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Abstract
The review presents recent developments in electrochemical
devices for photo- and spectroelectrochemical investigations,
with the emphasis on miniaturization (i.e., nanointerdigitated
complementary metal-oxide-semiconductor devices, micro- and
nano-porous siliconmembranes or microoptoelectromechanical
systems), silica glass/microreactors (i.e., plasmonic, Raman
spectroscopy or optical microcavities) or polymer-based devices
(i.e., 3D-printed, laser-engraved channels). Furthermore, we
have evaluated inter alia the efficiency of various fabrication
approaches for bioelectrochemical systems, biocatalysis,
photochemical synthesis, or single nanoparticle spectroelec-
trochemistry. We envisioned the miniaturization of applied
techniques such as cathodoluminescence, surface plasmon
resonance, surface-enhancedRaman spectroscopy, voltametric
and amperometric methods in the spectroelectrochemical
microdevices. The research challenges and development per-
spectives of microfluidic, and spectroelectrochemical devices
were also elaborated on.
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Introduction: why combine microfluidics
with electrochemistry?
Nowadays, miniaturized analytical devices, which pro-
vide features such as simplicity, automation, portability,
cost effectiveness, and ease of operation, are developed
and employed for various applications. Microfluidic de-

vices have been attracting interest in numerous appli-
cations as offer rapid manipulation of solutions,
minimum consumption of reagents, low cost, ease of
mechanization, and the ability to perform a wide range
of chemical and biological reactions with a small and
portable form factor [1e3]. Compared to standard flu-
idic systems, microfluidics (defined by a channel size of
less than 1 mm) operate in the laminar regime due to
their small channel dimensions. The higher surface-to-
volume ratio in microfluidics facilitates rapid heat
transfer between the device and the liquid, ensuring

homogenous temperature across the stream. Electro-
chemical detection methods benefit from the charac-
teristics of microfluidic systems, since the electrode
surface is in contact with a larger fraction of the sample.
Further, electrochemical parameters, such as applied
potential and current response, can be easily adjusted to
improve selectivity in synthesis applications. Micro-
fluidic flow cells have therefore also been employed as a
production method in the industrial field for large-scale
electrosynthesis. The integration of flow chemistry in
electrosynthesis improves many of the issues with

typical electrochemical cells. The use of disposal of
hazardous, toxic oxidising and reducing agents can be
drastically reduced, thereby making processes milder,
safer, and more cost-effective [4].

Metal and carbon microelectrodes are the dominant
electrodes in microsystems. Among metal electrodes,
the leading materials are those that combine high
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conductivity and chemical stability, such as gold and
platinum. Carbon pastes and noble metals facilitate
mass production as they can be deposited directly on the
substrate, although their high price must be considered.
In addition, metal electrodes often show a narrow
working potential window in aqueous electrolytes. Also,
their relatively high background currents and tendency
towards fouling significantly limit their use in some

applications. Different carbon allotropes, such as
graphene, carbon nanotubes, carbon fibre, graphite, and
diamond can be used as electrodes in microfluidic sys-
tems. Furthermore, pyrolyzed photoresist film (PPF)
carbon, screen-printed carbon, carbon paste, and carbon
ink can also be found in microfluidic systems [5].
Another crucial component for microfluidic EC devices
is the substrate, where electrodes with multiple micro-
channels or microchambers are integrated. The sub-
strate should be inexpensive, non-conductive, resistant
to the operating conditions, and compatible with the

electrode materials employed. Transparency is crucial
for optical techniques. The most frequently used sub-
strates are therefore glass and polymeric materials (e.g.,
polydimethylsiloxane e PDMS, polymethyl methacry-
latee PMMA, cyclic olefin copolymereCOC). Another
increasingly popular substrate material is paper. Micro-
fluidic paper-based analytical devices (mPADs) have
proved themselves especially for pregnancy and SARS-
CoV-2 antigen detection [6,7]. The use of paper is
especially attractive due to its low cost, flexibility,
availability, and biodegradability. An extremely cost

effective solution is to generate a graphite electrode on a
paper substrate with a pencil [8].

