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Abstract—The effective wavelet filtering of real signals is impossible without determining their shape.

The shape of a real signal is related to its wavelet spectrum. For shape analysis, a continuous color wavelet

spectrogram of signal level is often used. The disadvantage of continuous wavelet spectrogram is the

complexity of analyzing a blurry color image. A real signal with additive noise strongly distorts the

spectrogram based on continuous wavelet analysis compared to a pure signal. Therefore, the

identification of a real signal by using a continuous color wavelet spectrogram is difficult. To solve this

problem, for the first time, a comparative analysis of spectrograms of signals and correlation matrices is

carried out. The spectrograms of signals are obtained based on continuous wavelet transformation in the

form of images with areas of different colors of variable intensity. Correlation matrices are computed by

using mathematical functions of the coefficients of discrete wavelet spectra.

DOI: 10.3103/S0735272722020042

COMMON NOTATIONS

Discrete wavelets: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5,

bior3.7, bior3.9, bior4.4, bior5.5, bior6.8, coif1, coif2, coif3, coif4, coif5, coif6, coif7, coif8, coif9, coif10,

coif11, coif12, coif13, coif14, coif15, coif16, coif17, db1, db2, db3, db4, db5, db6, db7, db8, db9, db10,

db11, db12, db13, db14, db15, db16, db17, db18, db19, db20, db21, db22, db23, db24, db25, db26, db27,

db28, db29, db30, db31, db32, db33, db34, db35, db36, db37, db38, dmey, haar, rbio1.1, rbio1.3, rbio1.5,

rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8, sym2,

sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, sym11, sym12, sym13, sym14, sym15, sym16,

sym17, sym18, sym19, sym20.

1. INTRODUCTION

The effectiveness of methods for denoising of signals is determined by the nature of the signal itself, and

a limited nature of noises – mainly the white uncorrelated noise with zero mathematical expectation.

Therefore, the first and crucial stage is the signal identification using any filtering method. The basics of

signal identification are given in [1].

In this work, trivial but critical remarks are made about the fact that any signal is characterized by its

shape. After the quantization by level, the shape is determined by a set of instantaneous values and the

distribution of time intervals for each quantization level. Many works are dedicated to the search for integral

characteristics of the form. Among them, one can distinguish identifiers and classifiers based on machine

learning, for example, using neural networks [2].

The main disadvantage of machine learning methods for signal identification is the fact that they are

designed only for a specific group of signals, for example, electrocardiogram (ECG) signals. In addition,

such algorithms have a low noise immunity and low performance. For further unification by the machine

learning method in terms of signal identification and filtering, the analysis of spectral characteristics is

considered to be promising [3].

From this summary of problems, one conclusion can be drawn, i.e., the stages of problem-solving should

be as follows: signal identification, selection, and implementation of filtering, and only afterwards – the
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classification methods. Therefore, let us move on to the substantive review of conventional and recursive

Discrete Wavelet Transform (DWT) filtering methods.

2. LITERATURE BACKGROUND AND PROBLEM STATEMENT

Relatively recently, a paper [4] was published. To compare our results with those given in this

publication, we shall study a numerical experiment in detail. The second-order recursive inverse (RI)

adaptive algorithm used by the authors consists in decomposing a noisy signal into a filter bank, the output of

which is converted into a group of coefficients by which the signal features are calculated. The signal is

restored in a form close to the original non-noisy signal. The recursive least squares (RLS) algorithm can be

implemented on any other principle of filtering. The difference is that the approach to the original signal is

carried out by the least-squares method.

According to the numerical experiment, the R algorithm proposed by the authors of this publication is

compared with the RLS algorithm under conditions of the uncorrelated white Gaussian noise with variance

�
2

= 0.15 and zero mathematical expectation. For the reproducibility of the results, 1000 realizations were

carried out.

Subsequently, the following ratio for the correlated noise was obtained:

N k N k k0 01 0 7( ) , ( ) ( )� � � � ,

where �( )k is the white Gaussian process with its mean value equal to zero and the variance which supports

SNR = 30 dB. The convergence rate of the R algorithm to SNR = –30 dB is 850 iterations, which is

0.0035 dB per iteration. The noise level before filtering corresponds to SNR = 30.

