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Fluid–solid interaction on a thin platelet with high-velocity
flow: vibration modelling and experiment

Abstract The paper concerns the nonlinear behaviour of a thin platelet that is streamlined in an aerodynamic 
tunnel. The air velocity in the aerodynamic tunnel was at 858.9 km/h or 0.7 Ma (Ma—Mach number is a 
dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local 
speed of sound). This experiment was numerically simulated using FSI (fluid–solid interaction) tools, 
namely the coupling between the strength and flow code. The strength code uses the finite element method, 
while the flow code is based on the finite volume method. The coupling between the codes was made by 
means of an interface that transmitted the relevant data and results between the two codes. The paper 
discusses the methodology of this coupling. The study also highlights the phenomena occurring during the 
interaction of flow with the plate with emphasis on their nonlinear character.

Keywords Fluid–solid interaction (FSI) · Computational solid dynamics (CSD) · Computational fluid 
dynamics (CFD)

1 Introduction

Fluid–solid interaction (FSI) describes coupled motions of solids and fluids for the case in this article solid 
and gases. FSI is a cornerstone in many engineering applications, see, e.g. [1–3]. From the mathematical 
point of view, FSI relates to a coupled system of partial differential equations. The characteristic feature of 
FSI is a nonlinearity. The nonlinearities of FSI relate to the nonlinearity of flow as in the case of Navier–
Stokes equations, material nonlinearities in solids, and the peculiar nonlinearity in boundary conditions at 
moving interfaces. This results in the necessity to develop of an efficient numerical tool. In this paper, we 
discuss such developed numerical tool and present results of modelling of an elastic plate in the wind tunnel. 
The applied
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E-mail: tomasz.ochrymiuk@imp.gda.pl

V. A. Eremeyev
DICAAR, University of Cagliari, Cagliari, Italy
E-mail: victor.eremeev@pg.edu.pl.

V. A. Eremeyev
National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

This version of the article has been accepted for publication, after peer review (when applicable) 
and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not 
reflect post-acceptance improvements, or any corrections. The Version of Record is available online 
at: https://doi.org/10.1007/s00161-022-01155-y

Postprint of: Ziolkowski P., Ochrymiuk T., Eremeev V., Fluid–solid interaction on a thin platelet with 
high-velocity flow: vibration modelling and experiment, CONTINUUM MECHANICS AND 
THERMODYNAMICS (2022), pp. 1-27

http://orcid.org/0000-0003-4432-1765
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-022-01155-y&domain=pdf
https://doi.org/10.1007/s00161-022-01155-y


Fig. 1 Nozzle sketch

flow code solves Navier–Stokes equations in the form of averaging turbulent flows by Reynolds method and
gives the possibility of a detailed analysis of the structure of flows with vortexes and strong friction layers.
The applied non-stationary approach allows the analysis of variable flow field due to aerodynamic phenomena
such as vortex separation.

The issue which have been taken into consideration in the paper can be treated as a critical nozzle, in which
the mass flow is regulated by a transverse plate mounted in the wall perpendicularly to the flow [in Fig. 1
it is marked as (1)]. A nozzle throat is formed between the plate and the adjacent straight wall, in which a
supersonic flow can be created at a sufficiently large pressure difference between the inlet and outlet. In case
of a nozzle working as a critical, mass output through the nozzle is proportional to the size of the throat, i.e. to
the displacement of the plate. Under the influence of the jet in the nozzle, the plate is inclined, taking the shape,
for example, of a dotted line (2) in Fig. 1. In the case of high-velocity flow through a constriction, i.e. flow
through a so-called nozzle, there are large pressure variations, which affects the compressibility of the gas in
this case, air, which in turn has a significant impact on the formation of velocity and pressure fields. Under flow
conditions of the air stream 0.3 Ma (Mach number) and more, the heat produced in the flow and supplied to it
must be included in the energy balance. In order to simplify this issue, it is customary to assume adiabatic flow
conditions, i.e. no heat exchange between the air in the tunnel and the environment [4,5]. Nowadays critical
nozzles are often used in a variety of industrial applications for measurement of the mass flow rates in a wide
range of operational conditions [6]. The mass flow rate of working gas is measure by using the flow choking
phenomena which occurs at the nozzle throat [7].