Electrochemical detection techniques are well suited
for miniaturized systems due to their compatibility with
microfabrication technologies, rapid analyses, cost
effectiveness, and simplicity [9]. Therefore, voltam-
metric, amperometric, impedimetric, and potentio-
metric electrochemical techniques are widely used as
detection techniques under flow-through conditions.
However, electrochemical methods may not be suffi-
cient to determine the exact reaction products and

by-products. Thus, combined techniques, such as
spectro- and photoelectrochemistry, which merge elec-
trochemistry and optical methods, have attracted great
research attention due to the possibility of more precise
qualitative and quantitative analysis of the processes
taking place at the electrode/electrolyte interface. Here,
spectroelectrochemistry refers to systems where light is
used to investigate electrochemical reactions, whereas
photoelectrochemistry describes systems where light is
used to affect the electrochemistry.

Here, we present an overview of general concepts of
flow chemistry coupled with photo- and spectroelec-
trochemical techniques. The review begins with a dis-
cussion of design and fabrication of microfluidics that
can be implemented with electrochemical electrodes.
Current Opinion in Electrochemistry 2022, 36:101138
Next, we report how photoelectrochemistry is used for
investigations on such devices. Finally, the review shows
the recent designs before disclosing the discussion of
example applications of the microfluidic devices in the
photo- and spectroelectrochemical fields (see overview
in Figure 1).
Design and fabrication of microfluidics
integrated with electrochemical electrodes
The choice of design and fabrication method for
microfluidics with integrated electrodes, is strongly
dependent on the application, user settings, constraints
from materials and type of samples (wetting properties
and viscosity), with designs often not directly transfer-
able between applications [10,11] (see Figure 2ab).
Commonly, a straightforward single channel design,
aiming at accurate flow control, is used. Multiplexing, in
the design of both electrodes and fluidic channels, leads
to higher throughput and testing capability [10].
Microfluidic sample pretreatment (e.g., by filtration or

mixing, dilution, and enrichment) minimizes interfer-
ence during analysis. Integrated, electrochemically
(EC) inactive electrodes have been extensively used in
various microfluidic applications requiring homogeneous
electric fielddelectro-driven separation, electroosmotic
flow, electrical actuation, dielectrophoresis and elec-
trowetting with some integration approaches also rele-
vant for the EC active electrodes. In EC devices,
electrodes with higher surface area, leading to the
increased contact with sample per square centimeter of
geometric surface area, are of advantage. This section

discusses selected publications reporting microfluidic
design, fabrication of electrodes, and approaches for
integration with microfluidics relevant for the develop-
ment of EC devices. Other recent reviews provide in-
sights into the design [12] and fabrication [13e17].

In the choice of technology, rapid prototyping of
microfluidics can be achieved by using consumer-grade
off-the-shelf tools and materials [18], and by using
relatively simple techniques, such as xerography, micro-
milling, 3D-manufacturing, screen printing, and thermal

lamination process. Due to lower costs and short turn-
around time in prototyping, cleanroom-free fabrication
methods are often used, with PDMS moulding domi-
nating. Efforts have been made to develop flexible
electrodes, pumpless liquid delivery and mixing [19],
spectro-electrochemical cells [20], controlled sample
manipulation [21], mitigation of bubble formation [22],
and improvement in the reliability of bonding over
electrodes [23]. Also, an organ-on-a-chip system with
EC analysis, venting, and sequential reagents delivery
capabilities was fabricated in PDMS [24] (see

Figures 2de2f). Electrodes were integrated with droplet
generating structures in PDMS for EC analysis of
droplet content [25] and temporal pH regulation
(Figure 2h) [26]. In pumpless microfluidic devices, such
www.sciencedirect.com
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Figure 1

Overview of techniques applied in microfluidic devices for photo- and spectroelectrochemical studies (Attn.: CL – Cathodoluminescence, SPR – Surface
Plasmon Resonance, SERS – Surface Enhanced Raman Spectroscopy, CA - Chronoamperometry, EIS – Electrochemical Impedance Spectroscopy,
SWV – Square-Wave Voltammetry, and CV – Cyclic Voltammetry).
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as wearables, the water contact angle of the channel
plays a crucial role in capillary-driven fluid transport; for
this reason, lowering the contact angle can be tempo-
rarily achieved by a simple O2-plasma treatment, or
permanently, by silanization [27].

