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A new method of wind farm active power curve estimation based
on statistical approach

Abstract. The purpose of this paper is to solve the wind farm active power estimation problem, introducing the method which is based on a statistical
approach and robust fitting. The proposed algorithm uses a statistical approach and compared to existing ones - includes a wind direction as well as
the influence of turbine start-up procedure on the estimation. The results show that additional estimation inputs i.e. the wind direction and the turbine
state, improve the accuracy of estimated power. Estimation root mean square error captured over three days never exceeded 2%.

Streszczenie. W niniejszym artykule opisany zostat sposob na rozwigzywanie problemow zwigzanych z estymacjg mocy czynnej generowanej przez
farmy wiatrowe. W opracowanej metodzie postuzono sie podejsciem statystycznym. W odrdznieniu od przedstwionych w literaturze metod, do
wyznaczania krzywej mocy czynnej wykorzystano predkos¢ i kierunek wiatru a takze analizowano stany przejsciowe turbin wiatrowych. Opracowany
alogorytm pozwala na wyznaczanie mocy czynnej badanej, rzeczywistej farmy wiatrowej z btedem nie przekraczajacym 2%. (Nowa metoda estymacji

krzywej mocy opara na podejsciu statystycznym)
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Stowa kluczowe: Estymacja mocy czynnej, energia wiatrowa, farmy wiatrowe, moc czynna farmy wiatrowej, dopasowanie odporne

Introduction

The share of renewable energy resources in the global
energy sector is constantly growing as well as greenhouse
gases limits [4]. Wind energy holds a promising answer to
the problems of world economies which are looking for non-
polluting and cost effective resources without using fossil fu-
els. Analyses show that in 2019 over 11% of the electricity
produced in the world came from renewable resources, in-
cluding 62% from hydro-power. In 2018, the total installed ca-
pacity power available from wind turbines increased by 10%
compared to 2017 and finally reached 591 GW [9] e.g. in
Denmark, 41% of the energy comes from wind turbines, in
Ireland 28%, in Portugal 24%, and in Germany 21%.

Due to the variable and unpredictable nature of wind en-
ergy, increasing the share of this source in the energy sys-
tem poses many difficulties [7],[8]. One of them is the diffi-
culty of accurately estimating the amount of energy produced
by wind farms, as well as the difficulty of maintaining a con-
stant frequency in the system, balancing power, power qual-
ity and voltage support [3]. These problems greatly compli-
cate the integration of wind farms into existing energy sys-
tems [2],[16].

Therefore, methods allowing for forecasting the power
generated by wind farms based on the strength and speed of
the wind (the power curve) are crucial for mitigating the unde-
sirable effects of connecting the wind energy conversion sys-
tem with the existing power system [21],[30]. These methods
allow to maintain the reliability and stability of the system due
to the uncertainty and variability of the amount of electricity
generated by wind farms [17], which positively affects the op-
eration of the Transmission System Operator (TSO) [24].

Power curve-based estimation algorithms can also be
successfully applied in wind farm performance monitoring
systems [21]. These systems are particularly important due
to frequent failures of wind turbines caused by changing op-
erating conditions, which result in increased operating and
maintenance costs [1],[19].

Based on the literature [14],[31] it might be concluded
that the reference power curve (which is necessary to esti-
mate the output power), provided by the manufacturers, dif-
fers significantly from the empirical measurement data. In
some cases real data show that a wind turbine has never
reached nominal power of the forecasting process. It hap-
pens because theoretical power curves supplied by manufac-

turers assuming ideal meteorological and topographical con-
ditions. In practice, however, wind turbines are never used
under ideal conditions [29]. Mainly the wind power forecast-
ing model errors results from the Numerical Weather Predic-
tion (NWP) component [13]. These discrepancies may signif-
icantly affect the wind power forecast. Therefore it is impor-
tant that used model should reflects the real state as well as
possible.

