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A B S T R A C T

We discuss the strong ellipticity (SE) condition within the Toupin–Mindlin first strain gradient elasticity
theory. SE condition is closely related to certain material instabilities and describes mathematical properties
of corresponding boundary-value problems. For isotropic solids, SE condition transforms into two inequalities
in terms of five gradient-elastic moduli.
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1. Introduction

Nowadays, strain gradient elasticity theory found various applica-
tions in modeling of solids and fluids at small scales, in modeling of
crystal-defects at small scales as well as in description of composite
materials with essential difference of material properties of constituents
such as in the case of beam-lattice metamaterials, see e.g., [1–8]. In
particular, since the model has internal length-scale parameters, it can
apture size-effects observed at the nanoscale. Within the model a
otential energy density is introduced as a function of the first and
econd gradients of a displacement vector. Among the various models
escribing solids undergoing infinitesimal deformations, it is worth to
ention the Toupin–Mindlin gradient approach [9–12], which is the
ost straightforward version of first strain gradient elasticity theory

especting group theory. For isotropic materials, first strain gradient
lasticity theory contains two Lamé constants and five strain gradi-
nt parameters leading to two characteristic lengths-scale parameters.
oreover, Toupin and Grazis [13] and Mindlin [14] (see also [15])

howed that first strain gradient elasticity, which is sometimes called
radient elasticity of grade-2, might be considered as the continuum
ersion of a lattice theory with up to second-neighbor interactions
nearest and next-nearest neighbor interactions).

From the mathematical point of view, the Toupin–Mindlin first
train gradient elasticity results in a system of partial differential equa-
ions (PDEs) of fourth-order. Its mathematical properties could be
escribed using the general theory of elliptic PDEs [16–18]. Let us note
hat in the literature, one can find various definitions of ellipticity,
ee [19–22]. In what follows we use the strong ellipticity condition
s used in linear and nonlinear elasticity [23–27]. The SE condition

ensures that the governing PDE for elastostatic problems be completely
elliptic [27]. It guaranties some ‘‘natural properties’’ of solutions such
as existence, uniqueness, and regularity. Violation of SE conditions
could be treated as a certain material instabilities, see [23,24] for
nonlinear elasticity and [28–30] for nonlinear strain gradient elasticity.
Moreover, an important mathematical property of gradient elasticity is
that it provides a mathematical regularization based on PDEs of higher-
order where the characteristic length-scale parameters play the role of
regularization parameters [31].

The aim of this paper is to formulate SE condition within the linear
Toupin–Mindlin first strain gradient elasticity theory of isotropic solids.

2. Toupin–Mindlin first strain gradient elasticity and strong ellip-
ticity

Within the Toupin–Mindlin first strain gradient elasticity [9–12]
there exists a strain energy density 𝑊 as a function of strain tensor
𝜺 and its gradient

𝑊 = 𝑊 (𝜺, grad 𝜺),

where 𝜺 = 1
2 (grad 𝒖 + grad 𝒖𝑇 ) and 𝒖 is a displacement vector. In

Cartesian coordinates, we have

𝒖 = 𝑢𝑘𝐢𝑘, grad 𝒖 = 𝜕𝑚𝑢𝑛𝐢𝑛 ⊗ 𝐢𝑚,

𝜺 = 𝜀𝑚𝑛𝐢𝑚 ⊗ 𝐢𝑛, 𝜀𝑚𝑛 =
1
2
(𝜕𝑚𝑢𝑛 + 𝜕𝑛𝑢𝑚),
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𝜕𝑘 = 𝜕∕𝜕𝑥𝑘, ‘‘⊗’’ is a dyadic product, 𝑥𝑘 and 𝐢𝑘 are Cartesian coordi-
ates and corresponding unit base vectors, respectively. In addition,
instein’s summation rule is utilized.