Polymer rapid prototyping technologies are frequently
applied for the fabrication of fluidic cartridges, me-
chanical and assembly parts for EC electrodes with a
flexible gasket for liquid-tight operation [28]. These

technologies typically cover dimensions ranging from
hundreds of micrometers to centimeters, sufficient for
many integrated electrodes’ applications with pumpless
liquid transport and limited multiplexing. Foils of
functional electrode materials and adhesives were cut
for layer-by-layer assembly using a knife plotter [29]. A
larger scale, automated setups, i.e. for the exposure of
arrays of EC sensors [30] (see Figure 2e) and flow-
through EC cells for synthesis with exchangeable elec-
trodes [31] are the examples of system level integration.
Paper is a common material for EC-integrated micro-
fluidics. To overcome limitations in EC electrode

sensing performance arising from Ag nanoparticle
(AgNP) agglomeration, a paper microfluidic device with
a wax-patterned microchannel with a microelectrode
array, capable of resolving individual AgNP was devel-
oped [6] (see Figure 2c).
www.sciencedirect.com
Microelectromechanical systems (MEMS) technology
offers control over the dimensions in the range from tens
of nanometers to micrometers, reproducibility, and mass
production. An overview of relevant fabrication steps in
Si/glass can be found elsewhere [32]. Microfluidic fea-
tures as small as 50 nm (by nanoimprint lithography
(NIL) and electron-beam lithography (EBL)) and 2 mm
(by UV lithography), through holes for sample delivery,
and functional integrated materials for sensing and
actuation (electrical isolation films, thin metal films,

piezoelectric films, etc.) are feasible. Wafer-level fabri-
cation of 2- and 3- wafer stacks [33], electrically actu-
ated valves with the capillary flow, and self-venting
microstructures for programmable, bubble-free liquid
operations on-a-chip were demonstrated [34]. Another
example, based on dry film resist technology on poly-
imide, shows multiplexed microfluidic EC biosensing
platform for amplification-free, parallel detection of
miRNAs using thin film Pt and Ag/AgCl electrodes
(Figure 2a) [10]. MEMS-based EC microfluidics also
faces some challenges, i.e., restrictions on materials in
CMOS compatible labs and incompatibility between

the desired EC electrode material and available fabri-
cation technologies (e.g. due to processing temperatures
during steps such as bonding or passivation of elec-
trodes). Fabrication permitting post-processing e.g. by
drop casting or (chemical or physical) surface
Current Opinion in Electrochemistry 2022, 36:101138
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Figure 2

(a) CRISPR-multiplexed sensor designs with electrochemical cells for detection (Reproduced with permission from Bruch et al. [10], Copyright 2021,
Elsevier.); (b) Prototype of an electrochemical microfluidic device for vaccine quantitation with 12 microchannels, each having an independent gold
working electrode (Reproduced with permission from Chozinski et al.[11], Copyright 2021, American Chemical Society); (c) Fabrication steps of an
electrochemical mPAD sensor: hydrophobic barriers and alignment markers (i-ii)., the alignment and attachment between the chip and the paper (iii-iv)
(Reproduced with permission from Weiß et al. [6], Copyright 2021, American Chemical Society); (d) Diagram of the two-stage fabrication steps of the
microelectrode with the use of two shadow masks (CE/WE and RE). A 20 nm layer of Ti is deposited, followed by Pd. For the CE/WE mask, a 500 nm
layer of Au is deposited, and a 500 nm Ag for the RE mask (Reproduced with permission from Aleman et al. [24], Copyright 2021, Springer); (e) EC
biosensor cell comprising Au WE, Au CE, and Ag RE for antibody-based and aptamer-based biosensing and monitoring of organ-on-a-chip devices
(Reproduced with permission from Aleman et al. [24], Copyright 2021, Springer).; (f) A multisensor-integrated multi-organ-on-chips platform. The red color
shows medium circulation, and the green color indicates the valve connections. (g) Custom-built for automated measurement of liquids with data
acquisition board for readout from the polymeric sensor array (example of morphologies characterized by SEM are shown) with 16 electrodes on a
double-sided PCB. (Reproduced with permission from Gabrieli et al.[30], Copyright 2021, American Chemical Society); (h) Electrochemical pH regulation
achieved in microdroplets in a microfluidic device: series of micrographs showing splitting of an aqueous microdroplet (top images). The microelectrodes
consisted of a Ti (10 nm) layer, a Pt layer (100 nm) and an Ag layer (300 nm). (Reproduced with permission from Srikanth et al. [25], Copyright 2022,
Royal Chemical Society).
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modification in a flow mode to complete the EC cell