There are a number of statistical methods for estimat-
ing the power curve [5]. Among them, parametric and non-
parametric methods can be distinguished [28]. Parametric
methods are based on mathematical models defined on the
basis of functions and coefficients describing the power of
a wind turbine [22]. In the literature, the following paramet-
ric models are distinguished: segmented linear models [18],
polynomial regression [12],[6], and models based on proba-
bilistic distributions such as four- or five parameter logistic
distributions [28]. The limitation of these methods is their
global nature and sensitivity to anomalies occurring in obser-
vations. This creates difficulties in the accurate estimation of
the power curve in the entire considered wind turbine opera-
tion range [29].

The second type of methods for estimating the power
curve of wind turbines are non-parametric methods. Com-
pared to parametric methods, these methods are less restric-
tive, they are also much more resistant to the occurrence of
outliers, which makes it possible to model the power curve
with greater accuracy in a wider range [29]. Non-parametric
methods include neural networks [3],[25],[23], fuzzy logic [27]
and data mining methods [20].

Most of methods presented in the literature do not take
into account e.g. the wind turbine startup dynamic, which as
shown latter in this paper introduce a substantial error. Also
only wind speed is considered as input for the methods men-
tioned, but based on the fact that wind direction changes con-
tinuously, it seems rational to include this parameter into an
estimation procedure. Moreover, most of the methods do not
use measurement data from real-world objects [26] or use
data from small turbines [28]. Therefore, the new method
based on statistical approach was proposed. Furthermore,
calculations are based on real world operation data (90 MW
wind farm in north of Poland) and unlike existing methods,
the data is downloaded directly from the SCADA system with
timestamp of seconds (meanwhile in literature sampling in
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minutes scale is used). The paper is organized as follows:
after the introduction a short description of wind turbines fun-
damentals is presented. Then field data analysis and error
calculations are shown. The next chapter describes a new
method of an active power estimation and presents the re-
sults of simulations. The last chapter concludes the paper.

Contribution

Wind turbines manufacturers provide nominal (cata-
logue) curves of a turbines active power, however based on
available literature [16],[21],[30] and own observations, it can
be noticed that they differ significantly in comparison to data
obtained from the existing objects. This is because the power
rating of a single turbine unit is given by the manufacturer for
certain standard external conditions and at an optimum set-
ting in relation to wind direction and a certain control method.
Not only the instantaneous value of the wind but also the dy-
namics of its parameters (wind direction and speed) play an
important role in power generation. As a result, the actual
power output may be lower than would be expected for a
given wind condition. Those differences are the reason for
taking up the subject.

Furthermore, the Transmission System Operator (TSO)
is interested in using wind farms to support the frequency
control of the high voltage system. To use a wind farm as
the system service, TSO needs to know the maximum avail-
able active power of a wind farm. Accuracy of the information
is crucial to know the exact range of operation and for set-
tlement reasons. To solve the power estimation problem, a
method based on a statistical approach was adopted. The
algorithm presented in this paper has taken data for learning
and verification from the existing object as opposed to many
results presented in the literature. One can assume that the
estimator can be implemented on PLC (Programmable Logic
Controller) hence, it was supposed to have a low computa-
tional cost and be relatively straightforward. The proposed
method based on the statistical approach fulfils the assump-
tions made above.

Based on data from the real object, one can notice that
not only the speed of the wind is significant for estimation
purposes, but wind direction as well. Wind can change its
direction and speed rapidly, and it is not always related to
changing the gondola direction in the optimal direction to the
wind. It causes estimation error, as has been presented in the
paper. As shown in the paper the proposed method improves
the precision of the estimator by adding a wind direction vari-
able. The next important element additionally included in the
proposed method was the dynamics of switching a wind tur-
bine on. That can take place multiple times per day and af-
fects the actual range of the turbine active power. All the
above-described features of our algorithm improve the accu-
racy of estimation in comparison with catalogue curves. They
also can be easily implemented on a PLC at the same time.
The pilot program run of the algorithm on described windfarm
proves its effectiveness.