Reconstruction of the signal obtained by the R algorithm is carried out according to the formula:

x k k

j

j

j n j n

n z

( ) ( ), ,�

�

�

�

� �

0

1

	 
 , (1)

where 	 j n, are the wavelet coefficients,
 j n k, ( ) are the wavelet functions that form an orthogonal basis.

We used a specifically generated signal written in a generalized form:

x k x k x ki i i( ) . ( ) . ( )� � � �179 1 185 2 � � � � �127 3 0 41 4 0. ( ) . ( ) ( )x k x k n ki i , (2)

where n k0( ) is the noise component.

The main disadvantage of the presented algorithm is that the filtering efficiency in terms of the mean

squared error (MSE) indicator does not depend on the signal shape x k( ). Moreover, the recursive DWT is

advisable to be applied when the minimum possible error is achieved by the direct method.

In this case, the performance indicator can be the ratio of the difference in decibels between

(i) the noise level in the MSE2 signal filtered by the recursive method, and

(ii) the MSE1 signal filtered by the direct method to the N number of iterations until the saturation is

reached:

K

N

�

�MSE MSE2 1
. (3)

Now it is reasonable to consider the algorithm for achieving the minimum MSE or RMSE when

identifying the signal after DWT filtering. One of such algorithms, namely the analysis of the effectiveness

of the wavelet package for detecting the specific ultrasonic signals, is considered in publication [5]. This

paper discusses the Batch Wavelet Transform (BWT) method for decomposing and reconstructing an

ultrasonic signal reflected from C30 concrete grade with simultaneous noise suppression.

To analyze the performance of the proposed method, the following indicators are used:

1. Signal-to-noise ratio:
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2. Root-mean-square error (RMSE):

RMSE � �
�

� ( ( ) ( )) /X n S n N
n

N 2

1
. (5)

3. Pearson correlation coefficient (PCC):

PCC Cov( ) /� X n S n x s( ), ( ) � � . (6)

4. Smoothness (SM):

SM �

� �

� �

�

�

�

�

�

�

[ ( ) ( )]

[ ( ) ( )]

S n S n

S n X n
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1

1

2

1

1

2

1

1
. (7)

In the above equations X(n) is the original signal, S(n) is the signal after the suppression, N is the signal

length,� x and� s are the standard deviations of X(n) and S(n), Cov(�) — covariance function, respectively.

In the publication, ten signals were modeled according to the formula:

s t f t
t

s( ) cos( ( ) )
( )

� � �
� �

� � � �
�

e
2

2

2 , (8)

where � � �� � � �1 4 0 5, , , f s .

The noise was added to the signal with SNR = 20 dB. After averaging, the following parameters were

obtained: SNR = 11.1728 dB, RMSE = 0.0147, PCC = 0.9598, SM = 0.3344.

The disadvantage of this publication is its narrow focus on solving the particular problem of ultrasonic

testing of concrete, which does not allow us to draw a conclusion about the BWT method is question.

A detailed description of the methods with the general and universal thresholds, which will be used by the

authors of this paper as a zero recursion of signal, is presented in detail in [6]. The method without a

threshold is described in [7].

The conducted literature review confirms the need for a detailed study of the possibilities of using the

recursive method of discrete wavelet filtering to identify large groups of signals. The study should be carried

out considering the use of literary data on the maximum efficiency of the known methods with the general

and universal thresholds, as well as with the method without a threshold, such as zero recursion.

Increasing the efficiency of the given methods by using recursion is a highly urgent task. It will expand

the application scope of DWT methods for a group of signals with a high degree of non-stationarity, for

which this method has not been previously applied.

