
 

 
 

 

 
Nanomaterials 2022, 12, 2598. https://doi.org/10.3390/nano12152598 www.mdpi.com/journal/nanomaterials 

Article 

Hyperelastic Microcantilever AFM: Efficient Detection  

Mechanism Based on Principal Parametric Resonance 

Amin Alibakhshi 1, Sasan Rahmanian 2, Shahriar Dastjerdi 3, Mohammad Malikan 4,*, Behrouz Karami 5,  

Bekir Akgöz 3 and Ömer Civalek 3,6 

1 Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University,  

Tehran 1477893855, Iran; alibakhshiamin@yahoo.com 
2 Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; 

s223rahm@uwaterloo.ca 
3 Division of Mechanics, Civil Engineering Department, Akdeniz University, Antalya 07058, Turkey; 

dastjerdi_shahriar@yahoo.com (S.D.); bekirakgoz@akdeniz.edu.tr (B.A.); civalek@yahoo.com (Ö.C.) 
4 Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, 

Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland 
5 Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University,  

Marvdasht 73711-13119, Iran; behrouz.karami@miau.ac.ir 
6 Department of Medical Research, China Medical University Hospital, China Medical University,  

Taichung 406, Taiwan 

* Correspondence: mohammad.malikan@pg.edu.pl 

Abstract: The impetus of writing this paper is to propose an efficient detection mechanism to scan 

the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), oper-

ating in non-contact mode. In order to implement this scheme, the principal parametric resonance 

characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mech-

anism. It is assumed that the microcantilever is made from a hyperelastic material, providing large 

deformation under small excitation amplitude. A nonlinear strain energy function is proposed to 

capture the elastic energy stored in the flexible component of the device. The tip–sample interaction 

is modeled based on the van der Waals non-contact force. The nonlinear equation governing the 

AFM’s dynamics is established using the extended Hamilton’s principle, obeying the Euler–Ber-

noulli beam theory. As a result, the vibration behavior of the system is introduced by a nonlinear 

equation having a time-dependent boundary condition. To capture the steady-state numerical re-

sponse of the system, a developed Galerkin method is utilized to discretize the partial differential 

equation to a set of nonlinear ordinary differential equations (ODE) that are solved by the combi-

nation of shooting and arc-length continuation method. The output reveals that while the resonator 

is set to be operating near twice the fundamental natural frequency, the response amplitude under-

goes a significant drop to the trivial stable branch as the sample’s profile experiences depression in 

the order of the picometer. According to the performed sensitivity analysis, the proposed working 

principle based on principal parametric resonance is recommended to design AFMs with ultra-high 

detection resolution for surface profile scanning. 

Keywords: atomic force microscopy; hyperelastic microcantilever; softening resonance; non-contact 

cantilever; shooting and arc-length continuation method; developed Galerkin method 

 

1. Introduction 

Atomic force microscopy (AFM) is a device used to study materials’ properties and 

surface structure in micro- and nanometer dimensions [1–3]. Flexibility, multiple poten-

tial signals, and the ability to operate the device in different modes have enabled research-

ers to study AFMs at different levels and under different environmental conditions. This 
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device makes it possible to examine conductive or insulating surfaces, soft or hard, cohe-

sive or powdery, biological and organic or inorganic. The general architecture of an AFM 

includes a microcantilever with a sharp tip at the free end contacting with the surface of 

samples [4]. The AFMs are applicable devices that have been widely used in so many 

scientific purposes, such as chemistry [5], materials science [6], medical and biophysics 

[7], and biological and colloidal applications [8]. 

Such as many structures that are influenced by the time [9–12], the operation of AFMs 

may be time-dependent and, consequently, under dynamic conditions. Thus, most previ-

ous studies in this field have focused on the dynamic performance of AFMs. The chaotic 

motion and bifurcation of a tapping mode AFM were examined by Yagasaki [13]. Bahrami 

and Nayfeh [14] explored the nonlinear oscillation of a tapping mode AFM by using a 

high-dimensional Galerkin discretization technique and a four-step Adams–Moulton 

method. They modeled the microcantilever based on the Euler–Bernoulli beam theory. 

The flexural and torsional vibrations of an AFM were investigated by Kahrobaiyan et al. 

[15], who performed a sensitivity analysis. Arafat and co-investigators [16] analyzed the 

frequency–amplitude response of a contact mode AFM analytically using the multiple 

time-scale method. Dastjerdi and Abbasi [17] studied the free vibration of a cracked AFM, 

incorporating the influence of crack size and its location. They utilized the transfer matrix 

method to solve the cracked system. Also, they concluded that existing a crack (with a 

specific size and location) on the AFM cantilever can be beneficial for controlling some 

unwanted phenomena. Mahmoudi et al. [18] studied the resonance of a non-contact AFM 

using harmonic balance and multiple time-scale methods. Saeidi et al. [19] explored forced 

vibrations of an AFM, taking the temperature and contact effects into account. Ahmadi 

and co-workers [20] studied free and forced oscillations of AFM with rectangular and V-

shaped and employed the finite element analysis. Kouchaksaraei and Bahrami [21] pro-

posed a new multifrequency excitation for AFM in a non-contact regime. They analyzed 

the sensitivity to the Hamaker constant and the initial tip–sample distance to enhance the 

performance of the AFM. In most previous studies investigating dynamic characteristics 

of AFMs, the structural materials have been a linear type. This means that the linear elas-

ticity governs their behavior with small strain and deformation. 

There has been an increasing interest in soft and hyperelastic materials in recent dec-

ades, because they are lightweight, cheap, compatible with many flexible structures, and 

show ease of fabrication. The relation between the strain and stress for hyperelastic mate-

rials is nonlinear. Besides, the strain in hyperelastic materials is moderate or large, and 

they undergo large deformation. These are the main differences between hyperelastic ma-

terials and linear elastic materials. Hyperelastic materials are structural materials of many 

electromechanical systems such as actuators, sensors, and energy harvesters. More specif-

ically, hyperelastic materials have been widely used for electro-active-based systems [22–

25]. Up to now, hyperelastic materials have been designed in different geometries, e.g., 

beams [26–29], plates [30,31], and shells [32,33]. Reviewing the previous studies shows a 

growing body of literature on using hyperelastic materials in different systems. Due to 

these advantages of hyperelastic materials and their broad applications, this paper pro-

poses an AFM made of such materials, unique in simulation and application. Most re-

cently, the dielectric elastomer actuators have been proposed [34] for AFM, and because 

these kinds of actuators are hyperelastic, exploring hyperelastic-based AFM may be of 

significant importance. 