Power curve fundamentals

Wind turbines active power depends on several vari-
ables. The Eq. 1 shows that the factor which influences out-
put power the most is the wind speed v. Because the variable
is cubed, even small fluctuation can cause a significant differ-
ence in output power P. Air density, which changes during
the day or seasons, also has an impact on output power, but
it will not be considered in this paper. Parameters such as C),
(resulting from Betz’s law) and A are constants for a specific
wind turbine.

1

where P is generated power, C), power coefficient, p air
density,  wind speed and A blades area.

Wind turbines have operating limits called the cut-in and
cut-out. The first one is also known as the generation thresh-
old. When wind speed exceeds this limit the turbine turns on.
Beyond rated power, a turbine controller tries to keep output
power constant until wind speed reaches a cut-out value. Af-
ter that point wind turbine turns off. Turbines are designed so
that most energy is generated below the rated wind speed.
The manufacturer provides a range where the rated power is
generated. In that range both energy and cost are taken into
consideration. All mentioned constraints are given by

rO it v <Veut—in
2) P, = { %O;DPAUS ?f Veut—in SV < Up
P, it v, < v <Veut—out

tO if v> Veut—out

where:

Pr - rated power,

v - input wind speed,

v, - rated wind speed,
Veut—out - CUt Off wind speed,
Veut—in - CUt IN wind speed.

Eqg. 2 can be represented as Fig. 1 which is called a
power curve. One can divide it into three areas (1, Il, lll) based
on wind speed values ranges. In the first area (1), below rated
power, a turbine works with maximum efficiency to generate
as much power as possible for current weather conditions.
The second one (ll) is a transition area, where the controller
keeps rotor torque and noise low. Finally, third area (lll) is
beyond rated wind speed where output power is limited by a
turbine controller. In this area, pitch controller changes the
blades pitch angle to maintain certain output power and rotor
speed.
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Fig. 1. Wind turbine perfect power curve

The angle of attack is increased by stalling a wind tur-
bine, causing flat side of blades face into the wind. But when
the angle is exceeded and air no longer streams smoothly
over the blades upper surface, it is called angle critical. The
angle of attack decreases when the edge of a blade faces
the oncoming wind. The most effective way to limit aerody-
namic force is a pitch angle adjustment. It is done at high
wind speeds in region Il of power curve. Yaw adjustment en-
sures that the turbine moves, in the horizontal axis, to face
into the wind to increase effective rotor area and, as a result,
active power. Wind direction can change very quickly, so the
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turbine may be misaligned with the oncoming wind. This de-
lay causes losses which are approximated with the following
Eq. 3.

(3) AP = acos(e),

where AP denotes the output power decrease and ¢ the an-
gle of attack.

Field data analysis

In this section the stochastic nature of measured data
was analyzed as well data interpolation method was pre-
sented for active power curve estimation. After performing
the interpolation, close comparison between measured and
interpolated values were illustrated. After the estimation pro-
cess is performed, moving average filter is applied to smooth
the results and reduce variance as well as a total estima-
tion error. The data presented in this section: measurements
of instantaneous wind speed, its direction as well as wind
turbine state were included in the estimation algorithm de-
scribed in the further sections.

Measurement data

Real-world data were obtained from an existing object
located in the north of Poland. It consists of 30 wind turbines
of nominal power of 3 MW. All crucial information such as:
turbine state, wind speed, wind direction, and output active
power, measured on nacelles for every single wind turbine
as well as for wind farm as a whole. Most parameters were
refreshed in the range from 2 to 5 seconds.

According to Eq. 1, the wind has the greatest influence
on the active power generated by a wind turbine. Due to
rapid changes in wind speed and direction, power curve es-
timation is complicated. The dynamics of the turbine itself is
also a major difficulty. The same value of wind speed can
correspond to various output power values.