1.1 A brief recall of FSI research progress

This paper presents an exemplary numerical methodology for solving FSI problems. The methodology of
solving FSI issues has been discussed inmanyworks. For example, Bathe andHahn [8] have applied procedures
to the nonlinear transient analysis of a pipe test using an updated Lagrangian formulation. Luongo and Piccardo
[9] have proposed analytical model which deals with the bifurcationsmechanisms of coupled flexural galloping
in resonant and non-resonant conditions. Piccardo [10] has been studied galloping phenomena in critical
conditions on square cylinders, see also [11–14].

Giorgio [15] has proposed a variational model describing a one-dimensional mechanical system in which
it is proven that Cattaneo’s law for heat conduction can be deduced via a variational argument together with
the Lord–Shulman model. The presented formulation can be easily generalized to the three-dimensional cases
in FSI modelling. Moreover, when the intrinsic nature of the solid is almost one-dimensional in case under
consideration formulation proposed in [16] can be utilized.

Another methodology of solving FSI problems is arbitrary Lagrangian–Eulerian (ALE) approach which
combine the advantages of Eulerian and Lagrangian approaches at the same timeminimizing the drawbacks. In
the ALE approach, a user specifies the combination between the Lagrangian and Eulerian description through
the selection of a mesh motion [32]. The Arbitrary Lagrange-Euler method is convenient to use in case of
the FSI problems which involve moving boundaries in order to solve Euler equations on a moving domains
[17]. Białobrzeski [18] has implemented ALE formulation in model describing the heat and the mass transfer
during drying process in spout-fluidized-bed drier taking into account the non-homogenous shrinkage of the
material by involving moving boundaries.

The method for solving nonlinear coupled systems resulting from the numerical approximation of FSI
problems has been introduced byFernandez andMoubachir [19]which involves the use of exact cross Jacobians
evaluation involving the shape derivative of the fluid state with respect to solid motion perturbations. The
three-dimensional case involving regressing solid domains and moving boundaries has been formulated and
implemented via the arbitrary Lagrangian–Eulerian finite element method [20], as an example the simulation
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of solid-propellant has been used, in which the evolution of fluid–solid interface is governed by combustion
law and the transfer of mass and momentum across the interface. A variational arbitrary Lagrangian–Eulerian
description has been used to derive general framework for hyperelastostatic and hyperelastodynamic problems
by Kuhl and Steinmann [21].

According to the problem and the location of the problem in a given field of physics or technology and
depending on the phenomenon that is predominant in the engineering case under consideration (or on the
predominant balancing equation), the FSI is divided into [22]: mass-FSI, momentum-FSI and thermal-FSI.
Another classification of FSI, this time due to the numerical approach in solving the liquid–solid interaction
itself, i.e. the way of implementing momentum exchange between a liquid and a solid in FSI, is divided
into partitioned and monolithic. The first is the monolithic approach where fluid and solid domain are a one
domain and one solver is responsible for the solution of governing equations [23]. The second approach is
the partitioned one [24–26] which is more popular among FSI users because of good stability of solution and
being more economical [27]. In the partitioned approach, a large system of the nonlinear equations has to be
solved, usually with the use of the iterative solvers for subsystems. The block Newton method [28] is often
used to perform these calculations.

Dettmer and Perić [29] have compared exact with inexact strategy in application the block Newton method
and suggest that inexact strategy can increase efficiency of partitioned approach for largefluids–solid interaction
problems with large elongated interfaces. In the partitioned approach analysis, task is divided into three sub-
tasks: the fluid, the solid, and the mesh. Flow equations are solved by CFD (Computational Fluid Dynamics)
solver, and the response of the solid body is obtained by using CSD (Computational Solid Dynamics) solver.