As is reported in the literature review, it can be seen that there is a lack of nonlinear 

study on vibration analysis of AFM cantilevers made of hyperelastic material. Conse-

quently, thorough research on nonlinear frequency analysis of AFM cantilevers has been 

conducted based on the hyperelasticity approach. This paper is structured as follows. Sec-

tion 2 derives the equation of motion based on a mathematical model containing material 

and geometrical nonlinearities, size effects, and finite rotations. In Section 3, the governing 

equation is discretized with a developed Galerkin decomposition method and solved 

through the shooting method combined with the arc-length continuation method. Finally, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2022, 12, 2598 3 of 20 
 

 

in Section 4, numerical results have been provided to study different dynamical behaviors 

of the AFM cantilever under the assumed conditions. 

2. Mathematical Modeling 

Figure 1 demonstrates the schematic view of an AFM cantilever simulated in this 

paper. The system consists of a hyperelastic microcantilever with a sharp tip at the free 

end. A Cartesian coordinate system (𝑥, 𝑦, 𝑧) is employed to define the configuration of the 

AFM. The base vectors in 𝑥, 𝑦, 𝑧 −directions are 𝑒1, 𝑒2, and 𝑒3, respectively. The micro-

cantilever’s length, thickness, and width are denoted via 𝐿, 𝑑, and 𝑏, respectively. 

Figure 1a is a 3D schematic and perhaps does not provide more details. On the other 

hand, Figure 1b gives more details. The AFM consists of a microcantilever mounting on a 

base with piezoelectric patches as the excitation source (see Figure 1b). As depicted in 

Figure 1b, 𝑍̂ is the distance between the tip and the sample when the microbeam is lo-

cated at rest, and 𝑤(𝑥, 𝑡) is the transverse displacement of the microcantilever with re-

spect to the base frame. The transverse base excitation is 𝑍𝑏(𝑡) = 𝑑0 sin(𝜔𝑡), in which 𝑑0 

and 𝜔 are the amplitude and frequency, respectively. The total deflection is 𝑢(𝑥, 𝑡) =

𝑤(𝑥, 𝑡) + 𝑍𝑏(𝑡). Regarding these parameters, the instantaneous tip–sample separation is 

indicated by 𝑧̂(𝑡) = 𝑍̂ − 𝑤(𝐿, 𝑡) − 𝑍𝑏(𝑡). 

The governing equations are derived under the following assumptions: (1) the effect 

of rotary inertia and shear deformation is disregarded, i.e., the microbeam is modeled 

based on the Euler-Bernoulli beam theory. (2) both geometric and material nonlinearities 

are considered. (3) the rotation of the microcantilever is considered to be a moderate type, 

which means that 𝜕𝑤 𝜕𝑥⁄  is moderate. In other words, the rotation is of order √𝜖, in 

which 𝜖 ≪ 1 stands for a small parameter (for more details on deriving moderate rotation 

see [35]). (4) the size effect is considered using the modified couple stress theory. (5) the 

axial displacement is neglected. 

 
 

(a) (b) 

Figure 1. The schematic view of an AFM’s cantilever scanning a sample. (a) 3D view of the AFM. 

(b) 2D view of the cantilever. 

In reality, a sample subjected to probing may have an inhomogeneous surface, thus 

leading to surface depression or an increase in surface height. During probing, these in-

creases in surface height may affect the performance of the hyperelastic AFM. As shown 

in Figure 2, the location of surface depression and increase in surface height assumed in 

the system are shown. In Figure 2, 𝛿 refers to any variation in the height of the sample 

profile with respect to the baseline, i.e., 𝑍̂ + 𝛿 = 𝑍̂ + 0 = 𝑍̂. 
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Figure 2. Schematic representation of the increase and decrease in surface profile. 

2.1. Beam Theory with Finite Rotation and Deformation 

The components of the displacement vector 𝑢 = 𝑢1𝒆̂1 + 𝑢2𝒆̂2 + 𝑢3𝒆̂3 can be given as 

[36]. 

{

𝑢1 = 𝑧𝜃𝑥, 𝑢2 = 0

𝑢3 = 𝑤(𝑥, 𝑡)

𝜃𝑥 ≡ −
𝜕𝑤

𝜕𝑥

 (1) 

In Equation (1), 𝜃𝑥 is a defined parameter, namely, the minus of the slope of the 

transverse displacement. 

The strain–displacement relations for the system are obtained according to the finite 

deformation. To this end, the von Kármán theory originated from Green’s strain theory is 

used as follows [37] 

{
𝐸𝑥𝑥 = 𝜀𝑥𝑥

(0) + 𝑧𝜀𝑥𝑥
(1)

𝐸𝑧𝑧 = 𝜀𝑧𝑧
(0)

 
(2) 

in which 

{
  
 

  
 𝜀𝑥𝑥

(0) =
1

2
(
𝜕𝑤

𝜕𝑥
)
2

𝜀𝑥𝑥
(1) =

𝜕𝜃𝑥
𝜕𝑥

𝜀𝑧𝑧
(0) =

1

2
𝜃𝑥
2

 (3) 

In Equation (2), 𝐸𝑥𝑥  is the strain in the 𝑥-direction, and 𝐸𝑧𝑧 stands for the strain in 

the 𝑧-direction. 

The potential energy is expressed in terms of the strain energy function for hypere-

lastic materials. The strain energy can be formulated based on the displacement as men-

tioned above and strain components incorporating the finite deformation, finite rotation, 

and size effect as follows [38,39]. 

Ψ =
1

2
(𝑎1𝐸𝑥𝑥

2 + 𝑎2𝐸𝑧𝑧
2 + 𝑎3(𝜃𝑥

′)2 + 2𝑎4𝐸𝑥𝑥𝐸𝑧𝑧) 

 
(4) 

in which 
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{

𝑎1 = 𝑎2 = 2𝜇 + 𝜆
𝑎4 = 𝜆

𝑎3 = 2𝜇ℓ
2

 (5) 

 

In Equation (5), ℓ is the internal length-scale parameter capturing the size effect, 

which is defined as the square root of the ratio of the moduli of curvature to the shear 

[38,40] and is generally quantified as one-half or one-fourth of the thickness of the struc-

ture in theoretical analyses. It is noted that the value of this parameter from experimental 

evidence for hyperelastic microstructures seems to be rare. For more details on experi-

mental methods of calculating ℓ, you may refer to [41]. 

