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Abstract

We construct a single smooth orthogonal projection with desired localization whose
average under a group action yields the decomposition of the identity operator. For
any full rank lattice I' € R, a smooth projection is localized in a neighborhood of
an arbitrary precompact fundamental domain R¢/ I". We also show the existence of a
highly localized smooth orthogonal projection, whose Marcinkiewicz average under
the action of SO (d), is a multiple of the identity on L>(S?~!). As an application we
construct highly localized continuous Parseval frames on the sphere.
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1 Introduction

Smooth projections on the real line were introduced in a systematic way by Auscher,
Weiss, and Wickerhauser [2] in their study of local sine and cosine bases of Coifman
and Meyer [8] and in the construction of smooth wavelet bases in L? (R), see also [21].
While the standard procedure of tensoring can be used to extend their construction to
the Euclidean space R?, an extension of smooth projections to the sphere SY~! was
shown by the first two authors in [4]. A general construction of smooth orthogonal
projections on a Riemannian manifold M, which is based partly on the Morse theory,
was recently developed by the authors [5]. We have shown that the identity operator
on M can be decomposed as a sum of smooth orthogonal projections subordinate to an
open cover of M. This result, which is an operator analogue of the ubiquitous smooth
partition of unity of a manifold, can be used to construct Parseval wavelet frames on
Riemannian manifolds [6].

The goal of this paper is to show the existence of a single smooth projection with
desired localization properties and whose average under a group action yields the
decomposition of the identity operator. We show such result in two settings. In the
setting of R? we construct a smooth orthogonal decompositions of identity on L2 (R9),
generated by translates of a single projection, which is localized in a neighborhood of
an arbitrary precompact fundamental domain. In other words, a characteristic function
of a fundamental domain K of R? under the action of a full lattice I' C R¥, can be
smoothed out to a projection Hestenes operator localized in a neighborhood of K. In
the setting of the sphere S?~! we show the existence of a single smooth orthogonal
projection which has arbitrarily small support and whose Marcinkiewicz average under
the action of SO (d) is a multiple of the identity on L2(S?~!). We also show that the
same decomposition works for other function spaces on S¢~!. More precisely, we
have the following theorem.

Theorem 1.1 Let B be a ball in S*~'. Let i = juq be a normalized Haar measure on
SO(d). For b € SO(d) and a function f on S¢~1, let T, f (x) = f(b~"'x). Then the
following holds.

(i) There exist a Hestenes operator Pg localized on BB such that Pg : L>(S~1) —
L2(S?=Y) is an orthogonal projection and for all f € L>(S4~1)

| o PsoTya(fdub) = cpes. (L1
SO(d)

where c(Pg) is a constant depending on Pg; the integral in (1.1) is understood as
Bochner integral with values in L*(S?~1).

(ii) Let X be one of the following quasi-Banach spaces: Triebel-Lizorkin space
F;,,q(Sd’l), 0 < p,g <00, s €R, Besov space B“;,’q(Sdfl), 0<p,g<oo s€eR,
Sobolev space W’; (S, 1 < p < o0, and CK(S*=1), k > 0. Then the formula (1.1)
holds for all f € X with the integral in (1.1) understood as the Pettis integral. In the
case X is Banach space the integral is Bochner integral.

In the literature there are two approaches to construct a continuous frame on
L2(S?1). A purely group-theoretical construction started with a paper by Antoine and
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Vandergheynst [1]. A continuous wavelet on the sphere is a function g € L>(S?~!)
such that the family

{TpDig = (b, 1) € SO(d) x Ry},

is a continuous frame in L2(S?~1), where D, is a dilation operator. The existence of
such g is highly non-trivial already for S?> and was investigated by [9]. The second
approach involves a more general wavelet transform, where dilations are replaced by
a family of functions {g; : > 0} € L*(SY~!). This family generates a continuous
Parseval frame if wavelet transform

W(f)b,1) = / g (') f(x)dog_1(x), W:L*S — L2 (S0(d)
Sd—l
xRy, dugdaja)

is an isometric isomorphism, see [22, Theorem III.1]. If functions g; are zonal, that
is g/(x) = &,({y, x)) for some y € S?~!, then wavelet transform takes a simplified
form

W& 1) = /S L BUE D fdog (), W LAETH — L2
xRy, dog_1da/a)

Such transforms were studied for d = 3 in [14, 15]. For more general weights on R,
see [23, Theorem 3.3]. A general approach to construct continuous frame wavelets on
compact manifolds was done by Geller and Mayeli [17].

As an application of Theorem 1.1 we construct a highly localized continuous frame
in LZ(Sd ’1). Unlike earlier constructions of continuous wavelet frames on S?~1, the
“dilation" space R is replaced by a parameter space X of a local continuous Parseval
frame. Moreover, our continuous wavelet frames have arbitrarily small support. A
recent solution of discretization problem by Freeman and Speegle [ 16] yields a discrete
frame on sphere [3, 13].

The main novelty of the paper compared with our earlier works on the sphere [4]
and on Riemannian manifolds [5, 6] is the presence of a single smooth projection
which generates a decomposition of the identity operator on L? under a group action.
Our previous construction of such decomposition is generated by a family of smooth
projections parametrized by an open precompact cover of a Riemannian manifold. In
contrast, a Parseval frame constructed in this paper is generated by a single localized
window function unlike our earlier construction on the sphere [4], which requires a
family of generators.

Geller and Pesenson [18] have constructed localized Parseval frames on compact
symmetric Riemannian manifolds. This suggests that Theorem 1.1 might have a gen-
eralization when the sphere S~! is replaced by compact or non-compact symmetric
Riemannian manifolds. These are Riemannian manifolds which admit an involutive
and transitive group action of isometries [19, 20]. However, it is an open problem
whether, and to what extent, Theorem 1.1 holds in such setting.
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The paper is organized as follows. In Sect. 2 we recall the definition of Hestenes
operators and Marcinkiewicz averages. In Sect. 3 we show the existence of a smooth
orthogonal decomposition of identity on L?(R¢) generated by a single projection. In
Sects. 4 and 5 we study Marcinkiewicz averages of smooth orthogonal projections on
the sphere. This culminates in the proof of the first part of Theorem 1.1 in Sect. 6.
The proof of the second part of Theorem 1.1 dealing with function spaces is shown in
Sect. 7. In Sect. 8 we construct a continuous Parseval frame on the sphere.

2 Preliminaries

We recall the definition of Hestenes operators [5, Definition 1.1] and their localization
[5, Definition 2.1]. Although the following two definitions make sense when M is a
Riemannian manifold, in this paper we only consider M = R? or S?~1.

Definition 2.1 Let ® : V — V’ be a C* diffeomorphism between two open subsets
V,V' C M.Letp : M — R be a compactly supported C* function such that

suppp ={x e M :px)#0} CV.

We define a simple H-operator H, o,y acting on a function f : M — C by

p(x) f(P(x)) xeV

0 xeM\V. @1

Hyovfx)=

Let Co(M) be the space of continuous real-valued functions vanishing at infinity.
Clearly, a simple H-operator induces a continuous linear map of the space Co(M)
into itself. We define a Hestenes operator to be a finite combination of such simple
H-operators. The space of all H-operators is denoted by H(M).

