been figured (Fig. 1). The beam has been adjusted 

in the Cartesian coordinate system where z coordinate has been assumed along with 

specimen height. Furthermore, the x-axis has been located along the model length. In 

addition, geometry is defined where h is thickness/height for the square cross-section, and 

L is used for the length. Finally, the restraints and pinned on both sides have been 

considered rigid, and the beam is deformable only.  
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Fig. 1. The schematic geometrical shape and physical conditions of the assumed 

nanobeam 

To capture flexomagnetic coupling, there are three well-positioned constitutive magneto-

elastic relations illustrated below [19, 20] 

11 31xx xx zC q H = −                                                                                                                     (1) 

31 31xxz xxz zg f H = −                                                                                                                     (2) 

33 31 31z z xx xxzB a H q f = + +                                                                                                           (3) 

where the appeared components and coefficients are introduced in the nomenclature 

section.  

Vibrations and propagation analyses will be done concerning Timoshenko kinematic 

field, and the dynamic equilibrium equations will be formulated based on using Eq. 4 [54] 

( )

( )

( )

( )
1

3

,

, , ,

, z x t

x z t w x t

u x  z,t

u

     
=  


 
    

                                                                                                                         (4) 

The conventional scheme of Lagrangian strain can be found in [32]. So then one can 

develop Lagrangian strain with respect to Eq. (4) in order to derive the consistent strain 

relations as shown by Appendix A, 

The typical Hamilton's principle enables us to generate constitutive equations,  

( )
2

1

0

t

t

P U K dt  − + =                                                                                                                          (5) 
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Shortly, when the variational operator (  operator) is imposed on a derivative, one 

obtains   ( )dy dx d y dx = . This operator plays the primary role to find governing 

equations. Physically, the total potential energy of a medium has been supposed to variate 

scantily. Then, the governing equations of deformations of the media have been achieved. 

The total strain energy of the present nanosystem can be given as, 

( )1

2
xx xx xz xz xxz xxz z z

V

U B H dV     = + + −                                                                (6) 

Using kinetic energy, one provides the mass inertia terms as, 

( )
222

2

311

2


−

    
= +          

 
h/

h/ A

K z,t dAdz
u

t

u

t
                                                                             (7) 

Enforcing the variational technique on Eqs. (6) and (7) induces relations existed in 

Appendix A as governing equations. 

In order to implement the effect of the lateral magnetic field, one uses the below relation 

defining external work performed by the field, 

2
0

0

1

2

 
=  

 

L

x

w
P N dx

x
                                                                                                                        (8) 

Afterward, imposing a small variation by using the delta operator on Eq. (8) extends it as 

available in Appendix A.  

To remind that the in-plane compressive force which causes contraction in the magnetic 

nanobeam is precisely the load mentioned below, 

2
0

31

2

h/

x

h

N q dz
h

−


= −                                                                                                                                        (9) 

Classical and magnetic stress resultants are available in the literature [32] as, 

   
/2

/2

, , , , , ,

h

x x x xxz xx xx s xz xxz

h

N M Q T z k dz   
−

=                                                                        (10) 

Note that the value of the shear correction factor has already been calculated for an 

isotropic macro-structure in some special boundary conditions. Although an exact value 

of this coefficient has not still been computed for different nonlocal structures, the amount 

of 5/6 is of use to some extent [55, 56].  
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As the present mechanical model is one-dimensional, the transverse magnetic field has 

been assumed as [19, 20] 

0zH
z


+ =


                                                                                                                                (11) 

Let us deem that the magnetic potential is absent at the bottom of the beam and highest 

at the top [19, 20], 

2

0

2

h

 
h


 
+    

 =   
  −

  

                                                                                                                            (12) 

Let us combine Eqs. (3), (11), (12), and 
MagU  relation mentioned in Appendix A, then 

one can produce the following relations, which are associated with magnetic potential 

function and vertical magnetic field component, 

2
231

332 4 2

q h h
z z

a x h

     
 = − + +        

                                                                                          (13) 

31

33
z

q
H z

a x h

 
= − −


                                                                                                                   (14) 

Subsequently, the governing equations can be developed on the basis of Eqs. (6-8) as, 

2 2
0

02 2

x
x

Q w w
N m

x x t

  
+ =

  
                                                                                                           (15) 

2

1 2

x xxz
x

M T
Q m

x x t

  
+ − =

  
                                                                                                                  (16) 

This study is the first to implement rotary inertia caused by shear deformations into a 

piezomagnetic nanobeam. The following equation defines the angle of rotation of the 

beam containing shear ( ( )x,t ) and bending ( ( )x,t ) slopes of the neutral axis as follows 

[57], 

( )
( ) ( )

w x,t
x,t x,t

x
 


= +


                                                                                                           (17) 

The shear deformation causes rotary inertia, which is commonly disappeared in the 

standard model of the Timoshenko beam. This effect is related to the shear slope of the 

neutral axis. Indeed, the shear slope is a result of shear deformations.  