Moreover, in Equation (15), 𝜇 = 𝐸 2(1 + 𝜈)⁄  stands for the shear modulus, and 

 𝜆 = [𝐸𝜈] [(1 + 𝜈)(1 − 2𝜈)]⁄  is the Lamé’s constant (𝜈 is the Poisson’s ratio). It is men-

tioned that Equation (5) has shown its applicability for hyperelastic structures in previous 

literature. 

The hyperelastic potential energy is therefore calculated as: 

𝑈𝑒𝑙 = ∫Ψ
𝑉̅

𝑑𝑉̅ 

 

(6) 

where 𝑉̅ is the volume of the microcantilever. 

Substituting Equation (2) into Equation (4), then inserting it into Equation (6), the 

final form of the hyperelastic energy is presented as: 

𝑈𝑒𝑙 = ∫ [
1

8
𝑎1𝐴(

𝜕𝑤

𝜕𝑥
)
4

+
1

2
𝑎1𝐼 (

𝜕2𝑤

𝜕𝑥2
)

2

+
1

8
𝑎2𝐴(

𝜕𝑤

𝜕𝑥
)
4

+
1

2
𝑎3𝐴(

𝜕2𝑤

𝜕𝑥2
)

2𝐿

0

+
1

4
𝑎4𝐴(

𝜕𝑤

𝜕𝑥
)
4

]𝑑𝑥 
(7) 

With the cross-section area 𝐴 = 𝑏𝑑 and the second moment of area 𝐼 = 𝑏𝑑3 12⁄ . 

2.2. Tip–Sample Interaction 

At the free end of the microcantilever, there is the interaction force between the tip 

and sample. In the present paper, as a test case, a non-contact tip–sample interaction so-

called the van der Waals non-contact force is applied, i.e., [14], 

𝐹vdW = −
𝐻𝑅

6𝑧̂2
 (8) 

in which 𝐹vdW stands for the van der Waals non-contact force, 𝐻 is the Hamaker con-

stant, and 𝑅 is the radius of the spherical tip apex. 

The system’s potential energy due to the tip–sample interaction is 𝑉tp = −∫𝐹vdW 𝑑𝑧̂. 

By calculating this integration, the final form of the tip–sample interaction potential en-

ergy for the non-contact region will be formulated as [14]: 

𝑈vdW = −
𝐻𝑅

6[𝑍̂ − 𝑤(𝐿, 𝑡) − 𝑍𝑏(𝑡)]
 

(9) 

2.3. Kinetic Energy 

The total kinetic energy of the AFM cantilever can be expressed below (𝜌 is the mass 

density of the microcantilever). 

𝑈𝑘 =
1

2
∫ 𝜌𝐴 [(

𝜕𝑤

𝜕𝑡
) + (

𝜕𝑍𝑏(𝑡)

𝜕𝑡
)]

2𝐿

0

𝑑𝑥 (10) 
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2.4. Surrounding Damping Force 

The constitutive material of the AFM is hyperelastic, for example, it is rubbery or 

elastomeric. For such materials, viscoelasticity plays a major role that should be consid-

ered in the analysis. In this paper, a linear damping model is assumed, while other com-

plicated types of damping can also be used. 

The amount of work created by the viscous surrounding medium is formulated as 

(𝑐𝑑 is the viscous damping coefficient). 

𝑊𝐷 = −𝑐𝑑∫ [(
𝜕𝑤

𝜕𝑡
) + (

𝜕𝑍𝑏(𝑡)

𝜕𝑡
)]𝑤

𝐿

0

𝑑𝑥 (11) 

2.5. Hamilton’s Principle and Equation of Motion 

The governing equation can be easily derived using variational approaches by 

obtaining the energies and works that appear in the system [42–44]. The partial differential 

equation governing the motion of the AFM is derived using the following Hamilton’s 

principle as one of the variational approaches: 

∫ [𝑈𝑘 − 𝑈𝑠]𝑑𝑡 + ∫ 𝛿𝑊𝐷

𝑡2

𝑡1

𝑡2

𝑡1

𝑑𝑡 = 0 

 

(12) 

where 𝑈𝑠 shows the total potential energy of the system, which for the non-contact region 

is: 𝑈𝑠 = 𝑈𝑒𝑙 + 𝑈vdW. 

Eventually, substituting the expression of the kinetic and potential energies and the 

work of damping force into Hamilton’s principle gives the following formulation: 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝜌𝐴 

𝜕2𝑍𝑏(𝑡)

𝜕𝑡2
+ 𝑐𝑑

𝜕𝑤

𝜕𝑡
+ 𝑐𝑑

𝜕𝑍𝑏(𝑡)

𝜕𝑡
−
3

2
𝑎1𝐴(

𝜕2𝑤

𝜕𝑥2
)(
𝜕𝑤

𝜕𝑥
)
2

+ 𝑎1𝐼 (
𝜕4𝑤

𝜕𝑥4
) −

3

2
𝑎2𝐴(

𝜕2𝑤

𝜕𝑥2
)(
𝜕𝑤

𝜕𝑥
)
2

+ 𝑎3𝐴(
𝜕4𝑤

𝜕𝑥4
)

− 3𝑎4𝐴(
𝜕2𝑤

𝜕𝑥2
)(
𝜕𝑤

𝜕𝑥
)
2

= 0 

(13) 

It is noteworthy that the mathematical definition of the boundary conditions is ob-

tained from Hamilton’s principle. Consequently, the boundary condition definition can 

be formulated as the following equations. 