Definition 2.2 We say that an operator T € H (M) is localized on an openset U C M,
if it is a finite combination of simple H-operators Hy ¢ v satisfying V. C U and
V) cU.

By [5, Lemma 2.1] an operator T is localized on U C M if and only if there exists
a compact set K C U such that for any f € Co(M)

suppTf C K, 2.2)
suppfNK =0 = Tf =0. (2.3)

For any function f on S9-1, define its rotation by b € SO(d) as
Ty(f)(x) = fOb'x), xesi™h

Let D = C®(S?!) be the space of test functions. Let D’ be the dual space of
distributions on S?~!.
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Definition 2.3 Let X be a quasi Banach space on which X’ separates points such that:

(1) we have continuous embeddings D <> X <> D’ and D dense in X,
(2) there is a constant C > 0 such that for all b € SO (d)

ITpllx—x < C,

Let P : X — X be a bounded linear operator. We define the Marcinkiewicz average
S(P) as the Pettis integral

S(PY(f) =/

Tp o PoTy-1(f)du(b), feX, 2.4)
50(d)
where i = g4 is the normalized Haar measure on SO (d).

Remark 2.4 Marcinkiewicz has considered such averages in the context of interpola-
tion of trigonometric polynomials, see [28, Theorem 8.7 in Ch. X]. In Sect. 7 we will
show that the mapping

SOd)3b+> ThoPoTy1(f) € X

is continuous. Hence, in the case X is a Banach, (2.4) exists as the Bochner integral
by [11, Theorem II.2]. In particular, when X = C (8?1 we can interpret (2.4) as the
Bochner integral.

Lemma 2.5 Let y € C®(S4™). Let My, be a multiplication operator, i.e. My (f) =
W f. Thenfor f € C(S ") and & € S,

SMy)f(E)=CW)f(&), whereC(Y) = /ng Y (§)do(§).
Proof Note that
S(My) f(€) = f(S)/ Y (b (E)dub).
SO(d)

Letting G = SO(d) and H = {b € SO() : b(1) = 1} C SO(d), we have
G/H = S?!. Hence, by [12, Theorem 2.51]

Cyp) = / Wb ENdpb) = f V(E)do (&),
SO(d) §d-1

O

) Birkhduser
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2.1 Marcinkiewicz Averages in L2(S9~")

Let Hﬁf be the linear space of real harmonic polynomials, homogeneous of degree n,
on RY. Spherical harmonics are the restrictions of elements in H to the unit sphere,
see [10, Definition 1.1.1]. Let

proj, : L*(S971) — H¢

denote the orthogonal projection. Since L?(S?~!) is the orthogonal sum of the spaces

ij ,n =20, 1, ..., wecandefine multiplier operator with respect to spherical harmonic

expansions [ 10, Definition 2.2.7].

Definition 2.6 A linear operator T : L*(S?~1) — L?(S?~1) is called a multiplier
operator if there exists a bounded sequence {1, },>¢ of real numbers such that for all
feLl*S Handalln >0

projn(Tf) = )\.an'Ojn f

Conversely, any bounded sequence {A,},>0 defines a multiplier operator on
LZ(Sd—l)

o0
Tf = Z)»nprojnf for f e L>(S47).
n=0

The following result characterizes Marcinkiewicz averages on the sphere, see [10,
Proposition 2.2.9].

Theorem 2.7 Let T : L*(S?"1) — L*(S?) be a bounded linear operator. The
following are equivalent:

(i) T is a multiplier operator.
(ii) T isinvariant under the group of rotations, thatis, TTp, = TpT forallb € SO (d),
(iii) S(T) =T.

3 Orthogonal Decomposition by Shifts of a Localized Projection

In this section we will show the existence of smooth orthogonal decompositions of
identity on L?(R?), which are generated by translates of a single projection, which is
localized in a neighborhood of an arbitrary precompact fundamental domain.

Let s € C*°(R) be a real-valued function such that

supps C [—48, +00) for some § > 0,

3.1
s2(t) +s*(—=t) =1 forallt € R. G-

Birkhauser
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Following [4, eq. (2.9)] and [21, egs. (3.3) and (3.4) in Ch. 1], for a given « < f and
§ < £5% we define an orthogonal projection Pg. g1 : L>(R) — L2(R) by

0 t<a-—234,

2t —a)f()+st —a)s(@—1) fQRa—1) t€la—8, a+3b],
Pla,p) f(1) = f(0) 1€ (a+3d,p-9),

SB=0Df) —st—=PsB-0f2B—1) 1€[p—35 B+,

0 t>pB+54.

(3.2)

Let T} be the translation operator by k € R given by T f(x) = f(x — k). Note that
for all functions f and all @ < 8, k € R, we have

Patk,p+11 () (%) = (Ti Pla, g1 T-1) f (x). (3.3)

By [21, Theorem 1.3.15] we have the following sum rule for projections on adjacent
intervals corresponding to the same § < min((8 — «)/2, (y — B)/2),

Pla.g) + Pig,y1 = Playl- (3.4)

Let K C R? be a fundamental domain of R¢/ ", where I' C R? is a full rank lattice.
That is, {K + y : y € I'} is a partition of R modulo null sets. Define an orthogonal
projection onto L%(K) by Pf(x) = 1g(x)f(x). Then, we have a decomposition of
the identity operator I on L?(R%),

> T, PkT, =L
yell

The following theorem shows that there exists a smooth variant of an operator Py,
satisfying the same decomposition identity, which is an H-operator localized on a
neighborhood of K.

Theorem 3.1 Let ' C RY be a full rank lattice. Let K C RY be a precompact fun-
damental domain of R?/ T. Then for any € > 0, there exists a Hestenes operator P,
which is an orthogonal projection localized on e-neighborhood of K, such that

Z T,PT_, =L (3.5)
yell

Here the convergence is in the strong operator topology in L*>(R?). In particular,
projections T, PT_,,, y € I', are mutually orthogonal.

Proof We will show first that it suffices to prove the theorem for the lattice Z¢. Assume
momentarily that Theorem 3.1 holds in this special case. An arbitrary full rank lattice
I' € R? is of the form I' = MZ for some d x d invertible matrix M. If K ¢ R% isa

) Birkhduser
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precompact fundamental domain of R / I", then M ~! (K ) is a precompact fundamental
domain of RY/Z¢ since

MY K+y):yel)={M"K)+k:kezZ

is a partition of R4 modulo null sets. Hence, for any € > 0, there exists a Hestenes oper-
ator P’, which is an orthogonal projection localized on e-neighborhood of M ~!(K)
such that

Z TyP'T_ =1
kezd

Define a Hestenes operator P = Dy,-1 P’ Dy, where Dy is a dilation operator
Dy f(x) = f(Mx). Since |detM|1/2DM is an isometric isomorphism of L2(Rd)
we deduce that P is an orthogonal projection. Since Ty Dy = Dy Tk, we have

Z T,PT_, = Z Ty Dyy-1 P’ Dy Ty = Z Dy-1TiP'T_; Dy
yer kezd kezd

=Dy-10 ( Z TkP’Tk> oDy =L

keZd

Since P’ is localized on e-neighborhood U of M ~1(K) we deduce that P =
D1 P’ Dy is localized in M (U), which is contained in ||M||e-neighborhood of
K. Since € > 0 is arbitrary, this concludes the reduction step.