with additional functional materials is often required.
This allows to achieve higher selectivity (specificity) or
regeneration of electrodes. Reversible bonding tech-
niques for access to electrodes may therefore be used.
Recently, alternative room temperature bonding
methods, which can also be applied to EC devices, have
been demonstrated [35]. For size critical applications,
the total footprint including contact pads can be an
issue. This can be overcome by allocating electrodes and
contact pads on both sides of the substrate and connect
them by vias, and by 3D integration of multiple sub-

strates. Antifouling coatings (for life-sciences and
medical applications) and coatings modifying wetta-
bility of microfluidic channels often challenge the
optimal performance requiring additional development
Current Opinion in Electrochemistry 2022, 36:101138
[36]. Over time, electrodes may also deteriorate leading

to changes in material and EC active area. Microfluidic
designs and materials compatible with electrode clean-
ing methods, either chemical or EC, are of high impor-
tance. Integration with microfluidics allows to automate
cleaning steps with solvents (e.g., to remove deposits) in
between the measurements, thus prolonging the life-
time of electrodes.

Microfluidic devices in
spectroelectrochemical applications
The high surface-to-volume ratio of microfluidic systems
together with the short optical path that limits attenu-
ation of incoming light makes them ideal for heteroge-

neous photochemical processes and has been exploited
for a long time. The photoelectrochemical applications
www.sciencedirect.com
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also require the efficient transfer of electrons between
the reactants and the electrode surface. With standard
microband electrodes, a large proportion of the reactant
can pass over the electrodes without interacting with
them [37]. This limitation can be overcome by the
development of 3D structured or flow-through elec-
trodes with paper- or carbon-cloth-based electrodes and
microflow systems. Guima et al. reveal a low-cost 3D-

printed microflow cell for water treatment and energy
harvesting [38]. In a paper on photoelectrochemical CO2

conversion, Kalamaras et al. show the improvements that
can be reached with microflow systems over batch re-
actors [39]. The state of photocatalytic fuel cells was
recently reviewed by Queiroz et al. [40].

In photoelectrochemical (PEC) analysis the microfluidic
system is often used as a convenient delivery system of
small volumes of the analyte, rather than used for
enhancing the efficiency as in energy applications [41].

Cheng et al. [42] developed a PEC sensor for a specific
antigen. In this and other similar cases [43], ascorbic acid
is used as a hole scavenger that is oxidized at the
photoelectrode to create a photocurrent when illumi-
nated. The sensing is based on a sandwich-type structure
where the target antigen binds to the photoanode and a
secondary antibody marker to the bonded antigen. This
secondary marker quenches the photocurrent if the
Figure 3

(a) Spectroelectrochemical cell for in situ Raman microspectroscopy installed
with permission from da Silva Junior et al. [50], Copyright 2021, Springer-Ver
detection of H2O2, (d) current responses CVand (e) chronoamperometry for bo
nanocavities, enhanced with graphene nanosheets (Reproduced with permiss

www.sciencedirect.com
target is available. The reaction takes place in a small
reaction chamber instead of in the microchannel itself.
This is also common amongmany of the available sensors
[43e46]. In the latter two cases [45,46], Feng et al. use a
photocathode instead of an anode to detect H2O2, the
production of which is enhanced in the presence of the
analyte, a model biomolecule attached to a nanoparticle.
They explain that there is less interference at a cathode

rather than an anode.

Light stimuli and readout could be utilized in micro-
fluidic devices inducing specific spectroelectrochemical
interactions. The most of studies are devoted to
UVeVisible Spectroscopy, Fourier Transformed Infrared
(FTIR) Spectroscopy, or Raman Spectroscopy allowing
for a quantitative or qualitative investigation of elec-
trode/electrolyte interfaces and as well as information on
the species in the electrolyte.

