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Abstract
Fundamental investigations in non-locality have shown that while the no-signaling principle alone
is not sufficient to single out the set of quantum non-local correlations, local quantum mechanics
and no-signaling together exactly reproduce the set of quantum correlations in the two-party Bell
scenario. Here, we introduce and study an intermediate hybrid no-signaling quantum set of
non-local correlations that we term HNSQ in the multi-party Bell scenario where some
subsystems are locally quantum while the remaining subsystems are only constrained by the
no-signaling principle. Specifically, the set HNSQ is a super-quantum set of correlations derived
from no-signaling assemblages by performing quantum measurements on the trusted subsystems.
We show that in contrast to the set NS of no-signaling behaviors, there exist extreme points of
HNSQ in the tripartite Bell scenario that admit quantum realization. As a tool for optimization
over the set HNSQ, we introduce an outer hierarchy of semi-definite programming
approximations to the set following an approach put forward by Doherty–Parrilo–Spedalieri. We
perform an extensive numerical analysis of the maximal violation of the facet Bell inequalities in
the three-party binary input–output scenario and study the corresponding self-testing properties.
In contrast to the usual no-signaling correlations, the new set allows for simple security proofs of
(one-sided)-device-independent applications against super-quantum adversaries.

1. Introduction

Quantum non-local correlations violating Bell inequalities [1, 2] are of great fundamental interest besides
giving rise to the powerful application of device-independent (DI) cryptography [3–9]. In investigations of
quantum non-locality, it has been very fruitful to study the correlations from the outside by investigating
general no-signaling correlations constrained only by the principle of no superluminal communication
[10, 11]. While the no-signaling principle alone is not sufficient to pick out the set of quantum non-local
correlations, local quantum mechanics and no-signaling together exactly reconstruct the set of quantum
correlations in the two-party Bell scenario [12, 13].

Non-locality considers a black box scenario where the parties perform measurements chosen as random
classical inputs and obtain corresponding classical outcomes. A related notion of quantum steering [14, 15]
considers a more refined scenario where one or more of the parties are considered to have full control of the
quantum systems in their laboratory, so that the quantum states and measurements of their subsystems are
fully characterized. In this paradigm which has recently gained interest from both fundamental and applied
perspectives [16–18], instead of just the measurement statistics one considers quantum assemblages
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consisting of subnormalized states describing conditional states of the characterized subsystem conditioned
upon measurements and outcomes of separated untrusted parties. Similarly, as an analog of the
no-signaling boxes, one considers here the no-signaling assemblages that are only constrained by
the no-signaling conditions [19]. In particular, the generalization of the bipartite steering scenario to the
multipartite case (with several untrusted systems) [20] has lead to the possibility of post-quantum steering,
i.e., of no-signaling assemblages that do not admit quantum realization [19, 21–25].

While the study of no-signaling correlations has lead to a deep information-theoretic understanding of
quantum non-locality [26, 27], several fundamental no-go theorems have also been discovered for proving
DI security against adversaries constrained only by the no-signaling principle [28, 29]. Thus, from both a
fundamental and applied perspective, it is of great interest to study the set of Bell correlations in scenarios
where some subsystems obey quantum mechanics locally while the remaining subsystems are constrained
only by the no-signaling principle. In this paper, we study this set of hybrid no-signaling-quantum
correlations showing several interesting properties of this set that lend themselves naturally to
(one-sided)-DI applications.

The paper is organized as follows. We first introduce the set of hybrid no-signaling-quantum HNSQ
correlations defining these as the set of correlations obtainable by performing quantum measurements on
the characterized subsystems of general no-signaling assemblages. After showing how HNSQ fits in between
the set of quantum non-local correlations Q and the set of general no-signaling NS correlations, we study
interesting properties of the set. In particular, we show that in contrast to the usual NS correlations, there
exist extremal points of HNSQ that admit a quantum realization. Furthermore, we show that some of these
extreme points serve as self-testing certificates for boxes. Crucially, these results hold in a three-party setting
where quantum assemblages have been shown to be a strict subset of the set of no-signaling assemblages.
These surprising results, in view of the unrealisability of super-quantum boxes such as the PR box in
non-locality [2, 30], should have interesting consequences both in quantum foundations and in the
development of one-sided-DI cryptography secure against super-quantum adversaries.