Next we will show the theorem in the special case when the lattice I' = Z¢ and
the fundamental domain is the unit cube K = [0, 1]%. Let Pjo 1} be the orthogonal
projection on L?(R), which is given by (3.2), and localized on open interval (—8, 148).
Since Pjo, 1] has opposite polarities at the endpoints, by (3.3) and (3.4) we have

> TPonTx =1 (3.6)
keZ

where the convergence is in the strong operator topology in L?(R), see [21, Formula

(3.18) in Ch. 1]. Define Pk as the d-fold tensor product Px = Pjo.11 ® ... ® Po.1],
see [4, Lemma 3.1]. That is, Pk is defined initially on separable functions

[1®...® f)x1.....x0) = fi(x) -+ falxa), forx=(x.....x5) € R,
by

Pg(f/1®...® fa) = Pon(f1) ®...Q Po,11(fa)
and then extended to a Hestenes operator on R¢. Then, Pk is an orthogonal projection

localized on a cube (=8, 1 + 8)%. Then, using (3.6) we can verify its d-dimensional
analogue for separable functions

) Birkhduser
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Y LPkT4(fi ®...® fa)

kezd
= Y TuPonT-u(f)®...8 Te PonT-k,(f2) G

Since linear combinations of separable functions are dense in L2(R?), the above
formula holds for all functions in L2(R?). Choosing § > 0 such that v/d§ < € yields
the required projection P = Py satisfying (3.5).

By the scaling argument we obtain the same conclusion for the lattice I' = n~'Z¢,
and the fundamental domain n—1[0, l]d, where n € N. That is, define a projection
P’ = D1 Py e Dy, where M = n~'1; is a multiple of d x d identity matrix
I;. That is, P’ is a Hestenes operator, which is an orthogonal projection on L?(R%)
satisfying

Z TeP'T_; =1 (3.8)

ken—174

Let K be an arbitrary precompact fundamental domain of R?/Z?. Choose n € N
such that

(Vd+2)/n <e. (3.9)

Let P’ be a Hestenes operator, which is orthogonal projection localized on 1/n-
neighborhood of n~10, 114 such that (3.8) holds. Let

Fo={ken'Z: 10, 11" + k)N K # 0. (3.10)
Since K is a fundamental domain of R?/Z? we have

U+ Fo)=n""2" (3.11)
le74

We define an equivalence relation on Fy: k, k' € Fyareinrelationifk—k’ € 74 . Then,
we choose a subset F| C Fj containing exactly one representative in each equivalence
class. Hence, the family {{ + F} : [ € Z} is a partition of the lattice n~!Z¢. Define a
Hestenes operator

P = Z T P'T.
keF]

Since projections Ty P'T_y, k € n~'Z¢, are mutually orthogonal, P is also an
orthogonal projection on L%(R?). Since the operator Ty P'T_ is localized on 1/n-

neighborhood of the cube n=1[0, 119 4 k, whose diameter is < € by (3.9), we deduce

) Birkhduser
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O3

by (3.10) that P is localized on e-neighborhood of K. Combining (3.8) with the fact
that {{ + Fy : [ € Z¢} is a partition of the lattice n~'Z¢ yields

Z T PT_; = Z Z Tt P'T_yry = L.

lezd 174 ke k)

Fig.1 Sets K and M 1K

The convergence is in the strong operator topology in L>(R?). O

The following example illustrates Theorem 3.1 by an example. Let K be a hexagon
with the vertices:

p1=(1,0), p» = (1/2,v3/2), p3 = (—1/2,3/3/2),
P4 = —p1, p5s = —Pp2, p6 = —PD3.

The set K is a fundamental domain for the lattice I’ = MZZ2, where

M = [wywa], w1=[§§}, w2=[%52]

Then we transform K so that M~ K is a fundamental domain for the lattice Z2, see
Fig. 1.

Next we consider a grid 1/nZ?, where n is a scaling parameter. We color all cubes
which have nonempty intersection with M ~! K. If a scaling parameter n is sufficiently
small we have all cubes in € neighborhood of M 'K, see Fig. 2. To construct orthog-
onal projection from Theorem 3.1 we need to choose cubes that form a fundamental
domain for the lattice Z? by eliminating redundant cubes, see Fig. 2.

Corollary 3.2 Let B be a ball in the torus T = R? /74, Then there exists a discrete

subgroup G C T and a Hestenes operator P, which is orthogonal projection localized
on B, such that

Birkhauser
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Fig.2 Construction in Theorem 3.1 for scaling parameter n = 10

Y T,PT ,f=f forall feL*(T%.

yeG

In particular, projections T, PT_,,, y € I, are mutually orthogonal.

Proof Let p : RY — T¢ = R¢/Z4 be the quotient map. Then, a ball B in the torus
T¢ = R?/7Z% is of the form B = p(B(x, r)), where B(x, r) is a ball in R?. Without
loss of generality, we can assume that r < 1/ (2«/3), so that the balls B(x + &, r),
k € 74, are disjoint. Choose sufficiently large n € N such x + [0, 1/n]? C B(x, r).
Then, K = x + [0, 1/n]d is a fundamental domain of ]Rd/ [, where T = n~174. By
Theorem 3.1 there exists a Hestenes operator P’ on RY, which is localized in B(x, r),
such that P’ is an orthogonal projection satisfying (3.8). Define Z¢-periodization of
P’ by

P = Z T P'T4.
kezd

We can treat P as a Hestenes operator on T¢, which is an orthogonal projection on
L2(T9) localized on B. This follows from the fact that P’ is localized in B(x, r) and
the balls B(x + k,r), k € 74, are disjoint. Hence, we obtain the conclusion for the
group G = (n~'24) /7. O

We end this section with a continuous analogue of Theorem 3.1 on the real line,
which motivates results in subsequent sections.

Proposition 3.3 For fixed § > 0 and o < B satisfying ﬁ%‘x > 8, let Py, ) be a smooth
orthogonal projection given by (3.2). For any continuous function f : R — R and
anyt € R, we have

fRTs Plo.p1T—¢ f(1)d§ = /RP[s+a,s+ﬂ]f(t)d$ =B —a)f().

Birkhauser
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Proof The first equality follows by (3.3). By (3.2) we have

/R Pigtoe+p)f (1)dE

—o—48 t—a+é
_ / Fde + / = e+ )1
t

—p+d t—a—
1—B+8

+s(t—(@+8&))s@+&—1)fQ2a+§) —ndé +/ . SPB+HE—Df@0)
—p—
—sC—=(B+ENs(B+E -0 fQ2(B+E) —1)ds.