To include this impact, Eq. (16) shall be modified as, 
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3

1 2

x xxz
x

M T w
Q m

x x x t

  
+ − =

   
                                                                                                                  (18) 

The expressions of the governing equations can be re-written as, 

2 2
0

02 2

x
x

Q w w
N m

x x t

  
+ =

  
                                                                                                          (19) 

3

1 2

x xxz
x

M T w
Q m

x x x t

  
+ − =

   
                                                                                                                  (20) 

When the discussion is confined to nanomaterials, a nonlocal effect is inevitable. This 

nanoscale property can be mathematically shown by the weak form of the nonlocal theorem 

of Eringen as follows [34], 

2

2
1 ij ijkl ijC

x
  

 
− = 

 

                                                                                                                    (21) 

in which ( ) ( )
2 2

0nm e a =  expresses a length scale characteristic which is the so-called 

nonlocal parameter. Here e0 can be a nonlocal constant whose values are dependent on 

boundary conditions, nanomaterial structures, and other factors [58]. Moreover, a  can be 

the connection length (e.g., two carbon atoms in the case of carbon nanostructures [59]). 

The value of the nonlocal coefficient can be varied in the range 00 2e a  nm+    

depending on boundary conditions, molecular arrangements, media dimensions, and other 

criteria. The relation (21) explains that stress at a point is dependent on the strain at the 

same point and the neighboring points on a nonlocal media. If we re-write Eq. (21) 

regarding this definition, it would be ( )2

ij ijkl ij ijkl ijC C   = +  . From a mathematical 

point of view, the Laplace operator calculates an average of a group of quantities in a 

region. Thus, the nonlocal stress relation here is divided by strain and the average of 

strains in the neighborhood. The second one defines the strain dependency on the 

neighborhood to the main point. In actuality, this differential relation is just a simpler 

description of the integral model of the nonlocal elasticity of Eringen. 

By writing stress and hyper stress components, it gives 

2
31 31 31

312
33

1 xxz

q f z f
g

a x hx


 

    
− = + +        

                                                                      (22) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


22
31 31

112
33

1 xx

q q
z C

a x hx


 

   
− = + +         

                                                                           (23) 

2

2
1   
   
− = +        

xz

w
Gh

xx
                                                                                                    (24) 

One can obtain nonlocal stress and hyper stress resultants by way of Eq. (10) and Eqs. 

(22-24), 

2

5 62
1 xxzT I I

x x




  
− = + 

  

                                                                                                       (25) 

2

22
1 xM I

x x




  
− = 

  

                                                                                                                (26) 

2

442
1 x

w
Q H

x x
 

   
− = +   

   

                                                                                                     (27) 

where the assigned letters are defined as appeared in Appendix B.  

Let us unroll Eqs. (26) and (27) by further clarification by dint of Eqs. (19) and (20) as, 

3 2 2 4
0

5 0 1 23 2 2 2 2x x

w w w
M I N m m I

x x t x t x

 

     

= − + − − + 
      

                                                (28) 

3 3
0

0 443 2x x

w w w
Q N m H

x x t x
 
    

= − − + +   
     

                                                                        (29) 

Now it is possible to expand Eqs. (19) and (20) on the basis of Eqs. (28) and (29) as, 

Timoshenko model with neglecting SDRI: 

2 2 2 2
0

0 442 2 2 2
1 0x

w w w
N m H

x x t x x




        
− − + + =    

        
                                                  (30) 

2 2 2 2

5 1 44 22 2 2 2
1 0

w
I m H I

x x t x x

  
 

       
− − − + + =    

       

                                               (31) 

Timoshenko model with considering SDRI (Eq. 30 is here the same and was not re-

written): 

2 2 3 2

5 1 2 442 2 2 2
1 0

w w
I m I H

x x x t x x

 
 

       
− − + − + =    

        

                                         (32) 

Note that the FM parameter did not appear in Eqs. (30-32). The reason is the strain 

uniformity. If the axial strain is considered a non-uniform distribution, the parameter will 
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remain in the final equations. However, these equations are still valid for a PFM structure. 