The purpose of this work is:

– to compare the selectivity of continuous (CWT) and discrete (DWT) wavelet transform methods for

spectral analysis under Gaussian noise using an example of separating groups of signals close in spectrum;

– to determine the mathematical functions for processing wavelet coefficients to identify the signal by the

spectrum for the DWT method based on the entropy of the signal;

– to develop recursive algorithms for DWT filtering of signals identified by the spectrum;

– to conduct a numerical and graphical comparative analysis of the developed filtering algorithms and the

known DWT filtering methods taking into account the number of recursion cycles.
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3. SELECTING SIGNALS FOR CWT AND DWT ANALYSIS

We will use the following types of signals [8]–[11]: blocks, bumps, heavisine (signal “heavy sinus”),

doppler (doppler signal), ramp (sawtooth signal), hisine (signal function sin(0.6902N�t)), losine (signal

function sin(0.3333N�t)), linchirp (signal with the linear frequency modulation), twochirp (signal with the

double linear frequency modulation), quadchirp (signal with the square function of frequency versus time),

mishmash (linchirp+quadchirp+hisine), wernersorrows (Werner signal), hypchirps (signal containing two

frequencies with hyperbolic functions of time), linchirps (signal containing two frequencies with linear

functions of time), chirps (sum of four signals with linear hyperbolic and square functions of frequency

versus time), gabor (two modulated Gabor functions), sineoneoverx (sinusoidal signal with the frequency

inversely proportional to time), piece-regular (normal pulse signal), piece-polynomial (piece-polynomial

signal), riemann (Riemann non-differentiable function).

For visual assessment of proximity of spectrograms, we will use the software implementation import

scalogram [12] with a high visual sensitivity to the features of signals.

4. CWT VISUAL SPECTRUM ANALYSIS

To build a scale diagram of the spectrum power, we use the representation of the Morlet (continuous)

wavelet:

W a b

a
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d , (9)
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Table 1. Shapes and spectra of signals’ power. Group 1

Signal Forms of model signals Wavelet power spectral density

Blocks

Bumps

Piece-polynomial

Piece-regular

Table 2. Shapes and spectra of signals’ power. Group 2

Signal Forms of model signals Wavelet power spectral density

HiSine

LoSine
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where a is scale, b is shift, f(t) is the signal function, �0 is the frequency. Then local spectrum power is

|W(a, b)|
2
. Some shapes and spectra of signals are presented in Table 1. Tables 2–5 show signals similar in

shape and spectrum.
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Table 4. Shapes and spectra of signals’ power. Group 4

Signal Forms of model signals Wavelet power spectral density

Doppler

Gabor

HeaviSine

Ramp

SineOneOverX

Table 3. Shapes and spectra of signals’ power. Group 3

Signal Forms of model signals Wavelet power spectral density

HypChirps

LinChirp

LinChirps

MishMash

QuadChirp

TwoChirp

Chirps
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The disadvantage of the analysis is the distortion of the image from noise (m = 0, � = 0.4) in a real signal,

for example,

Blocks

Discrete pulses create cone-shaped structures on the spectrogram, also known as the cone of influence.

The noise of the real signal destroys the cone of influence. Thus, the identification becomes impossible.

5. SYNTHESIS OF NOISE-RESISTANT CORRELATION MATRICES

The presented identification of groups of signals is carried out according to the method [13]. The

disadvantage of this grouping is the subjectivity of the visual comparison of power spectra. In addition, it is

impossible to identify real signals containing noise.

Correlation numerical analysis based on the DWT expansion allows the most accurate grouping of real

signals by shape and spectral characteristics [14]. To build a correlation matrix with DWT signal

transformation to achieve the maximum selectivity, the frequency subbands fj of each level j must be

mathematically processed by expandingU f fj j jn� [ , , ]1 � by the functions to be selected.

The main function is the Shannon entropy, which can conditionally divide signals into simple and

complex ones by comparing the numerical values of the entropy (Fig. 1).

As can be seen from Fig. 1, the noise has little effect on the Shannon entropy, which makes it possible to

identify noisy signals, taking into account their complexity. On the graph, the dots almost lie on the broken

line of the pure signal. Signals “Piece-Regular” and “Piece-Polynomial” are sharply distinguished by

complexity from the rest. For these signals, as well as for signals Blocks, HeaviSine, MishMash, Chirps and

WernerSorrows functions are used that determine the average value of the derivative, the frequency of the

zero crossing, the average speed of the transition of a given signal amplitude. We denote these functions as

f 1 3�
.