Finally, we perform an extensive numerical analysis of the maximal violation of the facet Bell inequalities
in the three-party binary input-output scenario [31] and study the corresponding self-testing properties for
boxes. As a tool for this optimization over the set HNSQ, we introduce an outer hierarchy of semi-definite
programming approximations to the set following an approach put forward by Doherty–Parrilo–Spedalieri
(DPS) in [32–34]. We recapitulate their results in appendix B, and in appendix C we provide a
generalization of the DPS method for optimization over multi-partite state that are normalized but allow
for negative eigenvalues (appendices D and E).

2. No-signaling assemblages

We begin with a scenario, usually associated with quantum steering [14, 15], in which a joint system
consisting of a local (trusted) dB-dimensional quantum subsystem B together with n distant and untrusted
subsystems Ai (indexed by i ∈ {1, . . . , n}), is described by some theory (possibly beyond quantum
mechanics [35]) fulfilling no-signaling constrains. Assume that on each untrusted subsystem Ai one can
locally performed random measurements labeled by settings xi ∈ {0, . . .mi − 1}, and for each setting xi

obtain one of the outcomes ai ∈ {0, . . . ki − 1}. In what follows we will introduce the simplified notation
ki = k, mi = m for all i ∈ {1, . . . , n}, as it will not significantly affect the generality of future
arguments—i.e., we assume that each untrusted party may choose from m measurements (settings) and
each of those measurements may give one of k outcomes. We will write xn = (x1, . . . , xn) and
an = (a1, . . . , an) for strings representing respectively some choice of measurements on all untrusted
subsystems and related collection of obtained outcomes (i.e. for fixed i ∈ {1, . . . , n} the pair xi, ai describes
measurements xi performed on untrusted subsystem Ai with outcome ai). When the described (random)
measurements are performed on the untrusted subsystems, the conditional state of the trusted quantum
subsystem B is fully characterized by the notion of a no-signaling assemblage [19, 21].

Definition 1. A no-signaling assemblage Σ =
{
σan|xn

}
is a collection of subnormalized states σan|xn acting

on dB-dimensional Hilbert space, for which there is a state σB such that

∀x1,...,xn

∑
a1,...,an

σan|xn = σB, (1)

and for any possible subset of indexes I = {i1, . . . , is} ⊂ {1, . . . , n} with 1 � s < n, there exists a positive
operator σai1

...ais |xi1
...xis

such that the following no-signaling constraints hold:
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∀x1,...,xn

∑
aj ,j/∈I

σan|xn = σai1
...ais |xi1

...xis
. (2)

The convex set of all no-signaling assemblages (for a fixed dimension dB and fixed scenario (n, m, k)
where n stands for number of untrusted parties, m for number of possible measurements (settings) choices
for each party, and k for a number of possible outcomes for any given measurement) will be denoted by
nsA(n, m, k, dB). Note that no-signaling assemblage may have a quantum realization

σan|xn = TrA1,...,An (M(1)
a1|x1

⊗ · · · ⊗ M(n)
an|xn

⊗ 𝟙ρ), (3)

where ρ ∈ ⊗n
i=1B(HAi ) ⊗ B(HB) is some quantum state and all M(i)

ai|xi
are elements of POVMs (i.e. positive

operator-valued measures) corresponding to appropriate measurement outcomes and settings. It is
well-known [19, 36, 37] that any no-signaling assemblage describing scenario with n = 1 untrusted
subsystem (i.e. bipartite steering) admits a quantum realization of the form (3). In contrast, any scenario
with n > 1 untrusted subsystems provides a room for post-quantum steering, i.e. quantum assemblages
form a nontrivial convex subset qA(n, m, k, dB) of nsA(n, m, k, dB) [19].