An alternative way of coupling light into microchannels
is by embedding an optical fiber with a manipulated
cladding to let the light interact with the liquid in the
channel, a technique pioneered by the �Smietana group.
The dual-domain (optical and EC) label-free sensing
experiment was reported on the ITO-coated optical
fiber probe revealing interactions using a lossy-mode
resonance (LMR) along with cyclic voltammetry
in a Horiba LabRAM, (b) V-VIS reflection-absorption spectra (Reproduced
lag); (c) Schematic of the nanostructured microfluidic device for PEC
th under dark and visible light illumination conditions at self-organized gold
ion from Del R. Mata et al. [51], Copyright 2021, Royal Chemical Society).

Current Opinion in Electrochemistry 2022, 36:101138
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Table 1

Electrochemical, photo- and spectroelectrochemical device designs using a microfluidic approach.

Sensing electrode Working principle Fabrication Performance Reference

Biotin-functionalized ITO-coated
optical fibers

Transmission + CV RF magnetron sputtering Avidin detection
LOD = 0.1 mg/mL
Range = 0.1–100 mg/mL

[47]

Optical fiber microcavities Transmission + CA Micromachining + chemical etching + 3D-
printing + laser engraving + sputtering

– [48]

Filter paper-based PAD Colorimetric (high
concentrations) + DPV

Screen printing + laser engraving Thiocyanate detection
LOD (EC) 0.006 mmol L−1.
Range = 0.025–100 mmol L−1

[56]

Carbon-ink CA Xerography + lamination – [18]
Au PCR + SWV Soft lithography + photolithography + e-

beam
E. coli

LOD = 102 CFU/mL
Range = 102–106 CFU/mL

[19]

Enzyme-based lactate
sensors + ion-selective sensors
– functionalized carbon ink

CA Xerography + screen printing Lactate
LOD = 0.2 mM
Range = 1–25 m M
Na = 0.02–200 mM
K = 0.01–100 mM

[27]

Laser-induced flexible graphene
(LIFG)

LIFG bioelectrode Laser-induced carbonization + screen
printing

Power density
of 13 mW/cm2 (52 mA/cm2)

[23]

Conductive carbon ink CV Direct laser writing + maskless
lithography + ink jet printing

Ascorbic acid– [25]

Carbon black/polycaprolactone SWV Screen printing Tryptamine
Range = 10–75 mmol L−1

LOD =3.2 mmol L−1

[41]

poly (dimethyl diadly ammonium
chloride-functionalized)
MWCNTs + CdS QDs

PC Screen printing Glucose
Range 0.05–1000 mM
LOD = 15.99 nM

[57]

*CV: Cyclic Voltammetry; CA: Chronoamperometry; DPV: Differential Pulse Voltammetry: SWV: Square-wave Voltammetry, PC: Photocurrent.
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[47,48]. The electrochemical properties of the ITO film
allowed for the application of the sensor as a working
electrode in an EC domain simultaneously controlled by
optical resonance spectra readout. The approach
allowed for a biotin/avidin incubation procedure moni-
toring. It was manifested that an increase in avidin
concentration induces a decrease in redox couple
oxidation current and an increase in LMR resonance

shift. Both optical and EC readouts go along with the
protein binding procedure. Extensive data has been
attained relating to exclusively EC studies.

Raman spectroelectrochemistry has been recently
expanded to an advanced classification tool delivering
knowledge on the electrode / electrolyte boundary along
with regulated adsorption of targeted analytes and
improved reproducibility. Miniaturized microfluidic de-
vices enable the fabrication of portable and integrated
spectroelectrochemical systems (EC and Raman)

outperforming the current EC or surface-enhanced
Raman spectroscopy instruments supplying cross-check
validation [32]. Huang et al. [49] reported an inte-
grated EC-SERS microfluidic device combining a three-
electrode printed circuit board for the determination of
uric acid. The devices were fabricated utilizing magne-
tron sputtering of gold nanospheres at the nanocone array
hot embossed with amicrofluidic channel. This approach
enabled an enhancement factor of up to 8.5� 106 of uric
acid detection revealing a linear relationship. 3D additive
manufacturing technology allows to design of dedicated

integrating parts for electrochemical and spectroscopic
methods (see Figure 3ab) [50]. PET or ABS-based
printouts reveal high chemical and impact resistance
along with the durability of rapid prototypes or Raman or
UVeVis supplied electrochemistry.