The remaining signals are conditionally simple, and their expansion coefficients DWTi are processed by

the functions of variance, standard deviation, mean value, 5th, 25th, 75th, 95th percentile, rms value, and

squared rms amplitude. We denote these functions as f 4 12�
.

However, the above division is conditional, and with independent functions, their full set F works on the

sensitivity of the matrix

F f f� �
� �1 3 4 12. (10)

Apart from the choice of these functions, the wavelet has a strong effect on the selectivity of the

correlation matrix, while the difference in the number of features before and after processing according to

(10) depends both on the wavelet itself and on the signal shape.

For instance, wavelet db16 for complex signals as Chirps after the mathematical processing using f 1 3�

increases the number of the identification features from 7 to 15, and for the wavelet bior1.1—from 12 to 15.

For simple functions, e.g., Blocks, for the wavelet db16, the opposite effect is observed—the number of the

identification features decreases from 7 to 1, and for the wavelet bior1.1—from 12 to 1.
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Table 5. Shapes and spectra of signals’ power. Group 5

Signal Forms of model signals Wavelet power spectral density

Riemann

WernerSorrows
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Let us demonstrate the discussed above by checking not only the visually found signal groups

(Tables 1–5) but also their belonging to signal groups (4) from [5]. To do so, we add the white noise with

� = 0.4 and zero mathematical expectation to the “generate+noise” signal and the “generate” signal without

noise. The matrix is built for the db16 wavelet.

Visual analysis of the power of continuous wavelet spectra in a number of groups of signals coincides

with the numerical values of the proximity of discrete wavelet spectra. For the Chirps group of signals

(Table 3), the area is marked with a red outline. For the HiSine, LoSine group of signals (Table 2), the area is
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Fig. 1. Signal complexity according to Shannon.
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Fig. 2. Correlation matrix of functions from discrete spectra of specific signals.
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marked with a blue outline. The areas showing the similarity of the WernerSorrows and Riemann signals

(Table 5) are highlighted in yellow.

The differences between the visual and numerical analysis according to the method proposed by the

authors are observed in Table 1. Signals Blocks and Bumps are well correlated with each other (highlighted

by the black outline), as well as signals Piece-regular and Piece-polynomial (highlighted in brown).

However, there is no correlation between these subgroups. The commonality of the HeaviSine, Doppler,

Ramp, Gabor, and Sineoneoverx signals is highlighted by two green contours (Table 4). There are other

features that are clearly visible in the recursion graphs given below, intentionally constructed from the

results of visual comparison.

The input “generate+noise” and “generate” signals correlate with the Piece-regular and

Piece-polynomial signal group. Thus, by mathematical processing of discrete wavelet spectra we have

obtained a very significant result. We have replaced the visual comparison of the powers of continuous

wavelet spectra with the numerical comparison of functions from discrete spectra. Besides, the resulting

matrix has a very high sensitivity to the shape and spectrum of the signal (Fig. 2). It is evidenced by the

presence of three “1” outside the diagonal.

6. FILTERING ALGORITHM FOR NOISY SIGNALS

Let us consider an algorithm for increasing the efficiency of DWT filtering with a single threshold for

selected groups of signals.

Direct filtration is performed in blocks 2–6 (Fig. 3). In block 2, using the main loop, threshold � j for

limiting the expansion coefficients is searched, and with the help of two nested loops, the “maternal”
 and

“parent” � functions of the basic wavelet and the threshold function F j( )� for limiting the wavelet

coefficients are selected.

In block 3 (Fig. 3), noisy signal f t f ti i 
 ( ) ( )� � is decomposed into two sets of wavelet coefficients

a j k, and d j k, , where  is the additively added noise. In block 4, using one set of threshold� j , wavelet
,� ,

and threshold function F j( )� selected in block 2, the noise is suppressed by limiting the detail ratios

! "
j

J

j j j k j j k

k

F d t

�

� �� �

1

0 0
( ) ( ), ,� 
 .
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Fig. 3. Algorithm of increasing filtering efficiency by recursion.
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The signal is restored in the time domain. In block 5, through feedback 6 to block 2, the values of the

root-mean-square error

! "RMSE � �
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is reduced, and the entropy of signal

! "h f t h f ti i[ ( )] [ � ( )]
 

��

is reduced.