{
  
 

  
 𝑤(0, 𝑡) =

𝜕𝑤

𝜕𝑥
(0, 𝑡) = 0

𝜕2𝑤

𝜕𝑥2
(𝐿, 𝑡) = 0

𝑎1𝐼
𝜕3𝑤

𝜕𝑥3
(𝐿, 𝑡) + 𝑎3𝐴

𝜕3𝑤

𝜕𝑥3
(𝐿, 𝑡) = −

𝐻𝑅

6[𝑍̂ − 𝑤(𝐿, 𝑡) − 𝑦̂(𝑡)]
2

 (14) 

The boundary conditions for cantilevers state that the deflection and slope at the 

point 𝑥 = 0 (at the fixed end) are equal to zero, and the bending moment and shear force 

at 𝑥 = 𝐿 (at the free end) are equal to zero. From Equation (14), it is observed that the 

difference between the boundary conditions of the cantilever and AFM appears in the 

shear force in such a way that for the AFM it is not equal to zero any longer and is nonho-

mogeneous and time-dependent due to tip–sample interaction. 
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2.6. Nondimensionalization 

In this section, the equation of motion and boundary conditions are made dimension-

less. Hence, the dimensionless parameters can be presented as follows [45]: 

𝑥∗ =
𝑥

𝐿
,𝑤∗ =

𝑤

𝑍̂
, 𝑑̅0 =

𝑑0

𝑍̂
, 𝑡∗ = 𝑡√

𝐸𝐼

𝜌𝐴𝐿4
, 𝑐 =

𝑐𝑑𝐿
4

𝐸𝐼
√
𝐸𝐼

𝜌𝐴𝐿4
, Ω = 𝜔√

𝜌𝐴𝐿4

𝐸𝐼
 

d1 =
𝑎1𝐼

𝐸𝐼
, d2 =

𝑎3𝐴

𝐸𝐼
=
2𝜇𝐴ℓ2

𝐸𝐼
, d3 =

3𝑎1𝐴𝑍̂
2

2𝐸𝐼
, d4 =

3𝑎2𝐴𝑍̂
2

2𝐸𝐼
, d5 =

3𝑎4𝐴𝑍̂
2

𝐸𝐼
 

𝑍̅ =
𝑍̂

𝑍̂
, d6 =

𝐻𝑅𝐿3

6𝐸𝐼𝑍̂3
 

 

(15) 

The non-dimensional form of the equation of motion and boundary conditions are 

obtained as (the asterisk notation is disregarded for simplification): 

𝜕2𝑤

𝜕𝑡2
+ 𝑐

𝜕𝑤

𝜕𝑡
− 𝑑̅0 Ω

2 sin(Ω𝑡) + 𝑐𝑑̅0 Ω cos(Ω𝑡) + (d1 + d2)⏟      
𝛼

𝜕4𝑤

𝜕𝑥4

− (d3 + d4 + d5)⏟          
𝛽

(
𝜕2𝑤

𝜕𝑥2
)(
𝜕𝑤

𝜕𝑥
)
2

= 0 

(16) 

with the dimensionless boundary conditions for the non-contact region 

𝑤(0, 𝑡) =
𝜕𝑤

𝜕𝑥
(0, 𝑡) =

𝜕2𝑤

𝜕𝑥2
(1, 𝑡) = 0 

(d1 + d2)⏟      
𝛼

𝜕3𝑤

𝜕𝑥3
(1, 𝑡) = −

d6

[(𝑍̅) − 𝑤(1, 𝑡) − 𝑑̅0 sin(Ω𝑡)]
2 

(17) 

3. Discretization of the Governing Motion’s Equation 

In this section, the governing partial differential equation is discretized by using the 

Galerkin method. Because the boundary condition is time-dependent, implementing the 

Galerkin method directly may be difficult. To solve such non-homogeneous boundary 

conditions, the following process is implemented. 

It is assumed that the deflection has the following form [46]  

𝑤(𝑥, 𝑡) = W(𝑥, 𝑡) + 𝐹(𝑡) 𝐺(𝑥) (18) 

in which 𝐹(𝑡) is obtained from non-homogeneous boundary conditions. 𝐹(𝑡) can be ex-

pressed as the following formulation. 

𝐹(𝑡) = −
d6

𝛼[𝑍̅ − 𝑤(1, 𝑡) − 𝑑̅0 sin(Ω𝑡)]
2 (19) 

In Equation (18), 𝐺(𝑥) is an arbitrary function satisfying the following conditions: 

𝐺(0) =
𝑑𝐺

𝑑𝑥
(0) = 𝐺(1) =

𝑑𝐺

𝑑𝑥
(1) =

𝑑2𝐺

𝑑𝑥2
(1) = 0,

𝑑3𝐺

𝑑𝑥3
(1) = 1 (20) 

A suitable assumption for the function 𝐺(𝑥) is chosen as 

𝐺(𝑥) =
−1

6
𝑥2 +

1

2
𝑥3 −

1

2
𝑥4 +

1

6
𝑥5 (21) 

Substituting Equation (18) into Equations (16) and (17), the governing equation is 

derived as: 
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𝜕2W

𝜕𝑡2
+ 𝑐

𝜕W

𝜕𝑡
+ 𝛼

𝜕4W

𝜕𝑥4
− 𝛽 (

𝜕2W

𝜕𝑥2
)(
𝜕W

𝜕𝑥
)
2

+ 𝐺
𝑑2𝐹

𝑑𝑡2
+ 𝑐𝐺

𝑑𝐹

𝑑𝑡
+ 𝛼𝐹

𝑑4𝐺

𝑑𝑥4

− 2𝛽𝐹
𝑑𝐺

𝑑𝑥
 (
𝜕2W

𝜕𝑥2
)(
𝜕W

𝜕𝑥
) − 𝛽𝐹2 (

𝑑𝐺

𝑑𝑥
)
2

(
𝜕2W

𝜕𝑥2
)

− 𝛽𝐹 (
𝑑2𝐺

𝑑𝑥
)(
𝜕W

𝜕𝑥
)
2

− 2𝛽𝐹2 (
𝑑𝐺

𝑑𝑥
)(
𝑑2𝐺

𝑑𝑥
)(
𝜕W

𝜕𝑥
)

− 𝛽𝐹3 (
𝑑𝐺

𝑑𝑥
)
2

(
𝑑2𝐺

𝑑𝑥
) = 𝑑̅0 Ω

2 sin(Ω𝑡) − 𝑐𝑑̅0 Ω cos(Ω𝑡) 

(22) 

Also, the corresponding boundary condition for Equation (22) is as follows: 

W(0, 𝑡) = W′(0, 𝑡) = W′′(1, 𝑡) = W′′′(1, 𝑡) = 0 (23) 

The prime notation is derivative with respect to the dimensionless axial coordinate. 

It is seen that the non-homogeneous boundary condition has been transformed into 

a homogeneous one. Now, the Galerkin method is applied to Equations (22) and (23). 

Since the contribution of the first mode is dominant in comparison to higher modes, the 

first mode is adopted in the present work. 