Since Py, ) has opposite polarities at endpoints, the change of variables yields

P
/R Pietaerpf()dE = f(1)(B —a —26) + 2f(r)/(S s2(u)du
F)
— F()(B —a —28)+2£(1) f () + s (—u))du
0
— B -a)f (D).

The last equality follows from (3.1). O

4 Averages of Smooth Projections on S

In this section we show that the Marcinkiewicz average of a smooth projection on an
arcin S! = {z € C : |z| = 1} is a multiple of the identity.

Definition 4.1 Let P be a Hestenes operator on R, localized on (g, bywithb—a < 2.
Take p such that p < a < b < p + 27. Define an operator P acting on a function
f:S' = Rby

PfEy=P(foWw)(), telp,p+2n),

where W, (1) = ¢''. Then P is a Hestenes operator on S!, localized on an arc Q =
Wi ((a, b)) C S'. In particular, localization of P on (a, b) implies that P f(w) =0
for w € S'\ Q. This implies that definition of P does not depend on p, provided
p<a<b<p+?2m.

Fixe < Band0 < § < ﬂ%“ Define an operator R, acting on functions f on R
by

Rof(t) =5t —a)s(e —t)fQRax —t) fort eR.

) Birkhduser
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Define a multiplication operator M f () = m(t) f (t), with

0 fort <o — 9§,

s2(t —a) fortefoa—38,a+3],
m() =141 fort € (w +6,8—9),

s2(B—1) forte[B—5,B+6],

0 fort > B +6.

Then, the operator Py g, given by formula (3.2), satisfies
Pap) =M + Ry — Rg. “4.1)

Observe M, R, and Rg are simple Hestenes operators localized on intervals (o —
8, +96), (¢ —38,a+6),and (B — &, B + 3), respectively. Note that

TeRo T f(t) =s(t — (@ +8))s(e+& —1) f(2(a +§) —1) = Roye (7). (4.2)
Hence,
TgPlap)T-g = TeMT—¢ + Rovs — Rp+s,
and TeMT_¢ f(t) =m(t — &) f(@).

In the sequel, we need to consider both translation operators on R and on S'. To
distinguish between these two operators, we denote a translation (rotation) operator
,onS! by 7. f(w) = f(z"'w), where f : S! - Rand z, w € SL.

Lemma4.2 Let P be a Hestenes operator localized on an interval (a, b) withb —a <
21. Define a Hestenes operator P on S' by Definition 4.1. Then, P = Tz PT_¢ isa

Hestenes operator localized on (a + &, b + &) and Pg is defined as well. Moreover,
we have

13; = 'Czﬁ'[z—l, where 7 = ¢'t. 4.3)

Proof The fact that P is a Hestenes operator localized on (a +-&, b 4 &) follows from
an explicit formula for Pz when P is a simple Hestenes operator. To verify (4.3), take
f :S' — R. Observe first that for u € R,

T, (f oW1) = (t,iu f) o V1.
Indeed, we have

Tu(fo¥D(@) = (foW)(t —u) = f(efe™™)
= (i f)(€") = (Tyiu f) 0 Wy (2).
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Fix psuchthatp <a <b < p+2x.Clearly, p+& <a+& <b+& < p+£&+2m,
andt € [p+&,p+ &+ 2n) if and only if t — & € [p, p + 27) Therefore, for
relp+é§,p+8§+2m)

P f(e'") = Pe(f o Wi)(1) = T PT—g(f o W1)(t)
= P(T_¢(f o W1))(t — &) = P((t,ic f) o W1) (1 — &)
= P(r, 1 )9y = P(r 1 f)(e'z7") = o, Pt fe™).

m}

Since SO(2) ~ S! with normalized Haar measure j, the Marcinkiewicz average
of an operator P is given by

S(P)f(w) = / . Pr fdp(), weSk.
S]

Theorem 4.3 Let o < B be such that B — o < 27w. Let § > 0 be such that
25 <min(f — o, 2w — (B — a)). 4.4)

For Q = W ([, B]), consider an operator Pg = Pq g as in Definition 4.1. Then,
for any continuous function f : S' — R and any w € S', the Marcinkiewicz average
satisfies

S(Po)(f)(w) = ‘gz;n“f(w). 45)

Proof Denote k = 8 — « and v = ¢/*. By (4.2)
Rp = Rytic = T RaT.
and consequently by Lemma 4.2 we have
]f?; = 1,RyT,-1. (4.6)
Therefore,
Tzk\;g‘[z—l = TZTUEXTU—ITZ—I = TZUR:(T(ZU)—I. “4.7)

Observe that M f = mg f, where m is a function on S! given by

s2(t—a) tela—36,a+46],
mQ(ei’)z 1 te(a+4,B8-9),
s2(B—1) telf—238,2m+a—23).

) Birkhiuser


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

Journal of Fourier Analysis and Applications (2022) 28:75 Page 150f31 75

By (4.1) and (4.6) we have
P =%=A7l+§; — Ty RyTy1.
By (4.7) this implies that
T, PoT,-1 = IZ]VITZ_] + rzﬁ;rz_l - ‘Ezvﬁ;,‘t(zv)—l.
Further, note that
T M1 f(w) =mowz™") f(w).
Summarizing, we get

T PoT 1 f(w) = mo(wz™") f (W) + T RyT,-1 f (W) — Toy RaT(y-1 f (w). (4.8)

By the invariance of Haar measure applied to g(z) = TZEXTZ—I f(w) we see that
/S T Rom f(w)dp () = /S T Ra Ty f)dp().
Therefore, integrating (4.8) over S' we obtain

/Sl T Pot, 1 f(w)du(z) = f(w) /Sl mowz Ndu(z) = f(w) /Sl mo(2)du(z).

The conclusion follows from the fact that

1 2w +o—48 1 ﬂ —
/Sl mQ(Z)d//L(Z) = E/a\ m(t)dt = Eém(l}dl = 7

-6

5 Latitudinal Projections on Sphere

In this section we define latitudinal operators, whose action depends only on latitude
variable, by transplanting one dimensional Hestenes operators to meridians. We also
show that the Marcinkiewicz average of latitudinal projection is a multiple of the
identity.

For k > 2, we define a surjective function

@ : [0, 7] x S sk
by the formula
O (9, £) = (Esin®, cos®),  where (9, &) € [0, 7] x SK71. (5.1
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Note that &y is a diffeomorphism
O : (0, ) x SKT — sF\ (1K, 1%,

where 1% = @,...,0,1H e S¥ is the “North Pole". Let d, be Riemannian metric on a
sphere and let 1 = 14=1, Note that for & € S¢~1, dy(1,8) =t, where (1,§) = cost.