Another classification of the FSI solution procedures is dependent onmesh treatment including: conforming
and non-conforming mesh methods. The conforming mesh methods require to adjust meshes to the interface,
because interface is treated as physical boundary conditions, where the interface location is part of the solution.
In the non-conforming mesh method, interface conditions and location are put as constraints on the model, so
the fluid and the solid equations can be solved independently from each other [30].

Authors who have developed the ALE approach in the finite element method format (Donea et al. [31],
Belytschko and Kennedy [32], Hughes et al. [33]) have preferred the nomenclature quasi-Eulerian (QE) to
emphasize that the structure of the governing equations is very similar to the Eulerian equations. In the present
case, large nonlinearities occur both on the fluid side, on the solid side, and in the coupling process between the
solids and the liquids. These nonlinearities are already widely described in the literature [3,34,35] and belong
to one of the two types: geometrical or physical. It is worth recalling that geometrical nonlinearity results
from phenomenon of nonlinear elements occurring in the mathematical description. A very good example of
occurring significant geometrical nonlinearities is a situation when the vehicle impacts the cable barrier system
[36] or motion of cables [37–42].

Physical nonlinearity, also known asmaterial one, is caused by lack of linear dependence between stress and
the strain of the material. Numerical ways to deal with these nonlinearities can be found in the aforementioned
literature. Moreover, the description of nonlinearities in the description of Lagrange and Euler differs in certain
ways.

1.2 The aim of investigation

The platelet in the wind tunnel was deformed so much that this behaviour cannot be modeled purely linearly.
On the solid side, in this case there are only geometrical nonlinearities, but linear behaviour of the material is
assumed. One-sided momentum transfer from the fluid to the solid is used in this paper.

The aim of this paper is to investigate the fluctuation of the flow field and the associated changes in plate
loading, which in turn leads to oscillations. Oscillation of the platelet in the critical nozzle is important because
it leads to changes in the size of the nozzle throat and thus to fluctuations in the mass output of the nozzle,
which is undesirable and limits the applicability of the nozzle.

2 Governing equations

2.1 The air motion

In the continuum mechanics, there are known various approaches to the kinematical description [34]. Usually
in the fluid mechanics, they use Eulerian description, whereas within the mechanics of solids the Lagrangian
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approach seems to be natural. Let us note that there are also other possibilities for the kinematical description
of continua. In what follows, the Eulerian description is used as in [43]. The set of the balance equations can
be expressed in the following form:

∂

∂t

⎧
⎨

⎩

ρ
ρv
ρe

⎫
⎬

⎭
+ div

⎧
⎨

⎩

ρ v
ρ v ⊗ v
ρ ev

⎫
⎬

⎭
= div

⎧
⎨

⎩

0
t
tv + q

⎫
⎬

⎭
+

⎧
⎨

⎩

0
ρ t
ρ bv

⎫
⎬

⎭
(1)

where ρ is the mass density, v the continuum particle velocity, e = cvT + 1
2v2 the total energy, cv is the specific

heat at constant volume, T the temperature, t the Cauchy stress flux, q = −λ∇T themolecular heat flux defined
by Fourier law (λ is thermal conductivity coefficient), b the earth acceleration, ρ v ⊗v means a convective flux
of momentum. This component indicates that the momentum of the fluid particle is convectionally transported
with velocity v. Regardless of the fluid, this component causes geometrical nonlinearity. The Cauchy stress
flux can be divided into an elastic part and a diffusive part:

t = P + τ c (2)

where P is an elastic momentum flux which is reversible and τ c is a total diffusive momentum flux which
describes irreversible phenomena such as viscosity. The elastic part P is the spherical pressure tensor in the
case of liquids which cannot transfer an elastic shear stress. In the case of solids, P is in the full form of the
elastic stress tensor [44,45]:

P = −pI = −pδi jei ⊗ e j for fluid (3)

P = σ = σi jei ⊗ e j for solid (4)

where p represents a thermodynamical pressure, δi j is the Kronecker symbol, ei base vectors, ⊗ is the dyadic
product, and σ is the Piola–Kirchhoff second tensor [34,46].