Also, the results will not be erroneous since the value of the FM coefficient compared to 

that of the strain gradient parameter (g31) is relatively insignificant. In fact, g31 is a 

determinative factor in analyzing flexomagnetic structures. The amount of this quantity 

is still obscure, and it also may not be a constant value. However, in this paper, the value 

of the strain gradient factor is considered equal to the crystalline size of the selected 

material. 

Dimensionless parameters provide a more straightforward solution; therefore, one can 

introduce the terms collected in Appendix B. Thereupon, one can rewrite Eqs. (30-32) as, 

1) Piezo-flexomagnetic (PFM) Timoshenko nanobeam with excluding SDRI (TB): 

2 2 4 4 2

2 2 4 2 2 2
0* * * * *W W W W W

N N H
X X X X X

 
        

− − − + + =   
         

                          (33) 

2 2 4 4 2

1 12 2 4 2 2 2
0* ** * * * W

g M g M D H
X X X X X

            
− − − + − + =   

        

         (34) 

2) Piezo-flexomagnetic (PFM) Timoshenko nanobeam with taking SDRI (RI) (Eq. 

33 is here the same and was not re-written): 

2 3 4 5 2

1 12 2 4 3 2 2
0* * * * * *W W W

g M g M D H
X X X X X X

          
− − − + − + =   

         

  (35) 

3. Solution process 

With the understanding of the Galerkin weighted residual process solution, vibrations 

equations are getting solved depending on simply-supported ends, in this section. This 

analytical method develops and expresses algebraic equations via determined functions 

applied for medium's end conditions. And then, in order to report numerical results, the 

acquired relations have to be solved [28].  

There have been two unknown terms in the frequency relations, ( )W X  and ( )X , 

where the proceeding of the solution will start by introducing the following functions for 

each of them, 
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( )

( )

( )

( )
( )

1

,
exp

,

N
m

m m

W X a X
i

X b X=

      
=    

       
                                                                                                (36) 

where ma  and mb  are corresponded  to 

( )

( )

( )

( )
( )

1

0

m m

m

m m

a X W X
Z X dX

b X X

      
=   

      
                                                                                                       (37) 

To obtain 
mZ , one must substitute Eq. (36) into the final equations and place the residue 

in Eq. (37). As mentioned earlier, the simply-supported end conditions (S) have been 

discussed in this paper. To do this, some well-posed trigonometric functions are utilized 

as follows, 

( )

( )

( )

( )

sin

cos

m

m

W X m X

X m X





      
=   

      

                                                                                                                 (38) 

We here assume that the functions of Eq. (38) are able to satisfy the simply supported 

boundary conditions ( 0XW M= = =  at 0,1X = ). 

Fill in Eqs. (33-35) in accord with Eq. (36) yields the equations emerged in Appendix C. 

How the natural frequency is calculated is also briefly mentioned there. 

4. Discussion and numerical results 

4.1. Results accuracy 

Here we verify our results and exhibit the accuracy of the formulation and solving 

method. Firstly, with the help of the robust Abaqus software, Table 1 has been prepared, 

in which the natural frequency based on Hertz for a macro beam with specifications 

mentioned at the top of the Table has been calculated. The variable in the Table is the 

slenderness coefficient, which is the ratio of length to beam's thickness. Assuming a 

moderately thick beam to a thin beam, the calculations have been completed. A 

comparison of the results of Abaqus and the present ones clearly shows the good accuracy 

of the outcomes of the present work. The thinner the beam, the further the accuracy will 

obtain. 
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Although by presenting Table 1 the proper precision of the relations and the method of 

solving the present work can be confirmed to some extent, it is necessary to compare the 

results for a nanoscale beam. This was achieved by means of authoritative reference [60] 

and by preparing Table 2. In this part, the dimensionless beam is analyzed with the 

mentioned properties at the beginning of the Table. Here, too, the calculations of the 

present work can be realized with reasonable exactness. Moreover, this accuracy may 

increase as the value of the nonlocal parameter increases. A column is also added to both 