Definition 5.1 Let P : C[0, 7] — C]O0, 7] be a continuous operator. For fixed k > 2,
let I be the identity operator on C (S¥~!). Define an operator

P®I:C(0,7] x SF1 = (0, 7] x S*°1,
acting on a continuous function g on [0, 7] x S¥~! by
(PODg(t.y) =P (gC.y) ), .y €l0,x] xS
It can be checked by direct calculations that if P, Q : C[0, 7] — C[0, ], then

(PR®Do(Q@D=(PoQ)®L (5.2)

Definition 5.2 Let
Co([0,7]) ={f € C(0,x]) : f(0) = f(7) =0}
Let P : C[0, ] — C]O, 7] be a continuous linear operator such that
P(Col0, m]) C ColO, ]. (5.3)

We define a latitudinal operator acting on f € C(S¥) by

(PRI(f o ®p) (D, '(8), &eSk\{I¥ ~1%)
PPfE) ={PRI(fodp)(0, 1), &=1*
PRI(fo®)(r, 1KY,  &=-1~

Lemma5.3 If P : C[0, ] — C[0, 7] satisfies condition (5.3), then P* : C(S¥) —
C(S5).

Proof Denote

Cp([0, 7] x SF=1
= {g € C(10, 7] x S 1 3y 4, Veeer-18(0, §) = ap, g(, §) = az).

Let f be a function on S¥. Then f € C(S¥) if and only if f o ®; € Cp([0, ] x S¥~1).
Indeed S¥ is homomorphic with the quotient space [0, 7] x S¥~!/ ~, which identifies
{0} x S¥1 and {7} x S¥~! with single points corresponding to poles 1¥ and —1%,
respectively.
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The assumption P (Co[0, 7]) C Cp[0, 7] guarantees that
P @L(Cy([0, 7] x S*71) € Cp(10, 7] x S*71).

Indeed, let g € Cp([0, 7] x SK=1) and ag = ¢(0, 1¥!) and a, = g(rr, 1¥~1). Define
p(t,y) =", q@, y)=Land

h(t,y) = g(t.y) = aop(t,y) = azq(t.y). (t.y) € [0, 7] x S
Consequently for all y € S¥~!
h(, y) =h(m,y)=0.
Hence
PI(M)(O,y) =PI (m,y) =0.
We conclude that
P 1), y) =ao(P @ D(p)(O0, y) + az (P @ D(¢g)(0, y).
Since p and ¢ do not depend on y € Sk=1, functions (P ® I)(p)(0, y) and (P ®

I)(g)(0, y) alsodonotdependony € Sk=1. Hence, P ®1I(g) is constant on {0} x Sk~ 1.
The same argument shows that P ® I(g) is constant on {7} x SF=1, m]

Lemma5.4 If P, Q : C[0, r] — C[O0, ] both satisfy condition (5.3), then
(Po Q) = P*0o Q. (5.4)

Proof By (5.2) and Definition 5.2 the formula (5.4) holds for continuous functions f
on S¥ which vanish on poles. Let p and ¢ be as in the proof of Lemma 5.3. Likewise,
(5.4) holds for po CIDk_1 andgo <I>k_1 . Since any function f on S¥ is a linear combination

of po d>k_1, qo de_I, and a function vanishing on poles, the formula (5.4) holds for
all f e C(Sh. O

For further reference let p : C([0, 7]) — C([0, 7]) be a reflection operator given
by

pft)y=f@—1 forfeC(0,rx]).
Let R = p ® I, where I is the identity operator on C(S*~!). Then
Rg(t,y)=g(m —t,y) forge C([0, 7] x SK1).
By Definition 5.2 we have

oFFE) = f&1, .. E, —Ep1)  forE = (&, ..., &) €S, f e C(SH).
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Lemma5.5 Fixk > 2. Let L : C[0, 7] — C[0, ] be a continuous operator and
n e SO(k+1). Then,

L* ifn@) =1,

T,L*T 1 =
B p*L¥p* ifn(1) = —1.

(5.5)

Proof Suppose thatn(1) = —1.Then n is ablock diagonal matrix with two blocks: C €
O (k) and —1 in the last diagonal entry. Hence, for parametrization § = (¢, y) of
sphere Sk, we have n(€) = ®x(w —t, Cy) foracertain matrix C € O (k). Consequently

n~'(E) = Or(r —1,C 7).
Take f € C(S¥). Letting g = f o @y, we have
T,/ =f0 ') =gx—1,C7My).
Let g, = T,-1 f o ®;. Then we have
T (L1 £) ©) = LT, ()@ = 1,71y
=LUT,-1 fodp)(m—1,C™'y) = RILOD(g)(t, C'y).

Since g, (t', y') = Rg(¢’, Cy’) and operators R and L ® I act only on the first variable
t, we have

(L®D(g)(t. C'y) = L(gy(-. C'y) (1) = L(Rg(-, y))(1) = (L ® DRg(t, y).
Therefore, R = p ® I yields
T,L*T, -1 f(§) = R(L®D(R)(1. y) = (pLp ® Dg(r. y).
Hence, by Definition 5.2 and Lemma 5.4
T,L*T,-1 £ (&) = (oLp)* £ (&) = p*L*p* £ (£).

In the case n(1) = 1, the proof follows similar arguments using a representation
n(&) = & (¢, Cy) for a certain matrix C € SO (k). O

Corollary 5.6 Fixk > 2. Let L : C[0, 7] — C|[O0, 7] be a continuous operator which
satisfies condition (5.3). Let K = L — pLp. Then for f € C(S¥) and & € S,

S(K*) £ (&) = / ToK* Ty 1 f(€)dpesr (b) = .

SO (k+1)
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Proof Take any n € SO (k + 1) such that n(1) = —1. By Lemma 5.5 we have
p*L*p* = T, L*T, (5.6)
Then, the invariance of measure py41 yields

S(p* L p") = S(T,L*T,-1) = S(LF).

Let 9, d be suchthat 0 < % — § < % + 8 < 7. Define

sin20 — 1)\ *~D/2
sint

Ly f(t) = s(t —9)s(@® —t)< fQ9 —1).

It can be checked by a direct calculation that

Lr—p = pLyp.

Next, for 0 < ¢ < 7 /2 and suitable § > 0, define function ¥y by formula

0 t <9 -39,

s2(t — ) tel®—38,0+4],
V() =11 te@+8,1—09 -9,

s2m—0—1) ten—0—8m1—09+56],

0 t>m—1U+6.

Define
Py =My, +Ly —Ly_y =My, +Ly—pLyp,

where My, (f) = Yy f denotes the multiplication operator.
Next, observe that there is a function Wg € C(S¥) such that

(My,)* = M.
Let
Ky =Ly —Lz—p =Ly —pLyp.
Define and operator U : C(S¥) — C(SK) by

U= Pj=My)" +Kj =My +Kj.
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Theorem 5.7 Fixk > 2. Let ¥, § be suchthat0 <9 — 8 < © + 68 < /2. Then, U is
a Hestenes operator localized on the latitudinal strip @ ((9 — 5, m1 — ¥ +6) X Sk,
U extends to an orthogonal projection on L*(S¥), and

SW)fE) =CWfE) forall feCEh, & est. (5.7)

Proof Let Ey be an AWW operator from [4, Definition 3.4], see also [4, (3.5),(3.6)].
That is, for g : [0, 7] — C we define

% 9+ 4,
Ep(o)(1) = {ﬁ( L (58)

Fort € [ — 6, ¥ + &§] we define

Ep(g)(t) =s(t — 9)g(1)

09 — )\ D2 (5.9)
M) 429 — 1.
sin ¢

+5(t — s —r)(

The above formula also holds for ¢ outside of [¢} — 8, ¥ + 5], since s(t — ' )s(F —¢t) =0
and we can ignore the second term in (5.9).