The total diffusive momentum flux is defined in the following form:

τ c = τ + R + D + · · · (5)

where τ is a viscous momentum flux, R is a turbulent momentum flux, D is a diffusion momentum flux, “ldots”
represents other fluxes that have been neglected in these considerations, e.g. transpirational momentum flux
[47,48]. The viscous momentum flux is expressed by the following equation:

τ = −2

3
μIdI + 2μd (6)

where μ is the molecular viscosity, d = 1
2 (v ⊗ ∇ + ∇ ⊗ v) is the strain rate tensor, and Id = trd is the first

invariant of the strain rate.
The turbulent momentum flux R also known as turbulent Reynolds stress can be written as an analogy to

the Newtonian fluid model:

R = −2

3
μt IdI + 2μtd (7)

where μt is the turbulent viscosity coefficient. In what follows we consider in Eq. (5) τ and R only. For solids,
no evolution equations are used, while on the fluid side, the Spalart–Allmaras turbulence evolution model is
used [49].

It was assumed that the fluid domain is modelled as compressible Newtonian fluid.
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2.2 The platelet motion

In order to describe geometric nonlinearities in the motion of the considered steel platelet let consider the
material domain denoted as RX ⊂ Rnsd , with nsd spatial dimensions, with the material particles X and the
spatial domain Rx, consisting of spatial points x. Now the observation of the steel platelet is continued in the
motion. The motion of material points of the platelet relates the material coordinates, X, to the spatial ones, x
through the introduction of the motion vector u :

u = x − X (8)

and the tensor of the deformation gradient which here is adopted as basic measure of the platelet deformation
during its motion:

F = Gradx = x ⊗ ∇X =
(

∂

∂XA
x
)

⊗ EA = xi,Aei ⊗ EA = Grad(X + u) = I + Gradu (9)

the representation of this measure of deformation is a 3× 3 xi,A matrix, whose determinant is indicated by the
letter J :

J = detF = det | xi,A | (10)

using the deformation gradient and several other identities, it expresses the balance of mass in Lagrange’s form
as below:

ρ = ρ0J −1 (11)

where ρ is actual density of deformed platelet and ρ0 is initial density of the undeformed platelet.
Momentum balance can be expressed in the following form:

ρ0ẍ = Div(FS) + ρ0b (12)

where ẍ is acceleration of material particles of the platelet, S is the momentum flux and b = −9.81ez is the
vector of the gravitional acceleration (negligible in that case). Energy balance can be written as follows:

ρ0u̇ = S · Ė + DivQ + ρ0r (13)

where u means internal energy, r is the radiation source (negligible in that case), and E is the Green strain
tensor expressed by the following formula:

E = 1

2
(FT F − I) = EABEA ⊗ EB = 1

2
(uA,B + uB,A + uA,CuC,B)EA ⊗ EB = ET (14)

In the above approach, there appeared divergence (Div) calculated in the determination to the non-deformed
configuration, which also determined the appropriate fluxes of momentum and heat.

S = JF−1TF−T = ST = SABEA ⊗ EB (15)

Q = JF−1q = QAEA (16)

The momentum and energy fluxes so defined are called Piola–Kirchhoff second stress tensor and Kirchhoff’s
heat flux, respectively, although in this case no heat exchange between the platelet and the flow or environment
is assumed, so the heat flux is equal to zero, T is Cauchy stress tensor, and q is total heat flux.