On the other hand, by the result for the set of no-signaling correlations from [13], any no-signaling
assemblage admits a realization analogous to the one given by (3), as long as one relaxes the positivity
constraint for ρ. For the reader’s convenience (and for the sake of construction from appendix A), we state
this result in theorem 1 (see also [21]).

Theorem 1. Collection of positive operators Σ =
{
σan|xn

}
acting on dB dimensional space defines a

no-signaling assemblage if and only if there exists a Hermitian operator W ∈
[
⊗n

i=1B(Cd)
]
⊗ B(CdB ) of a unit

trace, and POVMs elements M(i)
ai|xi

∈ B(Cd), such that:

σan|xn = TrA1,...,An (M(1)
a1|x1

⊗ · · · ⊗ M(n)
an|xn

⊗ 𝟙W). (4)

Moreover, for any Σ ∈ nsA(n, m, k, dB) one can always chose a representation with the same choice of POVMs
elements acting on d-dimensional space with d = max(m, k).

Proof. If each positive operator σan |xn can be realized by the aforementioned presentation

σan|xn = TrA1,...,An (M(1)
a1|x1

⊗ · · · ⊗ M(n)
an|xn

⊗ 𝟙W) with some Hermitian operator W and some local

measurements M(i)
ai|xi

, it is easy to see that a collection Σ =
{
σan|xn

}
form a no-signaling assemblage

(see conditions (1) and (2)). This explains one implication.
The other implication follows from generalization of the construction presented in [13]. Indeed, let us

consider the first untrusted subsystem A1 described by some Hilbert space Cd. For any
a1 ∈ {0, . . . , k − 2}, x1 ∈ {0, . . . , m − 1} we define normalized vectors |φa1|x1〉 ∈ Cd in such a way that
{𝟙} ∪

{
|φa1 |x1〉〈φa1 |x1 | : a1 ∈ {0, . . . , k − 2}, x1 ∈ {0, . . . , m − 1}

}
is a set of linearly independent operators

(it is always possible for d large enough, according to [13], one may put d = max(m, k)). Taking appropriate
za1|x1 > 0 we define M(1)

k−1|x1
= 𝟙−

∑k−2
a1=0 za1|x1 |φa1|x1〉〈φa1 |x1 | � 0 and put M(1)

a1|x1
= za1|x1 |φa1 |x1〉〈φa1 |x1 | for

remaining a1 ∈ {0, . . . , k − 2}. For {Ni}i = {𝟙} ∪
{

M(1)
a1|x1

: a1 ∈ {0, . . . , k − 2}, x1 ∈ {0, . . . , m − 1}
}

we

introduce a dual basis (with respect to the Hilbert–Schmidt inner product) of Hermitian operators{
Ñj

}
j
=

{
𝟙̃
}
∪
{

M̃(1)
a1 |x1

: a1 ∈ {0, . . . , k − 2}, x1 ∈ {0, . . . , m − 1}
}

, i.e. Tr(NiÑj) = δij. We repeat the

same construction for each untrusted subsystem Ai (for i ∈ {1, . . . , n}) described by the same Hilbert space
Cd. As a result we obtain the same set of POVMs elements acting on each untrusted subsystem, i.e. if
ai = aj, xi = xj then M(i)

ai|xi
= M(j)

aj|xj
for all i, j ∈ {1, . . . , n}.

Let Jn denotes the family of all subsets of the set {1, . . . , n}. We introduce the following Hermitian
operator

W =
∑

I∈Jn,I={i1,...,il}

k−2∑
ai1

=0

. . .

k−2∑
ail

=0

m−1∑
xi1

=0

. . .

m−1∑
xil

=0

M̃(1),I
a1|x1

⊗ · · · ⊗ M̃(n),I
an |xn

⊗ σI , (5)

where

σI =

{
σai1

...ail
|xi1

...xil
if I 
= ∅

σB if I = ∅
(6)

and

M̃(i),I
ai|xi

=

⎧⎨
⎩

M̃(i)
ai|xi

if i ∈ I

𝟙̃ if i /∈ I
. (7)
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For example with n = 2, formula (5) gives explicit expression