The box plot in Fig. 2 visualizes the unpredictable vari-
ation of active power as a function of the wind speed of a
single turbine selected from the 30 available.
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Fig. 2. Box plot of measured active power under the condition of
constant wind speed

The figure describes quarterlies of measured output for
specific wind speed range of 0.5 with outliers marked with
red crosses. One can notice a significant number of outliers.
It is because of the nature of the wind, which behaves in a
stochastic manner.

The corresponding measurements for the wind farm are
illustrated in Fig. 7. Each point marked in grey color cor-
responds to the measured active power of the wind turbine
for a specific, instantaneous wind speed value. As can be
seen the high variance of these measurements causes diffi-
culties in a power curve estimation procedure. The difference

in measured power can be up to 1.5 MW for the same value
of wind speed.

Furthermore, histograms in Fig. 3 show most common
wind speed and direction values for the specific wind farm.
Wind direction is measured in regards to turbines them-
selves. In most cases, the value is nearly zero.
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Fig. 3. Histogram of output power based on wind speed and direc-
tion

Shown measurements were collected on 10 wind tur-
bines during one day. Measured wind direction values above
10 degree occurs often and leads to underestimation based
on the Eq. 3. The accuracy of the estimation depends on the
quality of data sets used for training and validation. Sepa-
rating the samples into the mentioned subsets helps to avoid
overfitting the model. Each data set contains measurements
collected in three days each. It follows that one dataset con-
tains 259,200 samples of each parameter for a given wind
turbine. In a selected period of time, a wind farm was operat-
ing in different regions of the power curve. The datasets were
also examined for mutual correlation p(A, B) (4) to choose
the least correlated ones, to ensure different weather condi-
tions

1 LA - B; —
@ p(4,B)=5— > ( JAMA> ( MB)
1=1

OB

where:

A, B - random variables,
1 - expected value,

o - standard deviation.

Furthermore, each turbine has a state variable which de-
scribes whether the turbine is working or not. A wind turbine
often changes its state during normal operation. Fig. 4 shows
field data obtained from the wind farm.
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Fig. 4. Wind turbine state changes and amount of all available tur-
bines

Upper subfigure represents state of one of the turbines,
lower subfigure shows the amount of all available turbines.
Turbine turning on and shutting down is common and can
occur even 25 times during the period of 90 minutes. Those
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changes have an impact on maximum generated power as
well as estimation output. As shown in the further sections,
dynamic of the start-up procedure should be included in the
estimation algorithm to decrease an estimation error during
time.

Data interpolation and filtering

The wind farm data were sent event driven at non-
uniform time intervals. Interpolation has been performed to
obtain the measurements with an equal one-second period.
The authors used piecewise cubic Hermite interpolating poly-
nomial to interpolate measured datasets. The method pre-
serves the local extremums of the data, hence no overshoot-
ing is introduced [10]. Overshooting could significantly in-
crease an estimation error, as little change in wind speed has
a crucial impact on generated power (1).

In turbulence time-scale (considered as a range from 1
sec to 30 min) wind speed changes continuously and rapidly.
The datasets were collected from anemometers located on
the nacelles and then interpolated. Fig. 5 shows interpolated
data from the 10 turbines chosen as exampled from all 30
installed on the wind farm.

Wind speed captured on ten lurbines
I

Wind Speed [mis]

4 h i L I
03:48:00 03:48:30 03:49:00 03:49:30 03:50:00 03:50:30 03:51:00
Time Jan 04, 2020

Fig. 5. Time series of interpolated wind speed datasets from the ten
turbines chosen from all 30 installed on the wind farm

To decrease rapid variations of the measured data, Mov-
ing Average (MA) filter with window of n=15 [sec] had been
applied (5) before power curve estimation was performed.

(%) pm=
n

PM A+ DPM—1 + e F DA (e 1
M M—1 M-(n-1) _ 1 ZpMﬂ'
n
1=0
where pjs denotes a filter output for specific sample M
and n is the filter’s order. Fig. 6 shows how the used MA filter
mitigates the variance of measured data.