By applying the variables separation technique, the response of the new varia-

ble 𝑈(𝑥, 𝑡) is supposed to be as: 

W(𝑥, 𝑡) = 𝑞(𝑡)𝜙(𝑥) (24) 

in which 𝑞(𝑡) denotes the generalized coordinate, and 𝜙(𝑥) stands for the eigenfunction 

for a clamped-free beam, given by 

𝜙(𝑥) = {cos (𝛽1𝑥) − cosh (𝛽1𝑥)}

− (
{cos (𝛽1) + cosh (𝛽1)}

{sin (𝛽1) + sinh (𝛽1)}
{sin (𝛽1𝑥) − sinh (𝛽1𝑥)}) 

(25) 

where 𝛽1 = 1.8751. 

Substituting Equation (24) into Equation (22) and multiplying the resultant equation 

by 𝜙(𝑥), then integrating with respect to 𝑥 from 0 to 1, the following governing equation 

in the time domain is derived as: 

𝑞̈ + 𝑐𝑞̇ + 𝜔0
2𝑞 − 𝑟2𝑞

3 + 𝑟3𝐹̈ + 𝑐𝑟3𝐹̇ + 𝑟4𝐹 − 𝑟5𝐹𝑞
2 − 𝑟6𝐹

2𝑞 − 𝑟7𝐹𝑞
2

− 𝑟8𝐹
2𝑞 − 𝑟9𝐹

3 = 𝑟10 Ω
2 sin(Ω𝑡) − 𝑐𝑟10 Ω cos(Ω𝑡) 

(26) 

in which 

𝑟1 = ∫ 𝛼 𝜙𝜙′′′′
1

0
𝑑𝑥 = 𝜔0

2,            𝑟2 = ∫ 𝛽
1

0
𝜙𝜙′′(𝜙′)2𝑑𝑥, 

𝑟3 = ∫ 𝜙 𝐺
1

0
𝑑𝑥,                     𝑟4 = ∫ 𝛼 𝜙 𝐺′′′′

1

0
𝑑𝑥 

𝑟5 = ∫ 2𝛽
1

0
𝜙𝐺′𝜙′𝜙′′𝑑𝑥,               𝑟6 = ∫ 𝛽𝜙

1

0
𝐺′𝐺′𝜙′′𝑑𝑥 

𝑟7 = ∫ 𝛽
1

0
𝜙𝜙′𝜙′𝐺′′𝑑𝑥,                 𝑟8 = ∫ 2𝛽𝜙𝜙′𝐺′𝐺′′𝑑𝑥

1

0
 

𝑟9 = ∫ 𝛽𝜙𝐺′𝐺′𝐺′′𝑑𝑥
1

0
,                 𝑟10 = ∫ 𝑑̅0𝜙 𝑑𝑥

1

0
 

(27) 
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We now simplify the equation of motion by expanding the function 𝐹(𝑡) around 

zero point, i.e.,  

𝐹(𝑡) = 𝑘1 + 𝑘2𝑞(𝑡) (28) 

in which  

𝑘1 = −
ℎ1

(𝑍−𝑔(𝑡))2
,   𝑘2 = −

ℎ2
(𝑍−𝑔(𝑡))3

,  𝑔(𝑡) = 𝑑̅0 sin(Ω𝑡), ℎ1 =
d6

𝛼
,  

ℎ2 =
2d6𝜙(1)

𝛼
. 

(29) 

Substituting Equation (28) into Equation (26), we get 

𝑀𝑞̈ + 𝐶𝑞̇ + 𝐾𝑙𝑞 + 𝐾𝑞𝑞
2 + 𝐾𝑐𝑞

3 = 𝑟10 Ω
2 sin(Ω𝑡) − 𝑐𝑟10 Ω cos(Ω𝑡) (30) 

in which 

𝑀 = 1 −
ℎ2𝑟3

(𝑍̅ − 𝑔(𝑡))3
 

𝐶 = 𝑐 −
𝑐 ℎ2𝑟3

(𝑍̅ − 𝑔(𝑡))3
 

𝐾𝐿 = 𝑟1 +
3ℎ1

2ℎ2𝑟9

(𝑍̅ − 𝑔(𝑡))7
−

ℎ1
2𝑟6

(𝑍̅ − 𝑔(𝑡))4
−

ℎ1
2𝑟8

(𝑍̅ − 𝑔(𝑡))4
−

ℎ2𝑟4

(𝑍̅ − 𝑔(𝑡))3
 

𝐾𝑞 =
3ℎ1ℎ2

2𝑟9

(𝑍̅ − 𝑔(𝑡))8
−

2ℎ1ℎ2𝑟6

(𝑍̅ − 𝑔(𝑡))5
−

2ℎ1ℎ2𝑟8

(𝑍̅ − 𝑔(𝑡))5
+

ℎ1𝑟5

(𝑍̅ − 𝑔(𝑡))2

+
ℎ1𝑟7

(𝑍̅ − 𝑔(𝑡))2
 

𝐾𝑐 = −𝑟2 +
ℎ2
3𝑟9

(𝑍̅ − 𝑔(𝑡))9
−

ℎ2
2𝑟6

(𝑍̅ − 𝑔(𝑡))6
−

ℎ2
2𝑟8

(𝑍̅ − 𝑔[𝑡])6
+

ℎ2𝑟5

(𝑍̅ − 𝑔[𝑡])3

+
ℎ2𝑟7

(𝑍̅ − 𝑔(𝑡))3
 

(31) 

To distinguish between parametric and non-parametric resonances, the resultant 

equation is multiplied by (𝑍̅ − 𝑔(𝑡))9, resulting in 

𝑀(𝑍̅ − 𝑔(𝑡))9𝑞̈ + 𝐶(𝑍̅ − 𝑔(𝑡))9𝑞̇ + 𝐾𝑙(𝑍̅ − 𝑔(𝑡))
9𝑞 + 𝐾𝑞(𝑍̅ − 𝑔(𝑡))

9𝑞2

+ 𝐾𝑐(𝑍̅ − 𝑔(𝑡))
9𝑞3

= 𝑟10 Ω
2 sin(Ω𝑡) (𝑍̅ − 𝑔(𝑡))9 − 𝑐𝑟10 Ω cos(Ω𝑡) (𝑍̅ − 𝑔(𝑡))

9 

(32) 

Simplifying the equations by assuming that 𝑑̅0 is too small compared to 𝑍̅ = 1. 