2.3 Momentum FSI boundary conditions

In boundary conditions, specific for momentum-FSI, equality of flux of momentum should be considered as a
primary condition which takes place on a fluid–solid, contact surface S. This surface is oriented by versors n f
and ns , respectively (ns = −n f ). If we denote by ts and t f the solid and the fluid stress tensors, according to
the Cauchy theorem, on the fluid–solid boundary it is obtained:

t f n f + tsns = 0 (17)

It is a classical equality of boundary forces that can be split on equality of normal components (such as
pressure) and equality of tangent component (as friction or mobility forces) [50–52].
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Fig. 2 Rectangular nozzle with mounted the thin platelet

3 Experiment of the flow over thin platelet

The experimental setup was presented in [53]. The thin rectangular platelet is seated between two fixed, rigidly
screwed plates, and it is shown in Fig. 2. The way the platelet is fixed divides it into two parts. The first
part with dimensions 30 × 24 mm is in the middle of the nozzle, and it is subjected to the flow. The second
part, which is rigidly fixed in the nozzle with a protruding tip. The width of the wider part of the platelet
is 30 mm, and the narrower part is 20 mm. The total height of the platelet is 80 mm, but the wider part of
the platelet is 50 mm in height and the narrower part is 30 mm. The dimensions of platelet are presented
in Fig. 3. The platelet is made of a 0.2-mm-thick structural steel. Its and material properties are assumed as
follows: density ρ = 7860 [kg/m3], Young modulus E = 210 [GPa], Poisson ratio ν = 0.3 [–], coefficient
of thermal expansion αθ = 1.2e−05 [1/K]. The experiment was carried out in the DRL aerodynamical tunnel
in Göttingen, which has a wide spectrum of Mach and Reynolds numbers. The tunnel is also equipped with a
rectangular nozzle, which was used in the experiment.

Flow characteristics have been measured by a quantitative schlieren method, and the vibration frequency
of the plate has been measured using a photodiode connected to an oscilloscope. The natural frequencies
and forced by flow frequencies in the range 0.3–0.9 Ma were measured. In the experiment, the flow with
the appropriate Mach number is obtained by lowering the pressure in the tank behind the nozzle outlet to
the appropriate value in the absence of the platelet in the duct. The air was taken from the environment. The
voltage obtained from the oscilloscope for free vibrations and vibrations due to 0.7 Ma air flow is shown in
Fig. 4. Plots of the fast Fourier transform for these vibrations are presented in Fig. 5. From Fig. 5, it can be
deduced that the frequency of forced vibrations is about 300 Hz and of free vibrations about 260 Hz. In both
cases, a small peak of about 150 Hz is visible.

Figure 6 shows the platelet deflection caused by air flow 0.7 Ma, which is approximately 6.1 mm.

4 FSI analysis of the flow over thin platelet

Finite element method [54] was used to determine the deformations and vibrations of the structure. For the
calculations presented in the paper, 20 nodal isoparametric elements were used [54] with reduced integration.
The equations of motion of the vibrating platelet were integrated using Newmark’s direct integration method
[55]. In the paper has been used the code for transferring the results between the flow and the mechanical
part, which is a basic integration role. Both the time step and the calculation grid are different in the flow
and mechanical parts. The integration of codes therefore requires an efficient and accurate transition between
them. The flow code provides a temporary distribution of pressure on the tested surfaces, and the mechanical

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 3 Dimensions of the platelet with a description of the placement

Fig. 4 Measured voltage for natural frequencies (top) and frequencies forced by 0.7 Ma flow (bottom)
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Fig. 5 Fast Fourier Transform for natural frequencies (top) and and frequencies forced by 0.7 Ma flow (bottom)

Fig. 6 Deflection of the 0.2-mm-thick platelet at 0.7 Ma flow

code gives the deformations on the basis of which a new grid is built in the flow code. The described package
can be used for various aeroelasticity issues such as wing oscillation due to aerodynamic forces, vibrations of
turbine and compressor blades or vibrations of slender structures under wind pressure.