Following [11], we introduce a strain energy density as a quadratic
orm of 𝜺 and grad 𝜺

𝑊 = 1
2
𝜺 ∶ C ∶ 𝜺 + 𝜺 ∶ E ⋮ grad 𝜺 + 1

2
grad 𝜺 ⋮ D ⋮ grad 𝜺, (1)

where ‘‘∶’’ and ‘‘⋮’’ are the double and triple dot products, C, E, and
D are constitutive tensors of rank four, five, and six, respectively. For
the major and minor symmetries of these constitutive tensors, we refer
to [7,32–35].

The corresponding equilibrium equation can be written in the fol-
lowing form in terms of the displacement vector [31,35]

𝐿(𝜕) 𝒖 + 𝒇 = 𝟎, (2)

here 𝒇 is the body force vector and 𝐿(𝜕) is the Mindlin differential
perator. In Cartesian coordinates, Eq. (2) has the form

𝑖𝑘(𝜕) 𝑢𝑘 + 𝑓𝑖 = 0, 𝑖, 𝑘 = 1, 2, 3, (3)

here the Mindlin operator of first strain gradient elasticity is given by
see, e.g., [35])

𝑖𝑘(𝜕) = C𝑖𝑗𝑘𝑙𝜕𝑗𝜕𝑙 +
(

E𝑖𝑗𝑘𝑙𝑚 − E𝑘𝑙𝑖𝑗𝑚
)

𝜕𝑗𝜕𝑙𝜕𝑚 − D𝑖𝑗𝑚𝑘𝑙𝑛𝜕𝑗𝜕𝑙𝜕𝑚𝜕𝑛. (4)

The strong ellipticity (SE) condition can be formulated as follows

𝒂⊗ 𝒃⊗ 𝒃) ⋮ D ⋮ (𝒂⊗ 𝒃⊗ 𝒃) ≥ 𝐶1(𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃)2, (5)

here 𝒂 and 𝒃 are arbitrary real vectors, 𝐶1 is a positive constant
ndependent of 𝒂 and 𝒃, and ‘‘⋅’’ is the dot product. In Cartesian
oordinates, Eq. (5) takes the form

𝑖𝑏𝑗𝑏𝑚D𝑖𝑗𝑚𝑘𝑙𝑛𝑎𝑘𝑏𝑙𝑏𝑛 ≥ 𝐶1𝑎𝑖𝑎𝑖(𝑏𝑗𝑏𝑗 )2. (6)

ote that the SE condition does not affect other elastic constitutive
oduli, because the SE is determined by highest-order differential

erms.
If we neglect in Eq. (1) the first strain gradient terms, i.e. assume

hat E = 0 and D = 0, we recover the strain energy density of classical
lasticity

= 1
2
𝜺 ∶ C ∶ 𝜺. (7)

For classical elasticity, the strong ellipticity condition takes the form

(𝒂⊗ 𝒃) ∶ C ∶ (𝒂⊗ 𝒃) ≥ 𝐶0(𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃), (8)

or, in components,

𝑎𝑖𝑏𝑗C𝑖𝑗𝑘𝑙𝑎𝑘𝑏𝑙 ≥ 𝐶0𝑎𝑖𝑎𝑖𝑏𝑗𝑏𝑗 (9)

with a positive constant 𝐶0.
In order to distinguish SE conditions for strain gradient and classical

elasticity, we call (5) and (8) the second-order and the first-order strong
ellipticity conditions, respectively, see [29] for nonlinear case.

3. Strong ellipticity conditions for isotropic solids

For an isotropic solid E = 0, the isotropic representations of the
components of the constitutive tensors C and D have the form

C𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (10)

and

D𝑖𝑗𝑚𝑘𝑙𝑛 =
𝑎1
2

(

𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑙𝑚𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑛𝛿𝑗𝑚
)

+ 2𝑎2𝛿𝑖𝑗𝛿𝑘𝑙𝛿𝑚𝑛

+
𝑎3
2

(

𝛿𝑗𝑘𝛿𝑖𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑚𝛿𝑘𝑛
)

+ 𝑎
(

𝛿 𝛿 𝛿 + 𝛿 𝛿 𝛿
)

4 𝑖𝑙 𝑗𝑘 𝑚𝑛 𝑖𝑙 𝑗𝑘 𝑚𝑛
Table 1
Lamé moduli, Voigt-type averaged isotropic gradient-
elastic moduli and characteristic length-scale parame-
ters for aluminum (Al) and tungsten (W) computed
from second nearest-neighbor modified-embedded-
atom-method (2NN MEAM) interatomic potential
[35].