𝑴𝟏𝑞̈ + 𝑪𝟏𝑞̇ + 𝑲𝑳𝟏𝑞 + 𝑲𝒒𝟏𝑞
2 +𝑲𝒄𝟏𝑞

3 = 𝑟10 Ω
2 sin(Ω𝑡) − 𝑐𝑟10 Ω cos(Ω𝑡) (33) 

in which 

𝑴𝟏 = 1 − ℎ2𝑟3 + (6𝑑̅0ℎ2𝑟3 − 9𝑑̅0) sin(Ω𝑡) 

𝑪𝟏 = 𝑐 − 𝑐 ℎ2𝑟3 + (6𝑑̅0𝑐 ℎ2𝑟3 − 9𝑑̅0𝑐) sin(Ω𝑡) 

(34) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2022, 12, 2598 10 of 20 
 

 

𝑲𝑳𝟏 = 3ℎ1
2ℎ2𝑟9 − ℎ1

2𝑟6 − ℎ1
2𝑟8 − ℎ2𝑟4 + 𝑟1

+ (−6𝑑̅0ℎ1
2ℎ2𝑟9 + 5𝑑̅0ℎ1

2𝑟6 + 5𝑑̅0ℎ1
2𝑟8 + 6𝑑̅0ℎ2𝑟4

− 9𝑑̅0𝑟1) sin(Ω𝑡) 

𝑲𝒒𝟏 = 3ℎ1ℎ2
2𝑟9 − 2ℎ1ℎ2𝑟6 − 2ℎ1ℎ2𝑟8 + ℎ1𝑟5 + ℎ1𝑟7

+ (−3𝑑̅0ℎ1ℎ2
2𝑟9 + 8𝑑̅0ℎ1ℎ2𝑟6 + 6𝑑̅0ℎ1ℎ2𝑟8 − 7𝑑̅0ℎ1𝑟5

− 7𝑑̅0ℎ1𝑟7) sin(Ω𝑡) 

𝑲𝒄𝟏 = −𝑟2 + ℎ2𝑟5 + ℎ2𝑟7 − ℎ2
2𝑟6 − ℎ2

2𝑟8 + ℎ2
3𝑟9

+ ( 3𝑑̅0ℎ2
2𝑟6 + 3𝑑̅0ℎ2

2𝑟8 − 6𝑑̅0ℎ2𝑟5 − 6𝑑̅0ℎ2𝑟7 + 9𝑑̅0𝑟2) sin(Ω𝑡) 

4. Result and Discussion 

In this section, the numerical results for the system under consideration shown in 

Figures 1 and 2 are illustrated. Unless stated otherwise, the material and geometrical pa-

rameters of the AFM cantilever are listed in Table 1. Because the influence of the size effect 

has been well addressed in previous studies, the material length-scale parameter is taken 

as zero in the numerical simulation and only has been expressed in the mathematical for-

mulation. The main aim of this section is to investigate the principal parametric resonance 

of the system [47]. 

As seen in Equations (33) and (34), the combination of van der Waals force and base-

excitation results in time-dependent linear inertia, stiffness, damping terms, and harmon-

ically time-varying nonlinear stiffness terms, creating parametric parameters excitations. 

Moreover, the AFM is affected by two external excitations having the same frequencies, 

which are equal to the frequency of the base excitation. It is observed that the frequency 

of all parametric excitations appearing in the linear, quadratic, and cubic nonlinearities is 

equal to that of the external excitation. In this work, the quality factor of the system is 

assumed to be 200, defining a low-damped vibrating system. Under this condition, if the 

frequency of the parametric excitation varies twice the fundamental natural frequency of 

the AFM, principal parametric resonance is activated for small values of the base-excita-

tion amplitude, 𝑑0. In other words, for the quality factor of 200, the activation level of 

parametric resonance is reached at small values of 𝑑0 that can let us neglect the contribu-

tion of the time-varying term existing in the inertia term. Another point that is worth men-

tioning is that, while the frequency of the base excitation is close to two times the first 

natural frequency, the sub-harmonic resonance of the first mode can be activated by the 

external excitation; however, its activation level is much greater than that of the principal 

parametric resonance. Therefore, it can be concluded that this type of nonlinear resonance 

does not contribute to the system’s response within the variation range of 𝑑0, which re-

sults in parametric resonance. With this in mind, the frequency-response behavior of the 

AFM is captured for different values of the base excitation amplitude and illustrated in 

Figure 3. 
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Table 1. The material and geometrical parameters of the AFM cantilever. 

Parameter Value 

Modulus of elasticity, 𝐸 3 GPa 

Length, 𝐿 225 𝜇m 

Cross-section area, 𝐴 7.02 × 10−11 m2 

The second moment of area, 𝐼 3.57 × 10−23 m4 

Hamaker constant, 𝐻 2.96 × 10−19 J 

Tip radius, 𝑅 10 nm 

Initial tip–sample distance, 𝑍̂ 60 nm 

Poisson’s ratio 𝜈 0.49 

The figure shows that the frequency–response curves are composed of trivial stable, 

trivial unstable, nontrivial stable, and nontrivial unstable branches. The term trivial refers 

to the periodic response with zero amplitude; however, nontrivial phrase returns to the 

periodic orbit with non-zero amplitude. Moreover, the term stable clarifies that the sys-

tem’s states are absorbed by the periodic orbit after the system is disturbed; however, this 

is not the case for the unstable term, meaning that any small disturbance applied to the 

system’s dynamics causes the system’s states to get off the periodic orbit without the abil-

ity of returning back to it. The system’s dynamics begin with stable zero-amplitude solu-

tions and continue until primary Hopf bifurcation (sub-critical) occurs, and the stable 

branch loses its stability. Further increasing the parametric frequency, the unstable trivial 

solutions retrieve their stability at super-critical Hopf bifurcation points. In addition, for 

the smallest value of 𝑑0 parameter close to the activation level, the stable and unstable 

nontrivial branches meet at the cyclic-fold bifurcation point at Ω ≈ 29.07; however, this 

is not the case for larger values of the parameter. As the parametric pump enhances, the 

resonance bandwidth becomes broader. The non-zero stable and unstable solutions meet 

at a displacement value beyond the gap distance between the microbeam and the sub-

strate. Furthermore, it can be inferred that the quadratic and cubic nonlinearities arising 

from the intermolecular force induce a softening effect on the steady-state dynamics of 

the AFM, making the nontrivial solution branches bend to the left. It should be mentioned 

that Wmax is the displacement of the cantilever tip. For better describing the frequency–

response curves, it should be noted that there has been considered a set of two curves 

corresponding to each color. For instance, the blue plot drawn in Figure 3 is composed of 

two curves; the one which is marked by a star showing the stable solution, and the one 

that is mark-free shows the unstable solution branch corresponding to the same value of 

𝑑0. 
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Figure 3. Frequency-response behavior of the AFM in the neighbor of its principal parametric reso-

nance for different values of the base-excitation amplitude. 