After enumerating all the sets of values from block 2, the minimum error value Å0min is selected, which

is the direct filtering error or zero recursion error. Parameters (U and (h are used for control. Next, the

recursion process takes place. The filtered signal enters block 3 many times. The filtering is repeated until

the following condition is met:

Å Å Å
n n n� �

� �
2 1

.
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Table 6. Comparative efficiency analysis of direct and recursive methods for Group 1

Model

function

(U,

dB
(h, dit E

0
Wav F j( )� � j n E

n
Wav

n
F

n

j( )� � j

n
(%

Blocks 14 2.4099 0.0214 bior1.1 hard 1.4 14 0.0059 bior1.1 hard 0.2 72.4

Bumps 8 0.8146 0.0363 bior2.8 garotte 1.0 13 0.0267 bior2.8 hard 0.2 26.4

Piece-

polynomial
13 2.1828 0.0248 db2 garotte 1.2 14 0.0083 rbio1.3 hard 0.2 66.5

Piece-

regular
8 2.1972 0.0429 bior2.4 garotte 0.8 9 0.0255 bior6.8 hard 0.2 40.6

Table 7. Comparative efficiency analysis of direct and recursive methods for Group 2

Model

function

(U,

dB
(h, dit E

0
Wav F j( )� � j n E

n
Wav

n
F

n

j( )� � j

n
(%

HiSine 3 0.3891 0.1184 sym8 soft 0.2 14 0.0866 db21 hard 0.2 26.9

LoSine 10 0.8788 0.0498 sym16 hard 1.0 13 0.0639 db33 hard 0.2 68.1
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Each such repetition is called an iteration; it characterizes the efficiency of filtration with the use of

recursion by the following parameters: � � �( ) /E Å E
n

0 0100 , �U, �h. It should be noted that this algorithm

can be used for a real signal employing the reference signal. In this case, it will be the signal obtained during

the first filtering.

7. VERIFICATION OF PROPOSED METHOD

In the simulation, Gaussian uncorrelated noise was used with zero mathematical expectation and the

standard deviation of 0.4, by averaging thousands of realizations as [4]. The parameters were calculated

according to the methodology [6], using mathematical models for optimizing the computational experiment

[15].

In all the tables below, the following designations are used: �U is the reduction of the noise power in the

filtered signal [dB]; E
0

is the root-mean-square error before recursion, a dimensionless quantity; “Wav” is

the name of the basic wavelet that provides the minimum error E
0

before the recursion; F j( )� is the name of

the threshold function providing the minimum error E
0

before the recursion; � j is the threshold providing

the minimum error E
0

before the recursion (float); n is the number of recursion cycles (integer); E
n
, Wav

n
,

F
n

j( )� , � j

n
are parameters of the discrete wavelet filtering after the recursion; �% is the reduction of the

filtering error after recursion; �h is the reduction of the entropy of a noisy signal after recursion [dit].

The following signals are considered: Blocks k = 14/14 = 1.0, Bumps k = 8/13 = 0.6150,

Piece-polynomial k = 13/14 = 0.929, and Piece-regular k = 8/9 = 0.889 dB per iteration (Table 6). In [4], this

value is 0.0035 dB per iteration. Thus, the recursion of DWT filtration by the suggested algorithm with the

mean value (1.0 + 0.6150 + 0.929 + 0.889)/(0.0035�4) = 245 indicates a higher efficiency of the proposed

algorithm, even considering the fact that for the optimal direct preliminary DWT filtering [15], not more

than several iterations are spent taking into account the signal shape and the values of the parameter

enumeration steps.

The nature of the decrease in the error with the increase of recursion for Group 1 of model functions is

shown in the graph (Fig. 4). Here and below, the value of E is given in the MSE format.