Geometric points were read from a photograph taken during the experiment. The resulting geometry is only
a good approximation of the actual geometry. This is due to out-of-sharp photos and inaccuracies in the method
of reading points from them. The open space, which actually ended up in the experiment, was transformed
in the computational model into a significantly elongated channel, whose geometry with marked boundary
conditions is visible in Fig. 7. The upper part of Fig. 7 shows boundary conditions for flow calibration, and
the lower part of Fig. 7 shows boundary conditions for flow with the platelet. The introduced modification of
the geometry simplified the computational model, reduced the number of finite volumes and allowed for the
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Fig. 7 Boundary conditions without the platelet (top) and with the platelet (bottom)

Fig. 8 Static pressure distribution along the entire computational geometry (top) and total pressure distribution along the entire
computational geometry (bottom)

correct assignment of boundary conditions. Numerical solution of the air flow over the platelet is based on the
finite volume method [43]. Pressure-based coupled solver has been utilized which pressure and momentum
solves simultaneously [43]. The air domain is divided into a set of control volumes, and using this set the
conservation equations for mass, momentum and energy are solved. The FSI calculation was performed on a
quasi-two-dimensional model. This means that a three-dimensional model with a mesh thickness of one finite
element (one finite volume) with the condition of planar symmetry on both sides of the model was used.
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Fig. 9 Velocity distribution along the entire computational geometry (top), velocity vectors along the entire computational
geometry (middle) and Mach number distribution along the entire computational geometry (bottom)

4.1 The calibration of the boundary conditions in CFD

The first step in the numerical task was to select appropriate boundary conditions for the channel that would
correspond to the flow velocity of 0.7 Ma, for this purpose a simulation of the flow under stationary conditions
for the channel without the presence of a plate was performed. The following air parameters were assumed: for
density the model of ideal gas was adopted, specific heat was assumed as constant with value 1006.43 [J/kgK],
coefficient of thermal conductivity with value 0.0242 [W/mK], at viscosity due to high velocity values in flow
the Sutherland law [56] with three coefficients (Reference Viscosityμ0 = 1.716e−05, Reference Temperature
T0 = 273.11K and Effective temperature S = 110.56K) was applied. As a model of turbulence evolution,
a one-equation Spalart–Allmaras model [49] was used. The upper part of Fig. 7 illustrates the scheme of the
boundary conditions assumed in the calibration of the flow. For the upper and the bottom walls are used the
no-slip conditions. The following conditions were set at the inlet: Total pressure = 101,325 [Pa], temperature
= 298.15 [K] and at the outlet: Static pressure = 40,000 [Pa] and temperature = 298.15 [K]. The results of the
calibration are presented in Figs. 8 and 9. Static and total pressure distributions are shown in Fig. 8, while
velocity distribution and vectors along entire computational geometry with Mach number distribution are
shown in Fig. 9. Due to adopted boundary condition, mean value of Mach number from entire computational
domain is approximately 0.7 Ma and these boundary conditions for the flow domain were adapted for further
simulations. Due to the nonlinear character of the equations describing the flow, the selection of appropriate
boundary conditions, which later determine the correctness of the whole solution, has an extremely important
role.
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Fig. 10 Static pressure changes at the outlet boundary condition

4.2 FSI analysis: one-sided transfer fluid flow to solid

In this paragraph is shown one-way FSI non-stationary analysis of the thin platelet. The boundary conditions
are adopted from previous paragraph; however, in order to obtain results closer to the reality at the outlet, the
static pressure varied from 100,000 to 40,000 Pa as shown in Fig. 10. The changing pressure at the outlet is
intended to bring the conditions inside the tunnel closer to those prevailing during start-up.

In Figs. 11 and 12 is presented an evolution of the Mach number distribution along the computational
domain. The results are shown at specific time steps, namely in Fig. 11 looking from above: 0.00002 s,
0.0025 s, 0.005 s, 0.0075 s, and in Fig. 12 at time steps: 0.01 s, 0.015 s, 0.02 s, 0.025 s. The results of the air
density (in Figs. 20 and 21), static pressure (in Figs. 22 and 23), total pressure (in Figs. 24 and 25) and velocity
(in Figs. 26 and 27) are presented in a similar way in Appendix at the end of the article. The flow evolution
figures clearly show that the flow in the case under consideration has stabilized after approximately 0.015 s.
Once the flow has stabilized, the flow evolution figures in the plate extension clearly demonstrate an elongated
line that represents a trace of the friction layer. This line is the boundary between the stream flowing from the
plate and the separation created behind the plate. The friction layer is associated with a change in density, the
evolution of which in the air flow is shown in Figs. 20 and 21. The importance of compressibility is due to the
high speeds in the nozzle. As illustrated in Figs. 11 and 12, the Mach number exceeds 1, so the nozzle operates
under critical conditions. In the nozzle, you can see a wandering air wave and its diffraction; this is related to
the change in the nozzle cross-section caused by the presence of the platelet.