By [4, Lemma 3.3] the operator (E»)* € H(S¥) and (E)* extends to an orthogonal
projection on Lz(Sk). Since Py = Ey — E;_y, we have

U=E}-E,.

The fact that U is an orthogonal projection follows from [4, Lemma 3.4]. By
Lemma 2.5 and Corollary 5.6 we deduce (5.7). O
6 Averages of Smooth Orthogonal Projections on Sphere

In this section we complete a construction of a smooth orthogonal projection, which
is localized on arbitrarily small ball, such that its average is a multiple of the identity

operator. To achieve this we will use the lifting procedure [4, Definition 4.1].

Definition 6.1 For k > 2, let
CoSH={fecshH: fraH=0= 15}

Suppose that T : C (SK=1) — C(Sk1). We define the lifted operator T Co(SF) —
Co(S¥) using the relation

k—1
f(f)(t’f):{T(ff)(S) (t,€) € (0, ) x Sk, 6.

0 t=0 or t=m.
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where
F{E =08, 1,8 e m) xS~ {1f, -1
It is easy to verify from (6.1) that if f e Cy(S¥), then Tf € Co(SF). Moreover, the

operator norms of 7" and 7T are the same.
For P : C(SK) — C(S¥) denote

Se(P)f(¢) = / Tyo PoTy 1 f({)duss1(b) for f e C(SY), ¢ e sk
SO (k+1)

Lemma6.2 Letk > 2. Let P : C(S*~ 1) — C(S*71) be a continuous linear operator
such that

Si—1(P)h=c(P)h  forh e C(SF1). (6.2)

Let L : C[0, t] — Cyl0, w] be a continuous linear operator. Then the composition
operator

PoL?:cShH — csh,
satisfies
Si(P oLy f =c(P)S(LYf  for f e CSh. (6.3)
Proof LetG = SO(k+ 1), H={b e SO(k+1):b(1) =1} C SO(k+1). We can
identify G/H = SF. For x € SK\ {1¥, —1%}, let b, € SO (k + 1) be a rotation in the
plane spanned by {1, x} such that b, (1) = x. Note that b. is a continuous selector of
coset representatives of G/ H,

x e S\ (15, —1%) - by € SO+ 1).

Let oy be a normalized Lebesgue measure on S*. By Weyl’s formula [12, Theorem
2.51] forany F € C(G), we have

f Fdus: = / / F(bya)dp(a)doy (), (6.4)
SO (k+1) Sk JH

where 11 is a normalized Haar measure on SO (k), which can be identified with H.
That is, any a € H is a block diagonal matrix with two blocks: @’ € SO (k) and 1 in
the last diagonal entry.

We claim that for & € Co(SF) we have

/H (Ta oPo Tafl) h(O)due(a) = c(PYh(¢), ¢ €Sk (6.5)
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Since T, (Co(S¥)) € Co(S¥) for all a € H, the formula (6.5) holds trivially for =
1¥, —1% Otherwise, any ¢ € S¥\{1¥, —1¥} can be identified with (¢, &) € (0, ) x S¥~!
through diffeomorphism ®;. Hence, for any (¢, &) € (0, ) x S¥=1 we have

[ (e Pot )b sramia@ = [ P 0@ Odur@
H H
- / P(Ty1h) (@)~ 6)d s (@)
SO(k)

= / (Ta/ oPo T(a/)—l) h’(é)dﬂk(a’)
SO (k)
=c(P)h(1,§).

The last equality is a consequence of the assumption (6.2). Hence, (6.5) holds.
Let f € C(S¥) and ¢ € S¥. By (6.4) we have

Se(P o L) f(¢) = fs ) /H Toa 0 P o L 0 Ty 1 f(©)dpu(@)doy (x)
- / f Ty, Tao PoT, 1T, 0L o T, 1Ty 1 f(¢)dpx(@)dog(x).
sk JH !

By (5.5) the above equals

[ [ 1o (e Pot, ) LT, F@dintardon ey
sk JH *
=f / (Tao13oTa_1)L#Tb_1f(b;lg')duk(a)dak(x).
sk JH u
Hence, by (6.5)

SiP o L)1) =e(P) [ (11,00 D7 e
—e(P) [ Th 0 L7 o T, )0 (o).

Applying again (5.5) and (6.4) yields

Si(P o L*)f(¢) = c(P) /Sk /H Ty, Tao L o T, -1 Tyt f(§)doy (x)
= c(P)SK(LH) £ (¢). o

By the lifting lemma on the sphere [4, Lemma 4.1], or its generalization on Rie-
mannian manifolds [5, Lemma 5.3], we have the following result.

Lemma6.3 Let k > 2. Let v, § be such that 0 < 9 —§ < v + 6 < w/2. Let U be
a latitudinal orthogonal projection as in Theorem 5.7. Let Pg be a Hestens operator
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on S¥=1 which is localized on an open subset Q C S¥=1 such thar it induces an
orthogonal projection on L*>(S*~1). Then

PQZPAQOUZUOPAQ

is a Hestens operator on S¥, which is localized on Q = @ (9 — 8,1 — 9 +68) x Q),
and it induces an orthogonal projection on L*(SF).

Let
Wy 1[0, 717! % [0, 27] — SF
be the standard spherical coordinates given by the recurrence formula

Wi (t) = (sint, cost), t €[0,2n],

) 1 (6.6)
Wyt1(t, x) = (€sint, cost), (t,x) € [0, ] x ([0, ] x [0, 27]),

where Wy (x) = & € SK.
To construct a Hestenes operator satisfying Theorem 1.1 we will use two symmetric
interior patches

Q=W ([0, 057 x - x [0, 931 x [9, 9, 1),
Q= W ([0, 931 x -+ x [97, 93] x [9], 9,D),

where 0 < 1911' < 192j <2 for j = 1,and 0 < z?lj < 192j <71,192j =7t—z91jfor
Jj =2,..., k. For sufficiently small § > 0 define §-neighborhoods of €2 and Q by

05 = Wi (051 =8, 0571 481 x - x [97 = 8,93 + 8] x [9] — 6, 01 + 8],
Qs = W ([0 =8, 05 +681 x -~ x [07 — 8,93 4+ 8] x [9] — 8, 91 +68]).

Theorem 6.4 Let 2 be a symmetric interior patch in S¥, k > 2. Then there exist § > 0
and Hestenes operator Pqg, which is an orthogonal projection localized on S2s, such
that for all f € C(S),

/ Ty o Pa, o Ty (f)dpsr (b) = ¢(Pa,) ©67)
SO (k+1)

where c(Pg;) is a constant depending on Pgy.
Proof Let
Q= (9], 951 x -+ x [07, 93] x [9]. 93])
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be a symmetric interior patch. For j = 2, ..., k,letU J = Eg i Eg ; be the latitudinal
1 2

projection corresponding to the interval [/, 192]] and acting on the space C(S/) as in
Theorem 5.7.