Al (fcc) W (bcc)

𝜆 [eV/Å3] 0.38649 1.28028
𝜇 [eV/Å3] 0.19704 1.01812
𝑎1 [eV/Å] −0.13862 0.02387
𝑎2 [eV/Å] 0.22500 0.19215
𝑎3 [eV/Å] 0.10877 0.43264
𝑎4 [eV/Å] 0.15309 0.54907
𝑎5 [eV/Å] 0.21632 0.28799
𝓁1 [Å] 1.20272 0.94654
𝓁2 [Å] 1.26566 0.94509

+
𝑎5
2

(

𝛿𝑗𝑘𝛿𝑖𝑛𝛿𝑙𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑙𝑚 + 𝛿𝑗𝑙𝛿𝑘𝑚𝛿𝑖𝑛 + 𝛿𝑖𝑙𝛿𝑘𝑚𝛿𝑗𝑛
)

, (11)

where 𝛿𝑖𝑗 is Kronecker’s symbol, 𝜆 and 𝜇 are the two Lamé elastic
moduli, 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 are the five gradient-elastic moduli [11].

Using Eq. (11), we get the formula

(𝒂⊗ 𝒃⊗ 𝒃) ⋮ D ⋮ (𝒂⊗ 𝒃⊗ 𝒃) = 2𝑎1(𝒂 ⋅ 𝒃)2𝒃 ⋅ 𝒃 + 2𝑎2(𝒂 ⋅ 𝒃)2𝒃 ⋅ 𝒃

+
𝑎3
2

[

3(𝒂 ⋅ 𝒃)2𝒃 ⋅ 𝒃 + (𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃)2
]

+ 𝑎4
[

(𝒂 ⋅ 𝒃)2𝒃 ⋅ 𝒃 + (𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃)2
]

+
𝑎5
2

[

3(𝒂 ⋅ 𝒃)2𝒃 ⋅ 𝒃 + (𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃)2
]

=
[

2𝑎1 + 2𝑎2 +
3
2
𝑎3 + 𝑎4 +

3
2
𝑎5
]

(𝒂 ⋅ 𝒃)2(𝒃 ⋅ 𝒃)

+
[𝑎3
2

+ 𝑎4 +
𝑎5
2

]

(𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃)2. (12)

ithout loss of generality, we can use unit vector 𝒃, (𝒃 ⋅ 𝒃) = 1.
epresenting 𝒂 as a sum

= 𝑎∥𝒃 + 𝒂⊥, 𝑎∥ = 𝒂 ⋅ 𝒃, 𝒂⊥ = 𝒂 − 𝑎∥𝒃, (13)

e transform Eq. (12) into the form

𝒂⊗ 𝒃⊗ 𝒃) ⋮ D ⋮ (𝒂⊗ 𝒃⊗ 𝒃) = 2
[

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5
]

𝑎2∥

+
[𝑎3
2

+ 𝑎4 +
𝑎5
2

]

(𝒂⊥ ⋅ 𝒂⊥). (14)

As a result, the strong ellipticity condition (second-order SE condition)
reduces to two inequalities

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 > 0, 𝑎3 + 2𝑎4 + 𝑎5 > 0. (15)