The following section will show the numerical response of the platelet to the non-stationary load of the
pressure of the flowing air stream in the tunnel. The pressure transfer was carried out through a special interface.
Themain task of the interface connecting flow and strength calculations is the proper transfer of data and results
between the individual codes. In the case under consideration, it was necessary to determine the displacement
of the plate on the basis of the pressure values acting on the surface of the plate. The coupling of the calculation
codes was achieved by one-way pressure transfer from flow to plate. The pressure transfer from the flow code
to the structural code was done with a time step of 2e−05 s. The operation of the strength program is based
on the finite element method (FEA). The plate is modeled with 20 node elements. As an input data into finite
element method code, the values of the forces obtained from the pressure field acting on the plate are entered.
The oscillations shown in Fig. 13 represent the plate’s response to airflow in the tunnel. The inclination of the
platelet increases as the difference in pressure at the inlet and outlet increases. The inclination is stabilized
after approx. 0.015 s, which corresponds to the moment of flow stabilization. The set inlet pressure became
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Fig. 11 Mach number distribution along the entire computational geometry at the time points = 0.00002, 0.0025, 0.005, 0.0075
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Fig. 12 Mach number distribution along the entire computational geometry at the time points = 0.01, 0.015, 0.02, 0.025
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Fig. 13 Maximum deflection of the platelet in x direction under non-stationary pressure load

Fig. 14 Deflection of the platelet in x direction under non-stationary pressure load

constant after a time of 0.01 s in the simulation. It took 0.005 s of time for the flow to stabilize at the already
constant inlet pressure. The frequency of oscillation of platelet induced by the flow reaches approximately
555 Hz. The initial value of the oscillation is about 3 mm in simulation, although over time this value decreases
to about 2 mm. The average inclination of the platelet after flow stabilization in the simulation was read as
7.1 mm. This value is 16% higher than the platelet’s inclination value in Fig. 6.
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Fig. 15 Deflection of the platelet in y direction under non-stationary pressure load

Fig. 16 Normalized deflection of the platelet in x direction under non-stationary pressure load

Figure 14 shows the behaviour of the simulated plate for 8 control points at different plate heights (3 mm,
6 mm, 9 mm, 12 mm, 15 mm, 18 mm, 21 mm, 24 mm) in x direction (horizontal), while Fig. 15 shows this
for y direction (vertical).

Figures 16, 17 and 18 show a standardized deflection of the platelet in the x direction (horizontal) at 8
points on the platelet evenly spaced out. Standardization has been carried out in relation to the highest value
of the deflection x for individual points. The aim of standardization was to show the qualitative behaviour of
the platelet in the flow.

From Fig. 17, it can be concluded that the initial moment of the simulation, which in the flow part of the
simulation corresponded to an increase in the pressure difference at the inlet and outlet of the flow channel,
is accompanied by a strongly non-stationary platelet response. The behaviour of the plate along with the
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Fig. 17 Normalized deflection of the platelet in x direction under non-stationary pressure load at time 0–0.005 s

Fig. 18 Normalized deflection of the platelet in x direction under non-stationary pressure load at time 0.02–0.025 s

stabilization of the flow also stabilizes, as can be seen in Fig. 18. Figure 18 shows that in a stabilized flow in
the model under consideration, the way the platelet is mounted in the channel influences the nonlinearity of
oscillations.