Tables providing the error percentage of the results based on the subsequent relation, 

100
present reference

erf %
reference

−
=                                                                                                       (39) 

Table 1. Validation of formulation and solution based on Abaqus for a squared macro beam 

(C11=210e3 MPa, υ= 0.3, h=10 mm, ρ=2.2 tonne/mm3, SS) 

ω (Hz) 

L/h Present Abaqus Erf% 

10 0.86842 0.86601 0.27828 

12 0.60554 0.60435 0.19690 

14 0.44599 0.44534 0.14595 

16 0.34202 0.34163 0.11415 

18 0.27054 0.27029 0.09249 

20 0.21931 0.21915 0.07300 

22 0.18135 0.18124 0.06069 

24 0.15246 0.15238 0.05250 

26 0.12995 0.12989 0.04619 

28 0.11208 0.11204 0.03570 

30 0.09765 0.09762 0.03073 

32 0.08584 0.08582 0.02330 

34 0.07605 0.07603 0.02630 

36 0.06785 0.06783 0.02948 

38 0.06090 0.06088 0.03285 

40 0.05496 0.05495 0.01819 

Table 2. Validation of formulation and solution for a squared nanobeam (C11=10e6, υ= 0.3, 

ρ=1, h=1, SS) 
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L/h μ Present 
[60] 

Timoshenko 
Erf% 

100 0.0 9.8679 9.8683 0.0040 

0.5 9.6331 9.6335 0.0041 

1.0 9.4143 9.4147 0.0042 

1.5 9.2097 9.2101 0.0043 

2.0 9.0179 9.0183 0.0044 

2.5 8.8377 8.8380 0.0033 

3.0 8.6678 8.6682 0.0046 

3.5 8.5074 8.5077 0.0035 

4.0 8.3555 8.3558 0.0035 

4.5 8.2115 8.2118 0.0036 

5.0 8.0747 8.0750 0.0037 

     

20 0.0 9.8281 9.8381 0.1016 

 0.5 9.5942 9.6040 0.1020 

 1.0 9.3763 9.3858 0.1012 

 1.5 9.1726 9.1819 0.1012 

 2.0 8.9816 8.9907 0.1012 

 2.5 8.8020 8.8110 0.1021 

 3.0 8.6328 8.6416 0.1018 

 3.5 8.4730 8.4816 0.1013 

 4.0 8.3218 8.3302 0.1008 

 4.5 8.1784 8.1867 0.1013 

 5.0 8.0421 8.0503 0.1018 

     

10 0.0 9.7075 9.7454 0.3889 

 0.5 9.4765 9.5135 0.3889 

 1.0 9.2612 9.2973 0.3882 

 1.5 9.0600 9.0953 0.3881 

 2.0 8.8713 8.9059 0.3885 

 2.5 8.6940 8.7279 0.3884 

 3.0 8.5269 8.5601 0.3878 

 3.5 8.3690 8.4017 0.3892 

 4.0 8.2196 8.2517 0.3890 

 4.5 8.0780 8.1095 0.3884 
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 5.0 7.9434 7.9744 0.3887 

4.2. Frequency analysis 

This sub-section is prepared to analyze the natural frequency of the nano-actuator 

assumed in this work. The numerical results will be provided for an actual and physical 

model to make the present problem realistic. For this aim, according to Table 3 [19, 20, 

61], the natural frequencies of the CoFe2O4 composite nanomaterial have been calculated. 

Table 3. Properties of the magnetic nanosize structure 

 

 

 

4.2.1 Slenderness ratio 

Let us now study the different physical and environmental states of the modeled 

nanobeam. First of all, let us get started on the study by examining the various values of 

the vital parameter of the slenderness coefficient. As it is already known, this coefficient 

is the product of dividing the length by the thickness of the beam, which is valid for macro 

beams as well as nanobeams. This coefficient indicates the importance of shear 

deformations. So that the selected value of 5 to 11 can indicate the thick and relatively 

thick area of the beam. Fig. 2 is investigated for piezomagnetic nanobeams based on the 

hypothesis that in one case, the beam follows the Timoshenko model (TB), and in the 

other case, the beam has a rotational inertial effect (RI) due to shear deformations (SDRI). 