Wind speed filtering
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Fig. 6. Measured and MA filtered wind speed input variables

Proposed method and simulation results

One and two variable polynomials of various order were
taken as a model for estimation of active power curve. The
one variable polynomial considers only a wind speed as an
independent variable. The two variable polynomial addition-

ally take into account wind direction as a second independent
variable.

Methods used for polynomial fitting are based on the
least-squares algorithms [15]. In addition to the classic least-
squares method, authors also tested robust least-squares al-
gorithms such as the Least Absolute Residuals methods and
Bisquare Weights methods. Those algorithms use iteratively
reweighted least-squares algorithm. The methods are less
sensitive to non-gaussian distributed measurements called
outliers. The first one minimizes the absolute value of resid-
uals resulting in reduced outliers influence on the fit. The
second one minimizes the weighted sum of squares of resid-
uals.

After the estimation and aggregation process is per-
formed, prior introduced in Eq. 5 moving average filter is ap-
plied to smooth the results and reduce variance as well as a
total estimation error.

Also dynamic of turning the turbine discussed further in
this paper was included in the presented results.

Estimation quality statistics

To determine the quality of the estimation and to com-
pare the results, estimation quality statistics, based on esti-
mation error were used. The estimation error (6)

(6) € = Ui — Yi,

is defined as a difference between estimated 1; and mea-
sured y; value. This error is used to compare active power
outputs with different polynomials.
In this study statistical measures are used to analyze the

final results. These are:

+ Root Mean Square Error (RMSE) (7)

« variance of the error (var) (8)

« error value (Error) (9)

@) RMSE =

1 N
8 ——72 i —
(8) var N 1741|e n

where v is the mean of e and
1
i=

RMSE

T

9) Error = -100%
which is expressed as a percentage of Root Mean Square
Error to rated power P,..

The following subsection presents a comparative study
of proposed methods and polynomials to determine the best
approximation model for the power curve based on collected
datasets.

Results comparison

An exampled power curves were estimated using one
variable polynomial and obtained for different orders (from
4th to 9th) shown in a Fig. 7

22 PRZEGLAD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 6/2022


http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

4||—v}'- - —

3 32 34 38 38 4
Wind Speed [mis]

PP ke Sl el Tl S
12 125 13 135 1"
Wind Speed [mis]

e S T r—
25 86 BT 0B 88 10
Wind Speed [mis]

Fig. 7. Model comparison obtained with one variable polynomial
Order Robust method var RMSE Error Mean

9 None 355 197 219 -0.57
9 Bisquare 293 1.77 1.97 -045
9 LAR 285 1.74 194 -0.44
8 None 359 199 221 -0.59
8 Bisquare 3.05 182 2.03 -0.53
8 LAR 298 1.8 2 -05
7 None 359 198 22 -0.58
7 Bisquare 286 1.74 193 -04
7 LAR 285 1.73 1.92 -0.38
6 None 3.76 2.03 226 -0.6
6 Bisquare 323 19 211 -0.61
6 LAR 324 188 209 -0.57
5 None 3.87 2.04 227 -0.55
5 Bisquare 3.17 181 201 -0.34
5 LAR 324 183 2.03 -0.33
4 None 524 238 265 -0.67
4 Bisquare 512 243 27 -09
4 LAR 519 25 278 -1.04

Table 1. Quality factors obtained for the different degrees of the one
variable polynomial interpolation

Table 1 shows the values of quality factors obtained for
the different degrees of the one variable polynomial interpo-
lation.

Increasing polynomials order improves the performance
of the estimator. The presence of outliers in measured data
is common, which leads to biased results, therefore robust
regression methods give better results. Except for very low
degrees of polynomials, the error variance is at a similar level.
One can notice that the degree parity of the polynomial has
a considerable impact on the determined results. Odd order
polynomial can better approximate power curves because of
its shape. Therefore, the final results for the 7th order poly-
nomial are better than for the 8th.