In Fig. 19 is shown comparison of the numerical solution to experiment at time 0.015–0.0225 s of the
simulation. The platelet deflection values for the experimental and numerical simulation results are comparable,
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Fig. 19 Comparison of numerical solution to experiment at time 0.015–0.0225 s

although the frequency of vibration differs. The experimental part of the Fig. 19 indicates the high instability of
the vibrations and the variability in time. The approach used in the simulation only approximates the vibrations
that the plate undergoes in the flow.

5 Conclusions

In this paper, a one-way transfer of momentum from the fluid to the solid has been utilized, as an example,
and the oscillations of the platelet are analysed. Overestimated platelet vibration frequency is due to the fact
that, in the case considered above, pressures were determined with the flow geometry remaining unchanged
and are set as a load on the plate which changed its geometry with each time step; this approach seems to be
optimal for small structure displacements, although for large displacements, the use of this method results in
overestimation of the structure in design. This method can also be used when the static deformation of the
structure is known and the already deformed geometry is applied to the flow model in order to obtain loads
from non-stationary air fluctuations. The acceptance of quasi-2D geometry for the calculation also influences
the results. In Fig. 2, on both sides of the plate, the space between the tunnel walls and the side surfaces of the
plate is visible. The influence of this space on the plate is not yet known to the authors.
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Appendix: Additional results of flow modelling

The results of CFD calculations are summarized below. The results of density are shown at specific time steps,
namely in Fig. 20 looking from above: 0.00002 s, 0.0025 s, 0.005 s, 0.0075 s, and in Fig. 21 at time steps:
0.01 s, 0.015 s, 0.02 s, 0.025 s. The results of the static pressure (in Figs. 22 and 23), total pressure (in Figs. 24
and 25) and velocity (in Figs. 26 and 27) are presented in a similar way.
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Fig. 20 Density distribution along the entire computational geometry at the time points = 0.00002, 0.0025, 0.005, 0.0075
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Fig. 21 Density distribution along the entire computational geometry at the time points = 0.01, 0.015, 0.02, 0.025
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Fig. 22 Static pressure distribution along the entire computational geometry at the time points = 0.00002, 0.0025, 0.005, 0.0075

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 23 Static pressure distribution along the entire computational geometry at the time points = 0.01, 0.015, 0.02, 0.025

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 24 Total pressure distribution along the entire computational geometry at the time points = 0.00002, 0.0025, 0.005, 0.0075
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Fig. 25 Total pressure distribution along the entire computational geometry at the time points = 0.01, 0.015, 0.02, 0.025
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Fig. 26 Velocity distribution along the entire computational geometry at the time points = 0.00002, 0.0025, 0.005, 0.0075
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Fig. 27 Velocity distribution along the entire computational geometry at the time points = 0.01, 0.015, 0.02, 0.025
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23. Piperno, S., Farhat, C., Larrouturou, B.: Partitioned procedures for the transient solution of coupled aeroelastic problems.

Part I: model problem, theory and two dimensional application. Comput. Methods Appl. Mech. Eng. 124, 79–112 (1995)
24. Farhat, C., Lesoinne, M., Maman, N.: Mixed explicit/implicit time integration of coupled aeroelastic problems: there-field

formulation, geometric conservation and distributed solution. Int. J. Numer. Meth. Fluids 21, 807–835 (1995)
25. Fahrat, C., Lesoinne,M.: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear

transient aeroelastic problems. Comput. Methods Appl. Mech. Eng. 182, 499–515 (2000)
26. Fahrat, C., Van der Zee, K.G., Geuzaine, P.: Provably second-order time accurate loosely-coupled solution algorithms for

transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)
27. Vaze, M., Haiyan, M., Gopalan, H., Joo, P.H., Jing, L.: Methodology Development for Wind Driven Cantiliver Vibration

using Fluent-Structural Interaction. World Congress on Computational Mechanics XII, Seoul, Korea (2016)
28. Matthies, H.G., Steindorf, J.: Partitioned strong coupling algorithms for fluid–structure interaction. Comput. Struct. 81,

805–812 (2003)
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