The results are presented for the first frequency mode. The results of the figure show that 

when the amount of slenderness coefficient is smaller (beam is thicker), the SDRI effect 

increases. This result makes sense because the thicker the beam, the more urgent the shear 

deformations. It is noteworthy that the SDRI increases the stiffness of the nanobeam and 

thus increases its natural frequency. 

CoFe2O4 

C11=286 GPa, ν=0.32 

ρ=4.89 kg/dm3 

q31=580.3 N/A.m 

a33=1.57×10-4 N/A2 
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Fig. 2. Variations of the dimensionless frequency with slenderness ratio for RI and TB 

for various nonlocal coefficient values (N*=1e-4, m=1, PFM) 

4.2.2 Nonlocal factor 

The importance of investigating the additional small-scale parameter in the mechanical 

analysis of nanostructures with respect to references has been well-established. Therefore, 

this study evaluates the effect of different numerical values for this parameter to 

determine its effect on the analytical model. Fig. 3 shows the location for the local beam 

using Г=0. The maximum value of Г is also selected to be 0.015. Four cases can be seen 

in the diagram. Piezo-flexomagnetic nanobeam (PFM) in RI and TB modes and 

piezomagnetic nanobeam in the two mentioned cases. There is no flexomagnetic effect in 

piezomagnetic nanobeams (PM). As it turns out, the nonlocal parameter has a decreasing 

effect on the beam frequency while using the SS case. A closer look at the figure suggests 

that the flexomagnetic effect will be more significant at higher values of the nonlocal 

parameter. In fact, the results for PFM small scale beams will go slightly away from those 

of PM in larger values of Г. 
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Fig. 3. Influence of flexomagneticity on dimensionless frequency versus nonlocal 

parameter for RI and TB (L/h=8, N*=1e-4, m=1) 

4.2.3 Frequency mode number 

Drawing a series of diagrams 4 to 7 enables us to thoroughly investigate the effect of 

frequency modes on the behavior of magnetic nanobeams in the two cases; the standard 

Timoshenko beam and the modified Timoshenko beam including SDRI. All four figures 

are drawn for frequency modes 1 to 6. Fig. 4 represents the results in four nanobeams 

cases. Piezo-flexomagnetic nanobeams with SDRI (PFM-RI) and without it (PFM-TB) 

and then piezomagnetic nanobeams with SDRI (PM-RI) and without it (PM-TB). The 

first result that can be obtained is that the difference between results of PFM nanobeams 

and those of PM will be more tremendous at higher frequency modes. This means that 

the effect of flexomagnetic will be more significant in higher frequency modes. 

Interestingly, this increase is greater in the TB beam than in the RI beam. In fact, it can 

be here seen that FM will be affected by SDRI. On the other hand, another conclusion 

that can be drawn from this figure is that increasing the frequency modes increases the 

importance of SDRI. This increase occurs further for the PM beam than the PFM beam 

between the TB and RI cases. 
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Fig. 5 is a sequel to Fig. 4, indicating the frequency modes in different slenderness 

coefficients. The foremost apparent achievement of this figure is that in higher frequency 

modes and thicker beams, the effect of SDRI will be very significant. However, the 

difference between TB and RI will be more negligible at larger slenderness ratios. 

Another consequence of this figure could be that the results curve of the frequency modes 

will be nonlinear with larger curvature for thicker beams. This is apparent in the case of 

increase of the mode numbers. However, moving the beam to a relatively thick and thin 

area, increasing frequency modes involves an almost linear increase in frequency. 

Fig. 6 is almost similar to Fig. 5 but with minor differences. In this figure, the larger in-

plane force has been chosen. As seen, the results have changed completely. It is here 

observed that the thinner the beam, the more the natural frequency. However, the 

important result of the previous figure is still valid, and here, too, the effect of SDRI is 

greater in the thicker beam. 

Finally, Fig. 7 in this section is drawn by not considering the in-plane force and removing 

this force. The results and behavior of the diagram are very similar to those in Fig. 5. 