Supposethatk =2.Let Q = (U (1) = ¢’ € C:t € [0, z?%]}beanarcinS] cC.
We choose § > 0 such that 28 < 9] — #/,28 < 27 — (¢ — ©}), and 97 — 8 > 0.
Then by Theorem 4.3 the operator Py satisfies assumption (6.2) of Lemma 6.2 with

1_ 9l
constant c(Pg) = 1922 :1 . Applying Lemmas 6.2 and 6.3 the operator

Poy = UZOPAQ

satisfies conditions of Theorem 6.4 with constant ¢(P(2)) = c(U 2)c(PQ).

For k > 3, we can assume by induction that we have an operator P _) satisfying
conclusions of Theorem 6.4. Applying Lemmas 6.2 and 6.3 for sufficiently small
8 > 0, the operator

Po, = Py = Uk o ﬁ(kfl)
satisfies conclusions of Theorem 6.4 with constant c(P)) = c(U k )e(Pg—1))- O

We finish this section by showing a preliminary variant of Theorem 1.1.

Theorem 6.5 Let B be a ball in S*~!. Let i1 be a normalized Haar measure on SO (d).
There exist Hestenes operator Pg localized on B and a constant ¢ = c¢(Pg) such that
Pg : LS4 — L2 is an orthogonal projection and for all f € C(S?~1),

f Ty o Pgo Ty1 (f)du(b) = cf . (6.8)
SO()

Proof Take any geodesic ball B with radius » > 0. For & > 0, we choose #{ < 93 and
8 > 0, such that 95 — 9¥{ +28 < e forall j =1,..., k. Choose ¢ > 0 small enough
such that symmetric interior patch 25 has diameter less than r. Let a € SO(d) be
such that a(2s) C B. Define Pg = T, Po,;T,-1, where Pq; is as in Theorem 6.4. Then
Pg is both Hestenes operator and orthogonal projection and moreover Pg is localized
in B. Indeed, for any f € C(S? 1), supp Pgf = a(supp(Pg; o T,-1 1)) C a(L2s).
Likewise, if supp f N B = @, then Pgf = 0. Hence, the localization of Pg follows
from [5, Lemma 2.1]. Since Pg; satisfies (6.8) for f € C(S971Y, so does Pg. O

7 Proof of Theorem 1.1
In this section we give a proof of Theorem 1.1, which is a consequence of Theorem 6.5

and the following two propositions. Let D be the test space of C* functions on S~
Let D’ be the dual space of distributions on S?~!.
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Proposition 7.1 Let P be Hestenes operator such that there is a constant ¢ = c(P)
such that forall f € C(S*~V) andforall ¢ € S*~! the following reproducing formula
holds

f Ty o P o Ty-1(f)(E)du(b) = cf (§). (7.1
SO(d)

Let X be a quasi Banach space on which X' separates points such that:

(1) we have continuous embeddings D — X — D’ and D dense in X,
(2) there is a constant C > 0 such that for all b € SO(d)

ITpllx—x <C,

(3) the operator P : X — X is bounded.

Then the integral reproducing formula
/ Tpo PoTy-1(f)du(b) =cf. (7.2)
SO(d)

holds for all f € X in the sense of Pettis integral. In the case X is Banach space the
integral is Bochner integral.

Proof Observe that the mapping SO(d) x D > (b, f) — Tpf € D is continuous.
This follows from

IVET, f(x)| = [VEF(b™'x)]  wherex € S¥!, be SOW), k>0, (7.3)

which can be seen from explicit formulas for covariant derivative V on the sphere [10,
(1.4.6) and (1.4.7)].

By [4, Lemma 3.2] or [5, Theorem 2.6], the operator P : D — D is continuous.
By an argument as in the proof of [25, Theorem 5.18], the Pettis integral on the left
hand side of (7.2) exists and defines a continuous operator in the Fréchet space D. By
the assumption (7.1), this operator is a multiple of the identity operator by a constant
¢ = c¢(P). Hence, (7.2) holds for f € D.

Note that conditions (1) and (2) imply that

SO(d) x X > (b, f) — Tpf € X is continuous. (7.4)

Since D C X is dense, for any fy € X and ¢ > 0, there exists g € D such that
[Ifo — gllx < €. Since D — X is a continuous embedding, for sufficiently close
b1, by € SO(d), we have || T}, g — Tp,gllx < &. By the triangle inequality for a quasi
Banach space there exists a constant K > 1 such that

1T, fo — Tp, follx
< KTy, fo— T, gllx + K(ITp 8 — Trogllx + 1Th,8 — T, follx))
< K(Ce+ K(C + D)e).
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In the last step we used the assumption that operators 7} are uniformly bounded. On
other hand, for any f € X such that || f — fo]| < & we have

1T, fo — T, flix < KITh, fo — T, Sollx + 1T, fo — T, f1IX)-

Combing the above estimates yields (7.4).
Take any f € X and A € X'. Then, the function

S0O(d) > b+ AT, PT,-1 f € X is continuous. (7.5)

Hence, we can define a linear functional
) := f ATy PTy-1 fdua(b).
SO(d)
Moreover,
IC(HI < /So(d) |AT, PTy1 (f)ldpa(b) < C?lIAI - IIPllx=x]fllx-

Thus, I' € X'. Since T'(f) = cA(f) holds for f € D, it follows that the same holds
for f € X, and the conclusion follows by the definition of Pettis integral. Finally, if
X is a Banach space, then the integrand in (7.2) is continuous, and hence, the integral
exists in the Bochner sense. O

Proposition 7.2 The following spaces satisfy conditions (1)—(3) of Proposition 7.1:

e Triebel-Lizorkin space F‘;,’q(Sd_l), O<p<o0,0<qg<oo seR,

e Besov space B;’q(Sd_l), 0<p<o00,0<g<ooseR,

o the Lebesgue space LP(Sd_l) and Sobolev space W]],‘ (Sd_l), 1<p<ook=>1l,
the space Ck(Sd_l), k> 0.

Proof The condition (/) is a standard fact in function spaces, whereas (3) follows
from [5, Theorem 2.6] and [6, Theorem 3.1 and Corollary 3.6]. The condition (2) is
immediate for the spaces L”, W;, and C* from (7.3). The condition (2) is a conse-
quence of a general result on smooth atomic decomposition for F;, q and B‘;, 4 Spaces
due to Skrzypczak [26]. Indeed, if a is a smooth (s, p)-atom on S9-1 centered in
B(x, r), then its rotation Tpa is also a smooth atom centered in B(b_lx, r), see [26,
Definition 6]. Hence, the atomic decomposition of f € F,  (or f € B, ) of the
form f = Z(;O:o Z?io sj.iaj,; asin [26, Theorem 3] yields the atomic decomposition
T, f = 27020 > 2o sj.iTpaj,;. While the centers of the family of atoms {a; ;} have
changed after the rotation, they correspond to another uniformly finite sequence of cov-
erings of S9-1 with the same parameters. Then, the equivalence of the norm || f| |F§) y
(or || f] |B% ,q) with its atomic decomposition norm is independent of the choice of such
uniformly finite sequence of coverings. This can be seen by analyzing the proof of
[26, Theorem 3] to see that equivalence constants depends only on the parameters of a
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uniformly finite sequence of coverings. Alternatively, any such sequence of coverings
can be mapped to a fixed uniformly finite sequence of coverings (albeit with enlarged
parameters). O

Combining Theorem 6.5 with Propositions 7.1 and 7.2 yields Theorem 1.1.