Eq. 3 denotes that the wind direction influences the value
of the generated power. Although output power changes with
the cosine of wind direction and has a low impact on power
generation, not taking into account that property causes over-
estimation. Fig. 8 presents one of the models determined by
the function of two variables.

Statistical method performance is shown in Table 2 for
different surfaces orders and robustness. Variable x of poly-
nomials denotes the wind direction variable, and y the wind
speed.

The lowest error was observed for the 5th order surface
in terms of RMSE as well as variance and mean value of the
errors. Robust methods provide the improvement in estima-
tion performance, as in one variable polynomials. According
to the [29] usually, the Bisquare Weights method is preferred

5 15

0 ]
Wind Speed [mis] Wird Dirvction [deg]

Fig. 8. Model obtained with two variable polynomial

XOrd;ar Robust method var RMSE Error Mean
5 5 None 32 179 199 0.02
5 5 Bisquare 274 166 1.84 -0.01
5 5 LAR 285 1.69 1.87 0.02
4 4 Bisquare 452 219 2.43 -0.51
4 4 None 445 213 237 -0.13
4 4 LAR 461 224 249 -0.65
4 5 None 32 1.79 1.99 0.02
4 5 Bisquare 274 166 1.84 -0.01
4 5 LAR 285 1.69 1.88 0.02
5 4 None 432 2.08 231 -0.08
5 4 Bisquare 429 212 236 -0.46
5 4 LAR 435 217 241 -0.59

Table 2. Quality factors obtained for the different degrees of the two
variable polynomial interpolation

over LAR. The parity of selected polynomials order is also
important for the same reasons as it was with one variable
fitting function.

The above methods for fitting the power curve with one
and two variables polynomials have been proposed. Based
on them, one can estimate output power generated by wind
turbine using input speed and/or direction of the wind.

The power curves may differ among wind turbines on
the same wind farm. This is because the individual turbines
on the wind farm are spread over a large area with different
landforms. One should also notice that air turbulence caused
by one turbine can disturb the estimation process on another
turbine. Moreover, in the long term run, no real object is sta-
tionary. Therefore non-stationary nature of the object must
be taken into account if the estimator is implemented in a
real object operating for many years. Those impacts were
not taken into consideration in this paper.

Results shown in Table 1 and Table 8 were obtained af-
ter summing up the estimated power value for each turbine
and comparing the output to the real values of total power
measured for the wind farm.

Fig. 9 shows the results of aggregated and smoothed
active power estimation, in horizon of several hours for three
different days.

The first subfigure shows the wind farm working in the
range from 40 MW to over 70 MW. The measured power val-
ues changes more rapidly and have larger variance compar-
ing to the smoother estimation. In the middle subfigure, the
wind farm was operating closer to the rated power, the 10 MW
loss in output power was caused by the shutdown of three in-
dividual turbines. Also in this case the estimation accurately
reproduces the generated active power of all 27 working tur-
bines. The last subfigure shows the three hours of wind farm
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Fig. 9. Measured and estimated values of output power

operation in the upper production capacity range. This figure
shows a large variability of the generated power and a good
quality of the estimation.

As mentioned before, dynamic of the turbine start-up
should be taken into account to obtain satisfying results. First
turbine controller waits 120 seconds to begin start-up proce-
dure after turbine state changed. Than it slowly starts up
the turbine. When those terms are added to the estimation
process i.e. the dead zone and the turbine dynamic, improve-
ment of the estimation to measured response of the system
can be obtained.

In the procedure auto-regressive model with an input sig-
nal (ARX model) is used in initialization phase, then followed
by a search using the nonlinear least squares method mini-
mizing the weighted norm prediction errors [11]. The transfer
function determined this way is shown in the Eq. 10, 11, 12.