For classical elasticity, we have the formula

(𝒂⊗ 𝒃) ∶ C ∶ (𝒂⊗ 𝒃) = (𝜆 + 𝜇)(𝒂 ⋅ 𝒃)2 + 𝜇(𝒂 ⋅ 𝒂)(𝒃 ⋅ 𝒃). (16)

sing (13), we transform (16) into

𝒂⊗ 𝒃) ∶ C ∶ (𝒂⊗ 𝒃) = (𝜆 + 2𝜇)𝑎2∥ + 𝜇(𝒂⊥ ⋅ 𝒂⊥), (17)

hat recovers the classic strong ellipticity conditions (first-order SE
ondition) as two inequalities for the Lamé moduli

+ 2𝜇 > 0, 𝜇 > 0. (18)

Note that the five gradient-elastic moduli and the two Lamé moduli
or aluminum (Al) and tungsten (W) computed from second nearest-
eighbor modified-embedded-atom-method given in Table 1 satisfy the
econd SE condition (15) and the first SE condition (18), respectively.

. On Mindlin’s isotropic operator

For an isotropic material, the Mindlin operator takes the form [31]

𝑖𝑘(𝜕) = (𝜆 + 2𝜇)
[

1 − 𝓁2
1𝛥

]

𝜕𝑖𝜕𝑘 + 𝜇
[

1 − 𝓁2
2𝛥

]

(𝛿𝑖𝑘𝛥 − 𝜕𝑖𝜕𝑘), (19)

http://mostwiedzy.pl
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where 𝛥 is the 3D Laplace operator and two characteristic lengths have
been introduced by the formulae

𝓁2
1 =

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5
𝜆 + 2𝜇

, (20)

2
2 =

𝑎3 + 2𝑎4 + 𝑎5
2𝜇

. (21)

bviously, if Eqs. (15) and (18) are fulfilled both characteristic lengths
re meaningful, namely they are real length scales. If both SE conditions
15) and (18) are satisfied, then the Mindlin operator (19) is an elliptic
ne.

Note that the two characteristic length-scale parameters for alu-
inum (Al) and tungsten (W) computed from second nearest-neighbor
odified-embedded-atom-method given in Table 1 are real and posi-

ive.

. Strong ellipticity and uniqueness

Let us note that SE conditions guarantee uniqueness of solutions for
he first boundary-value problem, that is for Eq. (2) complemented by
irichlet boundary conditions on the whole boundary
|

|

|

|𝑆
= 𝟎, 𝜕𝒖

𝜕𝑛
|

|

|

|𝑆
= 𝟎, (22)

here 𝑆 is a boundary of a solid and 𝜕∕𝜕𝑛 denotes the normal deriva-
ive. Indeed, if both SE conditions, that is (15) and (18), are fulfilled
he solution is unique, see, e.g., [29] for details. Thus, the first- and
he second-order SE conditions are sufficient conditions for unique-
ess of solutions. Note that SE conditions are less restrictive than the
ositive definiteness of 𝑊 , which involves SE conditions. Neverthe-
ess, Eqs. (15) and (18) are not necessary conditions. For example,
niqueness could be proven if we have relaxed inequalities

1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 > 0, 𝜆 + 2𝜇 = 0,

3 + 2𝑎4 + 𝑎5 = 0, 𝜇 > 0. (23)

r

1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 = 0, 𝜆 + 2𝜇 > 0,

3 + 2𝑎4 + 𝑎5 > 0, 𝜇 = 0. (24)

hese mathematical cases correspond to the following lengths 𝓁1 = ∞,
2 = 0, and 𝓁1 = 0, 𝓁2 = ∞, respectively. Note that for (23) or
24) Mindlin’s operator is not elliptic, but hypoelliptic [22], see the
iscussion on reduced gradient models in [36].

. Conclusions

In this work, we have established SE conditions of the Toupin–
indlin first strain gradient elasticity theory for isotropic materials.
wo SE conditions have been found for the five gradient-elastic moduli.
oth the first order SE and the second SE conditions guarantee that
he two characteristic lengths of the Toupin–Mindlin first strain gra-
ient elasticity theory are real length-scale parameters. An analysis of
nequalities of SE conditions for anisotropic strain gradient materials
equires advanced calculations as in the case of linear elasticity, see,
.g., [27,37,38].
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