Figure 4 demonstrates the loci of the primary Hopf bifurcation points for different 

values of the excitation amplitude. The vertical axis shows the ratio between the excitation 

amplitude to its threshold, leading to parametric resonance activation. As seen in the fig-

ure, while this ratio is close to one from below, there is still no bifurcation in the system’s 

dynamics. However, while this ratio is close to one from above, two bifurcation points are 

occurring at two frequencies so close to each other that the left ones return to the sub-

critical, and the right ones introduce the position of the super-critical Hopf bifurcation 

points. As the amplitude of the parametric excitation grows, the distance between these 

two points increases. The grey area bounded by the fitted blue curve displays the para-

metric resonance region, known as the instability tongue. It is worth noting that if the 

parametric excitations are not accompanied by external excitation, the parametric noise 

squeezing effect is potent to happen while the excitation amplitude is below the activation 

level. However, this phenomenon cannot occur in the present dynamics, because the par-

ametric excitation is collaborated by external excitation with the same excitation fre-

quency. Inspecting the numerical values on the vertical axis, one can find that the para-

metric resonance bandwidth is extremely sensitive to the excitation amplitude. 
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Figure 4. Instability tongue. The loci of both sub- and super-critical primary Hopf bifurcation points 

define the boundary of the parametric resonance region, where the threshold value for the base 

excitation amplitude is 𝑑𝑡ℎ = 0.222 nm. 

Figure 5 illustrates the influence of the incompressibility (𝜈) on the frequency-re-

sponse behavior of the AFM system by choosing two different values for Poisson’s ratio, 

for 𝑑0 = 0.23 nm. Increasing the value of Poisson’s ratio causes the structure to become 

stiffer and more rigid, and therefore, its natural frequencies grow remarkably. With this 

in mind, the frequency of the parametric excitation is swept in the neighbour of twice the 

first natural frequency, which is evaluated for that specific Poisson’s ratio. In order to have 

a precise evaluation of how the impact of Poisson’s ratio influences the slope of the fre-

quency–response curve, the displacement amplitude is plotted versus the difference be-

tween the excitation frequency and two times the natural frequency. It is found from the 

figure that, not only the resonance region becomes more expansive, but also the softening 

trend is intensified. At the same time, the resonator is made from a more incompressible 

material. 
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Figure 5. The impact of Poisson’s ratio on the frequency-displacement behavior of the AFM, for 

𝑑0 = 0.23 nm. The dashed and solid lines are unstable and stable branches, respectively. 

Profile Height Detection Mechanism 

In this section, a sensing mechanism to detect the height of a sample’s profile that is 

implemented based on the principal parametric resonance characteristics is proposed. 

First, it is shown that while the AFM is operating near its parametric resonance, the bifur-

cation points’ position is highly affected by the gap distance between the microcantilever 

and its sample underneath. Figure 6 demonstrates the frequency-response behavior of the 

AFM for the excitation amplitude of 𝑑0 = 0.23 nm. Here, the initial gap distance is set to 

be 60 nm. As seen in the figure, the sub-critical and super-critical Hopf bifurcation points 

shift to the left and to the right, respectively, while there is a 1 nm rise in the height of the 

sample profile (orange curve). An increment in the height of the sample profile causes the 

gap distance between the cantilever tip and the sample top surface to decrease. Therefore, 

the impact of van der Waals’s force enhances, and consequently, the activation level de-

creases so that the resonance region becomes broader while the excitation amplitude is 

kept constant. This 1 nm rise in the height of the sample causes a 0.01 nondimensional 

frequency shift at primary Hopf bifurcation points. On the other hand, if the sample pro-

file undergoes a 1 nm surface depression, extending the gap between the cantilever tip 

and the top surface of the sample, weakening the van der Waals force, the activation level 

of the parametric resonance increases. Hence, the resonance region shrinks while the par-

ametric pump is kept constant, meaning the sub-critical and super-critical Hopf bifurca-

tion points shift to the right and the left, respectively (black curve). As observed in the 

figure, the frequency shift caused by the rise in the height of the sample profile is quite a 

bit smaller than that caused by surface depression. Here, the frequency shift at bifurcation 

points caused by a 1 nm profile depression is obtained at about 0.0125. In Figure 6, PH 

stands for primary Hopf bifurcation. 
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Figure 6. The influence of the surface profile variations on the primary Hopf bifurcation points near 

parametric resonance for the base excitation amplitude of 0.23 nm. The dashed and solid lines are 

unstable and stable branches, respectively. 

The frequency-response behavior of the AFM device near the primary resonance of 

its first mode is illustrated in Figure 7. To monitor the steady-state dynamic response of 

the system near its primary resonance, the external excitation frequency is set to be chang-

ing in the vicinity of the first natural frequency, and the displacement amplitude of the 

periodic orbit is recorded for each specific value of the excitation frequency. As seen in 

the figure, the frequency-displacement behavior does not experience bifurcation for the 

excitation amplitude of 𝑑0 = 0.15 nm; however, cyclic-fold bifurcation occurs beyond the 

gap distance for larger values of the base excitation amplitude, which is not meaningful, 

and we prevented presenting that result here. It is worth mentioning that for this case, the 

secondary parametric resonance of the first mode (Ω ≈ 𝜔𝑛) of oscillation is probable to 

happen because, as stated before, the frequency of the parametric terms is identical to that 

of the external stimulus. While the excitation frequency varies near the natural frequency 

of the first mode itself, the system has the potential to experience the combination of both 

primary resonance (due to external/direct excitation) and secondary parametric resonance 

(due to parametric excitation) of the first mode. However, the secondary parametric reso-

nance (Ω ≈ 𝜔𝑛) requires a higher level of activation compared to the primary parametric 

resonance (Ω ≈ 2𝜔𝑛). Therefore, it cannot be motivated for the proposed AFM, because 

the cantilever experiences tapping mode, which is caused by large-amplitude oscillation 

due to direct excitation. Inspecting the figure, it is seen that while there is a 1 nm increase 

in the height of the sample profile, the resonance amplitude grows slightly (orange curve) 

compared to the case in which there is no variation in the surface height (blue curve). On 

the other hand, the displacement amplitude at resonance drops quite a bit while the sur-

face of the sample undergoes a 1 nm depression. Conversely, these variations in the profile 

configuration do not result in a change in the primary resonance frequency. In this work, 

the authors propose an effective detection mechanism based on amplitude shift at bifur-

cation points that are highly sensitive to detecting the high variations of samples’ surface 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2022, 12, 2598 16 of 20 
 

 

profiles. The AFM needs to be run near its parametric resonance zone instead of the pri-

mary resonance region. 