(100 yln] = —a1-yln —1] —az - yln — 2] + z[n]

_Y() _ 1
(11) H(Z) - X(Z) - 1+a12—1 +a2z_2
Y (2) 0.002361

(12) U(z) 1—1.9742"1+0.94952—2

Fig. 10 shows step responses due to external excitation
for the following systems: the first (marked in blue color) is
measured real turbines output power, the second (marked
in red) is estimated output power without dead-zone and dy-
namic included.
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Fig. 10. Wind turbine estimated output during start-up

Response marked in yellow takes into account only
dead-zone and the last one (marked in purple) includes
second-order dynamic of the system response as well as
dead zone mentioned before.

Based on the transfer function (12), one can conclude
the main characteristics of the step response. The rise time
equals 32 seconds and is determined by the turbine controller

that tries slowly start-up the turbine. Obtained transfer shows
overshoot above 15% and a settling time of about 160 sec-
onds. Long settling time may raise concerns however, one
should remember that the determined transfer function of the
system is used only when the turbine controller slowly starts
the turbine up. After the response is settled, the dynamic
component is no longer used in the estimation procedure.

Every now and then situations, when almost all wind tur-
bines are shut down, occur. As shown in Fig. 11, the wind
farm master controller shut down and then restore the tur-
bines to work sequentially.
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Fig. 11. Estimation of a wind farm after shutting down and turning
on some of the generators

During this process power dropped drastically from 50
MW to around 2 MW. A total of 24 turbines working at the mo-
ment was shut down. Earlier in this section the start-up dead
zone as well as the dynamic response of the turbine, were
discussed. Based on Fig. 11 one can see that implementing
those components turns out to be necessary to correct the
estimation during start-up. Otherwise, the estimation would
drastically outpace the measured output power.

Conclusion

The estimation algorithm proposed in this paper was in-
troduced and verified with data obtained from the existing
wind farm with a rated capacity of 90 MW. Estimation root
mean square error captured over three days, with the mea-
surements sampled every few seconds, never exceeded 2%.
The proposed method, in opposition to existing ones, takes
into account wind direction and turbine start-up dynamic. The
results show that additional estimation inputs i.e. the wind
direction and the turbine state, improve the accuracy of es-
timated power. Another advantage of the method is a low
computational cost which allows the algorithm implementa-
tion on microcontroller or PLC with ease.

Due to the fact, that the method uses simple polynomial
curve and/or surface fitting algorithms, one can use them to
find new power curves when conditions such as seasons or
location of the turbine change. In long term, those param-
eters change so it seems reasonable to run a curve/surface
fitting algorithm once in a while to correct the outputs.

To determine interpolating polynomial coefficients, data
sets downloaded during typical wind farm operations were
used. Including the moving average filter turned out to be
essential for obtaining good statistical coefficients. The large
variance of the input data does not allow the measurements
to be used directly. The filter allowed to obtain satisfactory
filtration at a quasi-real-time level.

All methods used to determine the power curve were
compared to each other using total mean square estimation
error. Power estimations that used functions of one variable
i.e. wind speed, gave satisfactory results for polynomials of
higher orders. The estimation considering both wind speed
and direction gave better results. Both approaches allowed
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for a satisfactory estimation of active power and the choice
of one over the other should be conditioned by the possibility
of determining polynomials coefficients and the frequency of
making adjustments of those coefficients in real-time.

To obtain good estimation output, the additional proper-
ties of a wind turbine such as start-up dead zone and the dy-
namic response of the turbine should be considered. Turbine
state changes must be monitored on an ongoing basis and
taken into account by the estimator to included two minutes
dead zone in the estimation procedure. Moreover, each of
the generators should use the corresponding transfer func-
tion, which should be included during the turbine start-up.
Implementation of those features reduces the total estima-
tion error.

In future research, it seems beneficial to take into ac-
count the weather conditions e.g. season of the year, and
determine different curve/surface coefficients to reduce the
estimation error. Moreover, the different model coefficients
for different operating ranges of wind turbines can result in a
significant improvement of estimation precision.
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