W =

k−2∑
a1,a2=0

m−1∑
x1,x2=0

M̃(1)
a1 |x1

⊗ M̃(2)
a2|x2

⊗ σa1a2|x1x2 +

k−2∑
a1

m−1∑
x1

M̃(1)
a1|x1

⊗ 𝟙̃⊗ σa1|x1

+
k−2∑

x2=0

m−1∑
a2=0

𝟙̃⊗ M̃(2)
a2 |x2

⊗ σa2 |x2 + 𝟙̃⊗ 𝟙̃⊗ σB. (8)

Straightforward calculations based on properties of M(i)
ai|xi

and M̃(i)
ai|xi

show that Tr(W) = 1 and

σan|xn = TrA1,...An (M(1)
a1|x1

⊗ · · · ⊗ M(n)
an|xn

⊗ 𝟙W) for all possible settings x1, . . . , xn and all choice of

outcomes ai ∈ {0, . . . , k − 2} while i ∈ {1, . . . , n}. Note that linear relations (1) and (2) fulfilled by
elements (operators) σan|xn and σB are the same as linear relations fulfilled respectively by non-negative
numbers p(an|xn) and 1 when P = {p(an|xn)} describes a no-signaling box. Because of that, according
to the main result of [13], we see that in fact σan|xn = TrA1,...An (M(1)

a1|x1
⊗ · · · ⊗ M(n)

an|xn
⊗ 𝟙W) for all possible

settings x1, . . . , xn and outcomes a1, . . . , an, as remaining operators σan|xn with ai = k − 1 for some
i ∈ {1, . . . , n} can be express by linear combinations of σI defined in (6) (due to formulas (1) and (2)). This
concludes the proof. �

Note that a similar observation has been made in [21]. However, that construction (based on the
so-called pseudo-LHS model [21]) requires that the local dimensions d fulfill d = mk + 1, and as such it
may be less useful from the operational perceptive.

Moreover, the presented theorem provides that by fixing the choice of POVMs (see a particular
construction of W in appendix A), one can restrict the choice of a Hermitian operator by imposing an
upper bound of its operator norm, which ensures another commodity for numerical analysis.

3. Hybrid correlations

Consider now a Bell-type scenario with n separated and untrusted systems as above. With a notation
introduced earlier this scenario is described by random measurements (settings) choices xi ∈ {0, . . .mi − 1}
and possible outcomes ai ∈ {0, . . . ki − 1} related to each untrusted party Ai with i ∈ {1, . . . , n}. From now
on we once more use a simplified convention with single m and k describing possible measurements and
outcomes for any untrusted subsystem Ai. The statistical description of Bell experiment may be presented
by the correlation boxes P = {p(an|xn)} providing the conditional probabilities of obtaining outcomes
given by a string an = (a1, . . . , an) conditioned upon performed measurements expressed by a string
xn = (x1, . . . , xn).

Similar to the case of steering, a particular form of possible correlations is given by assumed theory
(set of physical restrains) governing a given experiment. By NS(n, m, k) we denote the convex set of all
no-signaling boxes P = {p(an|xn)} that may describe this experimental setup. No-signaling correlations
which admit a quantum realization given by p(an|xn) = Tr(M(1)

a1|x1
⊗ · · · ⊗ M(n)

an|xn
ρ) form a convex subset

denoted as Q(n, m, k). Finally, the set of local boxes LOC(n, m, k) is defined as a convex hull of deterministic
correlations in (n, m, k) scenario. It is well known, that LOC(n, m, k) � Q(n, m, k) � NS(n, m, k).

Now, we observe that the possibility of post-quantum steering (existence of post-quantum no-signaling
assemblages) discussed in the previous part enables us to consider a new set of hybrid
no-signaling-quantum Bell correlations HNSQ(nns + nq, m, k) obtained from no-signaling assemblages by
performing quantum measurements on nq trusted subsystems.