 

Figure 7. The influence of the surface profile variations on the resonance amplitude of the micro-

cantilever near primary resonance, for 𝑑0 = 0.15 nm. 

Figure 8 depicts the frequency-displacement amplitude of the AFM near its paramet-

ric resonance for a parametric pump which is slightly above the activation level, 
𝑑0

𝑑𝑡ℎ
=

1.001. For the case in which there is neither bulge nor surface depression on the surface 

profile (violet curve), a cyclic-fold bifurcation exists at Ω = 29.068. This dynamic behav-

ior corresponds to the case where the cantilever tip is precisely on top of the sample area 

from which the initial gap distance, 𝑍̂, is measured. This profile status is considered the 

surface baseline, provided that any variation in the height of the sample profile concern-

ing this baseline is denoted by 𝛿. As observed in the figure, the frequency–response curve 

shifts to the right once the distance between the microcantilever tip and the surface profile 

increases by 15 pm; namely, the AFM faces a surface depression of 15 pm on the sample 

profile. Because the AFM is already set to be operating at point A, this right shift in the 

steady-state behavior of the device causes a significant drop in the displacement ampli-

tude, jumping from point A down to point B with zero amplitude. The AFM’s sensitivity 

can be obtained by evaluating the dimensional displacement drop to the change in the 

profile height. Accordingly, the sensitivity of the proposed method is as follows: 

𝑆𝐷𝛿
𝑤 =

Δw

Δδ
=
0.71 × 60 nm

15 pm
= 2840

amplitude (nm)

δ (nm)
 (35) 
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Figure 8. The influence of the surface profile variations on the amplitude of the resonator’s displace-

ment at cyclic-fold bifurcation near parametric resonance, for 
𝒅𝟎

𝒅𝒕𝒉
= 1.001. The dashed and solid 

lines are unstable and stable branches, respectively. 

On the other hand, the frequency–response curve shifts to the left while there is a 15 

pm rise in the sample profile, so the resonator’s response experiences a jump up to point 

C. Although this enhancement in the displacement amplitude is smaller than what is 

achieved for surface depression, the detection sensitivity is still considerable compared to 

the case where the cantilever is actuated near its primary resonance (comparing Figures 7 

and 8). Similarly, for the case in which the distance between the AFM tip and the sample 

profile diminishes, the sensitivity of the device is obtained as follows, 

𝑆𝑅𝛿
𝑤 =

Δw

Δδ
=
(0.8 − 0.71) × 60 nm

15 pm
= 360

amplitude (nm)

δ (nm)
 (36) 

Scientifically speaking, because of the softening behavior of the AFM, the response 

amplitude drops from the stable nontrivial branch down to the stable trivial branch. At 

the same time, there is a positive variation in the height of the sample (surface depression), 

leading to ultrahigh sensitivity. However, this is not the case while there are negative var-

iations in the height of the sample profile, meaning that the system’s response jumps from 

a stable nontrivial branch up to a new generated stable nontrivial solution branch, degrad-

ing the AFM sensitivity. This can be improved by designing a tuneable AFM that can 

show both softening and hardening behavior near its parametric resonance regime. It is 

worth noting that the most challenging part in achieving ultrahigh sensitivity in AFMs 

returns to the employment of the base excitation amplitude. The finer the resolution of the 

parametric pump (parametric excitation amplitude), the higher the possibility for the im-

plementation of the proposed detection mechanism. This means that the suggested 
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method requires the capability of changing the base excitation amplitude with fine reso-

lution. The proposed method can be feasibly employed once this concern is responded to. 

In this paper, a micropolar model Equation (4) suitable for hyperelastic materials was 

utilized. However, other hyperelastic models can be utilized for hyperelastic microcanti-

levers; for example, the Gent model [48], generalized neo-Hookean models [49], Gent-

Gent model [50], etc. 

The foremost aspect of the analysis in the present work is that the system operates in 

parametric resonance regime. We have identified such a regime for non-contact AFM that 

is common in many real setups. For other kinds of AFM, it is essential to seek the presence 

of parametric resonance in the system first. Then, the analysis of the current study can be 

developed for the system. 

5. Conclusions 

This work examined the nonlinear resonance of a hyperelastic-based cantilever AFM 

in the non-contact region so that the non-contact force is modeled using the van der Waals 

force. A vertical base excitation is used to vibrate the AFM. A hyperelastic model com-

bined with the modified couple stress theory is proposed to incorporate the elastic energy 

stored in the microcantilever caused by deformation. The obtained equation of motion is 

discretized via a developed Galerkin method. Furthermore, an efficient detection mecha-

nism based on principal parametric resonance, assessing surface depression and height 

increase of a sample profile, is proposed. The following concluding remarks can be de-

duced from the presented numerical results. 

• The hyperelastic microcantilever of the AFM device undergoes softening behavior 

near its principal parametric resonance. 

• The frequency–displacement curve governing the resonator’s dynamics comprises 

stable trivial, unstable trivial, stable nontrivial, and unstable nontrivial branches. 

• The resonance of the AFM exhibits both super- and sub-critical Hopf bifurcations for 

the considerable value of 𝑑0, and cyclic-fold bifurcation, for a small value of 𝑑0. 

• Increasing the incompressibility condition (higher values of the Poisson’s ratio) re-

sults in stronger softening nonlinearity, and the resonance bandwidth becomes 

wider. 

• Surface profile depression and rise in the height of a surface profile can be detected 

by inspecting the bifurcation points’ position. 

• According to the sensitivity analysis presented in Equation (35), the proposed AFM 

can detect surface depression in the order of a picometer, providing ultrahigh sensi-

tivity. 
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