Let us conduct a comparative numerical analysis of the data obtained by the authors and the data given in

[4] using ratio (3) from the literature review.

Comparative analysis of the data obtained by the authors and the data given in [4] shows that for HiSine

signal k = 0.214 and for LoSine signal k = 0.769 dB per iteration (Table 7). The error E of these functions is

presented in Fig. 5. Hence, the mean value is (0.214 + 0.769)/(0.0035�2) = 140.4 that is twice more than

in [4].

Comparative analysis of the data obtained by the authors and the data given in [4] shows that for

HypChirps signal k = 1.4, LinChirp signal k = 0.2, LinChirps signal k = 0.2, MishMash signal k = 0.071,
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Fig. 4. Recursive DWT filtration with common threshold

for all levels of signal decomposition (Group 1).

Fig. 5. Recursive DWT filtration with common threshold

for all levels of signal decomposition (Group 2).
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QuadChirp signal k = 0.375, TwoChirp signal k = 0.143, and for Chirps signal k = 0.143 dB per iteration

(Table 8). The error E in this case is shown in Fig. 6. Hence, the mean value is (1.4+0.2+0.2+0.071+0.375+

0.143+0.143)/(0.0035�7) = 103.3 that is two times more efficient than in [4].

Comparative analysis of the data obtained by the authors and the data given in [4] shows that for the

Doppler signal k = 2.4, Gabor signal k = 0.857, HeaviSine signal k = 2.167, Ramp signal k = 4.75, and for the

sineoneoverx signal k = 0.643 dB per iteration (Table 9). The error E of these functions is presented in Fig. 7.

Hence, the mean value is (2.4 + 0.857 + 2.167 + 4.75)/4 = 2.5435 that is twice more than in [4].

A comparative analysis of the data obtained by the authors and the data given in [4] shows that for the

WernerSorrows signal k = 0.071 and Riemann signal k = 7.333 dB per iteration (Table 10). The error E in

this case is shown in Fig. 8. Hence, the mean value is (0.071+7.333)/(0.0035�2) = 1057.7 that is three times

more than in [4].

8. COMPARISON OF RESULTS OBTAINED WITH DATA OF OTHER AUTHORS

Since the recursive DWT algorithm is considered only in one publication [4], the averaged values of the

number of iterations per decibel of noise power show advantages of the proposed filtering algorithm (Fig. 3).

For the comparative analysis of the filtering error and the data from [5] according to the matrix data in Fig. 2,

we introduce a new group of signals: “generate,” “Piece-regular,” and “Piece-polynomial”. The result is

shown in Fig. 9.

According to [5], the noise reduction with packet DWT filtering is 20 – 11.1728 = 8.8272 dB and RMSE

= 0.0147. For the proposed algorithm, the noise reduction by 15 dB is MSE = E4 = 0.0001 for four iterations.

Considering the fact that with MSE = RMSE
2

we get 0.01 that is 0.0047 less.
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Table 8. Comparative efficiency analysis of direct and recursive methods for Group 3

Model

function

�U,

dB
�h, dit E

0
Wav F j( )� � j n E

n
Wav

n
F

n

j( )� � j

n
�%

HypChirps 7 0.6163 0.0371 db31 garotte 0.8 5 0.0311 db35 hard 0.2 16.2

LinChirp 2 0.4633 0.1099 db27 soft 0.4 10 0.0994 sym19 hard 0.2 9.6

LinChirps 5 0.5770 0.0648 db15 soft 0.4 6 0.0573 dmey less 1.6 11.6

MishMash 1 0.2931 0.1398 db27 soft 0.2 14 0.1261 db23 hard 0.2 9.8

QuadChirp 3 0.3777 0.0825 db32 garotte 0.6 8 0.0727 db38 hard 0.2 11.9

TwoChirp 2 0.3383 0.1333 db19 soft 0.2 14 0.1161 db31 hard 0.2 12.9

Chirps 2 0.3355 0.1166 db30 soft 0.2 10 0.0981 db36 hard 0.2 15.9

Table 9. Comparative efficiency analysis of direct and recursive methods for Group 4