A photoresist, nanostructured microfluidic device was
applied by del Real Mata et al. [51] for amperometric
detection of H2O2 released from human cells under
simulated visible light illumination in PDMS channel
(see Figure 3cd). They utilized self-organized gold
nanocavities improved with graphene sheets revealing

an excellent LOD of 1 pM (see Figure 3e). The syner-
gistic effect of a carbon-based microelectromechanical
array of interdigitated electrodes (down to 20 mm of
spacing) and photopatterned SU-8 photoresist channel
was also applied for resistive sensing applications (avg.
resistivity of 1.412 � 0.011 mU cm) [52]. Recently, it
was manifested that microcavities in optical fibers could
serve as highly functional spectroelectrochemical
microanalytical devices [53]. The microchannel forms
Mach-Zehnder Interferometer in a single-mode optical
fiber supported by a microfluidic system. The working

ITO electrodes tailored the electrochemical perfor-
mance monitored simultaneously by optical readout
revealing a comprehensive approach for extremely sen-
sitive opto-electroanalysis. Sobaszek et al. [54] applied
www.sciencedirect.com
the Mach-Zehnder interferometer methodology for
spectroelectrochemical investigations of in-situ moni-
toring of electropolymerization at the transparent boron-
doped diamond electrode. The measurement of optical
phase change allowed for precise estimation of refractive
index of the deposited polymeric layer using an optical
setup with dedicated EC cells. The cells could work in
flow mode allowing for monitoring of surface function-

alization required for biosensors and energy harvest-
ing devices.

Electrochemical cells were designed to conduct parallel
optical and amperometric measurements in a droplet
traveling in PDMS- glass systems [55]. The glass slide
was bonded with PDMS utilizing plasma treatment. The
device enables reliable investigations of droplet velocity,
size, and composition estimated from the chro-
noamperometric curve and numerical simulations.
Pungjunun et al. [56] utilized laser engraving to fabricate

microcapillary pump paper-based for the analysis of
saliva. The sensing device relies on the dual sensing
mode: colorimetric and electrochemical approach. It was
used for rapid detection of SCNmanifesting rapid visible
color and high oxidation current resulting in low LOD of
6 mmol L�1 with a RSD of less than 5%. The recent
developments in the microfluidic devices for electro-
chemical, photo- and spectroelectrochemistry were listed
and compared in Table 1.

Concluding remarks and future trends
Summarizing, this review provides the recent progress
and state-of-art achievements focused on the applica-
tion of various designs of electrochemical microfluidic
systems. In general, the limit of detection could be
boosted by raising the flow rate of the analyte in sensing
device channels. Recently, shaping channel geometry or
multiplying them provide unique electrochemical re-
sponses and improved electrode performance. Silicon
and glass showed significant application in the initial
stages of microfluidic systems, and recently polymeric
and paper-based devices have become increasingly

popular particularly due to their disposable and low-cost
nature. Electrochemistry presents a capable option to
cross the boundaries of biosensors toward a rapid
detection of ultra-low concentration species or in-
vestigations of singleemolecule processes in fuel, and
electrolysis cells. Whereas multiplex detection is
becoming a major analytical sensing and monitoring
approach in studies of living cells, tissues, or pathogens.
The integration of functional materials in microfluidic
devices allows for achieving miniature actuators with-
drawing the need for external components. The most

important scientific and technical challenges of elec-
trochemical microfluidic devices include chemical and
physiological variation in the properties of real analytes
(i.e. wastewater or biofluids) and discrepancies in terms
of transposable elements.
Current Opinion in Electrochemistry 2022, 36:101138
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Miniaturization of electrodes, integration with micro-
fluidics and upscaling for high-throughput analyses
continue to be important trends. Miniaturized elec-
trodes (tens of micrometers and less), enabled by ad-
vances in technologies, are sought in electroanalytical
and energy conversion application. They put higher de-
mands onmeasurement techniques and instrumentation
for noise cancellation. Besides the majority of electro-

analytical applications, the electrochemical energy con-
version studies utilize also microfluidic approaches to
raise the efficiency and rate of energy conversion thanks
to the enhanced mass transport, flexible cell design, and
ability to eliminate high-cost ion-exchange membranes.
Overall, microfluidic spectroelectrochemical designs are
complex systems that require time-consuming optimi-
zation procedures to guarantee their accuracy
and reproducibility.
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