8 Continuous Parseval Frame on Sphere

In this section we construct a continuous wavelet frame on S?~!. Unlike earlier con-
structions [1, 9, 14, 22, 23], our continuous wavelet frames have arbitrarily small
support. We start by recalling the definition of continuous frame.

Definition 8.1 Let H be a separable Hilbert spaces and let (X, v) be a measure space.
A family of vectors {¢;}, t € X is a continuous frame over X for H if:

e foreach f € H, the function X >t — (f, ¢;) € C is measurable, and
e there are constants 0 < A < B < oo, called frame bounds, such that

AlfI3; < fX (f.d)n|*dv < Bl I3, forall feH 8.1)

When A = B, the frame is called tight, and when A = B = 1, it is a continuous
Parseval frame. More generally, if only the upper bound holds in (8.1), that is even if
A = 0, we say that {¢,}, r € X is a continuous Bessel family with bound B.

The following elementary lemma shows the existence of a local continuous Parseval
frame in L2(R¥). For an alternative construction of a local Parseval frame, see [3,
Theorem 4.1].

Lemma8.2 Let €y > 0. There is a collection ,, t € X, of functions in L>(R¥) such
that:

e forallt € X
supp ¥ C [—1 — €0, 1 + €0l

o forall f € L>(R*) with supp f C [—1, 11* we have
[ 2w o) =

Proof Take any system which is continuous Parseval frames in L>(R¥), i.e. for all
f € L*(R*) we have

/X (f s ) 2 Pdv @) = 1L F 117 sy
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Next take a smooth function ¢ on R¥ such that

)1 xe[-111,
vl = {o X ¢ =1 —ep 1+ el (8.2)

It is easy to check that v, ¢ satisfies both conclusions of the lemma. O

We present three examples of Parseval frames in L?(R¥) for which Lemma 8.2 can
be applied.

(1) Let E = {0, 1}k \ {0} be the non-zero vertices of the unit cube [0, 1]¥. Let
{Wf,k e € E,j € Z,k € ZF} be a multivariate wavelet basis of L2(R¥),
see [27, Proposition 5.2]. Then, the wavelet basis is a continuous Parseval frame
parameterized by X = E x Z x ZF equpped with counting measure.

(2) Let ¢ € L*(RF) has norm one ||/ |2 = 1. Then a continuous Gabor system

V(@) =Y (x —s), (1,5) € X =R xR
is a continuous Parseval frame parameterized by X equipped with the Lebesgue
measure [7, Corollary 11.1.4].
(3) LetYr(x ), (x, 1) € X = R* % ((0, 1) U{o0}), be an admissible continuous wavelet

introduced by Rauhut and Ullrich [24, Definition 2.1]. Then for any f € L?(RK)
we have

1
dt
2 2 2
/Rk <|(f7 W(x,oo)>L2(Rk)| dx +/0 I{f, ¢(x,t)>L2(Rk)| tk+l)dx = ”f”LZ(Rk)'
The concept of a local Parseval frame can be transferred to the sphere. Let
W, 1[0, 71472 x [0, 2] — S¢!

be the standard spherical coordinates given by the recurrence formula (6.6). Fix a
symmetric interior patch €2 of the form

Q=W 1(0) where ® = ([0, 9d7 " x - x [97, 93] x [9], 921),

where 0 < ﬂlj < z?zj <2 for j =1,and 0 < z?lj < L?2j <Jt,192j =7r—z9]jfor
Jj=2,...,d — 1. For sufficiently small 6 > 0, define enlargement of €2 by

Q5 = Wy_1(05), where Os := [0 — 8, 9§71 48] x -+ x [9] — 8,91 +8)).
(8.3)

Lemma 8.3 There is a collection ¢;, t € X, of functions in L>(S¢~) such that:
e forallt € X

supp ¢ C €25,
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o forall f € L>(S~1) with supp f C Q we have

/X (fs ) 21 Pdv(@) = 11 £ 1721y

Proof We use approach from [4], where the localized wavelet system is transferred to
the sphere via the spherical coordinates. Consider the change of variables operator [4,
Section 6.2]

T: L*(0, 71972 x [0, 27]) — L*S%™h

given by
T —1
T ) = AL WD g,
Ia—1 (¥ )
where J;_ is the Jacobian of W,
Jie1Ba—1,0d—2, ..., 01) = |sin? 2 0y_; sin? 3 Gy_p - - - sin 6.

Since the set where W,;_; is not 1-1 has measure zero, by the change of variables
formula, T is an isometric isomorphism.
Let Y : R4~ — R4~ pe an affine transformation such that for sufficient small ¢

Y(-1,11¢¥H =0, Y(-1-€,l+el"") cO;s

In a similar way we define the change of variables operator Ty which is an isometry

L2(=1— e, 1 + el 2 12(0)

We transfer a local Parseval frame y,, t € X from Lemma 8.2 to the sphere by
isometric isomorphisms Ty and T

L2(=1 —eo. 1 + €014 25 12(05) € L2(10, 71972 x [0, 27]) 5 LS4,

Namely, we let ¢; = TTy ¢;. Then the conclusion follows from Lemma 8.2 since any
f e L3Sy with supp f C Qs of the form f = TTyg for some g € L>(R?~1)
with supp g C [—1, 11971 O

Theorem 8.4 Let {¢;}1cx be alocal continuous Parseval frame as in Lemma 8.3. Then,
there exists a Hestenes operator P, which is an orthogonal projection localized on
Q, such that the family {T,—1 Pd:}b,neso@yxx s a continuous Parseval frame over
(SO(d) x X, pa x v) for LS.

) Birkhduser


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

75 Page 30 of 31 Journal of Fourier Analysis and Applications (2022) 28:75

Proof We apply Theorem 6.4 for k = d — 1 and for a shrunk symmetric patch
Os =" 48,087 —81x - x [0 +8,9] — 5]

for sufficiently small § > 0. This yields a Hestenes operator P, which is an orthogonal
projection localized on 2. Moreover, by Proposition 7.1 applied for P, for any f €
L2(S?—1) we have

c(P)IfIIP = /S (Ty 0 PoTy1(f), fldira(b)

0(d)

- / (PTy 1 (), PTy1 fdpa(h)
S0(d)
_ f 1Ty o P o T, () Pdpua(b).
S0d)
By Lemma 8.3

/Xl(f, Tb-1P¢,>|2dv<z)=L|<Pbe,¢t>|2dv(r)=||Pbe||2=||Tb-1Pbe||2.

Integrating the above over SO (d) yields

/ / [(fs Tyt Py) 2 dv(t)dpa(b) = c(P)II £1I>.
S0d) JX
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