Model

function

�U,

dB
�h, dit E

0
Wav F j( )� � j n E

n
Wav

n
F

n

j( )� � j

n
�%

Doppler 12 0.5240 0.011 sym12 garotte 1.0 5 0.0094 sym5 hard 0.3 14.5

Gabor 12 0.8953 0.0207 db14 garotte 0.8 14 0.0103 coif9 hard 0.1 50.2

HeaviSine 13 0.9600 0.0146 rbio5.5 garotte 1.0 6 0.0088 bior3.1 hard 0.1 39.7

Ramp 19 0.9600 0.0041 bior1.3 garotte 1.0 4 0.0022 bior1.1 hard 0.1 46.3

Sineoneoverx 9 0.499 0.0278 sym5 garotte 0.8 14 0.0195 bior2.2 hard 0.1 29.9
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9. PRACTICAL VALUE OF RESULTS

The algorithm presented above allows us to use the recursion without a model function and in case of the

real signal taking the first filtering as the original signal. This is especially important for a group of Chirps

signals which are used in many applications [8]–[11]. For example, in radars the reduction of the error from

barrage noise by 10% can significantly extend the viability of unmanned aerial vehicles. Moreover, the

numerical identification of signals into groups simplifies their identification and has a simple software

implementation.

The scientific novelty of the publication lies in the fact that for the discrete DWT in accordance with the

algorithm in Fig. 3, the recursion can be applied that increases its efficiency.

10. CONCLUSIONS

It is shown that, due to the choice of a discrete wavelet and special mathematical functions for processing

wavelet coefficients, the correlation matrix provides a high selectivity not only for groups of signals of

similar shape, but also for an individual signal. Mathematical functions for processing wavelet coefficients

are divided into two groups. According to numerical values of the Shannon entropy, the signals can be

conditionally divided into simple and complex.

The first group of statistics consists of ten functions, including variance, standard deviation, mean value,

the 5th, 25th, 75th, 95th percentile values, root mean square value, and the squared root mean square

amplitude. This group of functions solves the problem of identifying simple signals.

The second group is designed to detect crossover signals with linear and nonlinear frequency modulation.

These include the average value of the derivative, the frequency of zero-crossing, and the average speed of

transition of the given signal amplitude.

Groups of mathematical functions for processing wavelet coefficients do not depend on each other.

Hence, this set is acceptable both for conditionally simple and conditionally complex signals.

The frequency correlation matrix of test signals in the form of functionally processed wavelet

coefficients is stored in the database and is extended when new signals are detected. The selectivity of the

frequency matrix also depends on the number of identification features. The dependence of the number of
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Fig. 6. Recursive DWT filtration with common threshold

for all levels of signal decomposition (Group 3).

Fig. 7. Recursive DWT filtration with common threshold

for all levels of signal decomposition (Group 4).
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Table 10. Comparative efficiency analysis of direct and recursive methods for Group 5

Model function
�U,

dB
�h, dit E

0
Wav F j( )� � j n E

n
Wav

n
F

n

j( )� � j

n
�%

Riemann 1 0.1459 0.1459 sym19 soft 0.1 14 0.1361 db26 hard 0.1 6.7

WernerSorrows 22 0.8057 0.0013 bior1.1 soft 1.0 3 0.001 bior2.2 garotte 0.1 23.1
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identification features on the signal length and the type of discrete wavelet is found. This allows determining

the wavelet at which the sensitivity of the frequency correlation matrix is maximum for signals of the same

length.

The real signal contains a noise component. The correlation matrix makes it possible to identify noisy

signals. After identifying the real signal using tabular data about the main wavelet, threshold, threshold

function, the recursive filtering should be performed to remove noise. If the noise error for the identified

signal is reduced compared to the known data, wavelet filtering of the real signal is performed without using

a model function directly. A comparative analysis of the obtained results and the known data shows a

sufficient efficiency of the proposed algorithm in terms of both the noise reduction per iteration and the final

value of the root- mean-square error.
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