However, the point to consider here is the greater discrepancy between the results of RI 

and TB beams. Actually, it is possible to deduce that the less the in-plane force, the greater 

the effect of SDRI. 
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Fig. 4. Variations of dimensionless frequency versus mode numbers for various 

structures (L/h=8, N*=1e-4, Г=0.01) 

 

Fig. 5. Influence of slenderness ratio on dimensionless frequency in different mode 

numbers (N*=1e-4, Г=0.01) 

 

Fig. 6. Variations of the dimensionless frequency with mode numbers for different 

slenderness ratios (N*=1e-2, Г=0.01) 
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Fig. 7. Influence of frequency mode numbers on dimensionless frequency in several 

slenderness ratios and absence of axial magnetic force (N*=0, Г=0.01) 

4.2.4 In-plane force 

The in-plane compressive force resulting from the transverse magnetic field leads to the 

contraction of the magnetic nanobeam. According to the research background, increasing 

the amount of this force leads to increasing the material's stiffness. The result is also seen 

in Fig. 8. In this case, the higher the force values, the higher the natural frequency of the 

magnetic nanobeam. However, the change of the values of this force does not affect the 

behavior of ordinary nanobeam (NB), which is quite reasonable. Because ordinary 

nanobeams do not have magnetic properties and will not naturally react in the magnetic 

field against the potential of an external magnet. 

Moreover, if one pays attention to the numerical values of the graph, two interesting 

results will be extracted. First, as the in-plane force increases, the PM/PFM beam's results 

diverge in both TB and RI modes. This means that the in-plane force affected the SDRI. 

The second result is that as the axial load enlarges, the TB/RI beam's results will be closer 

in PFM and PM states. This implies that increasing the longitudinal magnetic force 

reduces the flexomagnetic effect of the material. 
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Fig. 8. Comparison of the frequency response of different nanostructures by variations 

of axial magnetic force (L/h=8, m=1, Г=0.01) 

5. Conclusions 

The most intention of this article is to explore and estimate the impact of shear 

deformation's rotary inertia (SDRI) on the flexomagnetic response of a piezomagnetic 

actuator. The actuator has been implemented in a small-scale one-dimensional beam 

framework. A converse magneto-elastic coupling effect has been assessed based on the 

particular case of magnetic boundary conditions on the beam's transverse topmost and 

bottommost surfaces. The supposed magnetic field is imposed in line with the lateral 

dimension of the beam. The beam is theoretically modeled by the common Timoshenko 

beam approach as well as a modified version of the Timoshenko beam on the basis of 

SDRI. In the contractual Timoshenko model, the rotary inertia results from bending; 

however, in the new version, the shear deformation itself generates rotary inertia. 

Employing these beam models and the nonlocal continuum hypothesis demonstrated 

characteristics equations for wave propagation and vibrations. And then, utilizing an 

analytical flow on the basis of the Galerkin weighted residual technique re-derived the 

constitutive equations in terms of algebraic ones. At long last, in order to compute natural 

frequencies, the attained algebraic equations will proceed further by a solution step in 

Matlab. Thereafter, results have been discussed detailedly with respect to various 

0.32

0.34

0.36

0.38

0.4

0 1 2 3 4 5

D
im

en
si

o
n
le

ss
 f

re
q

u
en

cy

N* (1e-4)

TB-PFM RI-PFM

TB-PM RI-PM

TB-NB RI-NB

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


significant factors influencing the nano actuator's mechanical behavior. The efforts of this 

research work have indicated the following findings, 

• Small-scale evaluation has led to further notable flexomagneticity. 

• Higher frequency modes give a more prominent flexomagnetic response. 

• The SDRI affects the flexomagnetic response of the nanobeam. 

• The impact of SDRI has been remarkable while the actuator looks thicker, and the 

situation is for higher frequency modes. 

• The in-plane load originating from the magnetic field affects the SDRI, and the 

smaller values of this force bring SDRI further practical. 

Appendix A: 

Strain and hyper strain fields: 

xx z
x





=


 

xz

w

x
 


= +


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xxz

z x

 

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= =

 
 

Governing equations: 

1
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2 2

2

2 0 2 0

0
  

  
− −

      
=  +  =   

      
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

  
=  
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
L

x

w w
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x x
 

where index 2 is used to show boundary conditions relations, and index 1 is dedicated to 

denoting governing equations. 

Appendix B: 

Material inherent parameters: 

   
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Appendix C: 

AC-1: 
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The determinant of the coefficients matrices illustrated by AC-1&2 simply render 

polynomial algebraic equations whose solutions grant the dimensionless natural 

frequencies. These polynomial equations are derived respectively with a few efforts as, 

AC-3: 4 2 32
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AC-4: 
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The solutions of AC-3&4 are performed with the Matlab package leading to natural 

frequencies. 
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