Definition 2. The set of hybrid no-signaling-quantum correlations HNSQ(nns + nq, m, k) is defined as a set

of all no-signaling boxes P =
{

p(anns+nq |xnns+nq )
}

such that p(anns+nq |xnns+nq ) = Tr(M(1)
a1|x1

⊗ · · · ⊗
M

(nq)
anq |xnq

σans |xns ) for some Σ =
{
σans |xns

}
∈ nsA(nns, m, k,

∏nq
i dBi ) where M(i)

ai|xi
are elements of some

POVMs acting on dBi -dimensional space respectively and dB1 , . . . , dBnq
are arbitrary.

For the sake of simplicity we will not consider the above definition in full generality. In the remaining
part of the paper we restrict our attention to the case with only single trusted quantum subsystem (i.e.
nns = n, nq = 1) and related set of hybrid correlation HNSQ(n + 1, m, k).

We first observe that HNSQ(n + 1, m, k) is convex. Indeed, let P1, P2 ∈ HNSQ(n + 1, m, k) and choose
any q ∈ (0, 1). By definition 2 we may put p(i)(an+1|xn+1) = Tr(M(i)

an+1|xn+1
σ(i)
an|xn

) for i ∈ {1, 2}, where
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Figure 1. Schematic relationship between Q, HNSQ and NS.

Σi =
{
σ(i)
an |xn

}
∈ nsA(n, m, k, dBi ). Consider P = qP1 + (1 − q)P2. Observe that

p(an+1|xn+1) = Tr(Nan+1|xn+1
σan|xn ),

where Nan+1|xn+1
= M(1)

an+1|xn+1
⊕ M(2)

an+1|xn+1
∈ B(CdB1 ⊕ CdB2 ) are elements of some new POVMs and

σan|xn = qσ(1)
an|xn

⊕ (1 − q)σ(2)
an|xn

∈ B(CdB1 ⊕ CdB2 ). Obviously Σ =
{
σan|xn

}
∈ nsA(n, m, k, dB1 + dB2 ), so

P ∈ HNSQ(n + 1, m, k).
From the characterization of nsA(n, m, k, dB) and qA(n, m, k, dB) we immediately have Q(n + 1, m, k)

⊂ HNSQ(n + 1, m, k) ⊂ NS(n + 1, m, k). The following theorem ensures that in fact all the above
inclusions are strict, so HNSQ(n + 1, m, k) can be seen as a nontrivial intermediate theory of no-signaling
boxes giving rise to post-quantum resources (see also figure 1).

Theorem 2. HNSQ(n + 1, m, k) � NS(n + 1, m, k) for all n, m, k. Moreover, Q(n + 1, m, k) � HNSQ
(n + 1, m, k) for all n, m, k with n � 2.

Proof. Let us consider the first statement of the theorem. The inclusion part is obvious, and as for n = 1 we
have HNSQ(1 + 1, m, k) = Q(2, m, k) � NS(2, m, k) (as any bipartite no-signaling assemblage admits
quantum realization, see [36, 37], and [29]), it is enough to examine n � 2. Put n = 2 and consider any
P = {p(abc|xyz)} ∈ HNSQ(2 + 1, m, k). Obviously

p(abc|xyz) = TrC(Mc|zσab|xy) (9)

for some POVMs elements Mc|z and no-signaling assemblage defined by operators σab|xy. Observe that in
particular for some POVMs elements Nb|y

p(bc|yz) = TrC(Mc|zσb|y) = TrBC(Nb|y ⊗ Mc|z|ψBC〉〈ψBC|) (10)

as elements σb|y =
∑

a σab|xy define a bipartite no-signaling assemblage, which always admits a quantum
realization [36, 37]. Construct now a box P̃ = {p̃(abc|xyz)} ∈ NS(3, m, d) stating from R = {r(bc|yz)} ∈
NS(2, m, k) such that R /∈ HNSQ(1 + 1, m, k) = Q(2, m, k) and putting

p̃(abc|xyz) = d(a|x)r(bc|yz), (11)

where d(a|x) define some fixed deterministic box. As (11) holds, we see that P̃ /∈ HNSQ(2 + 1, m, k), since
marginal probability p̃(bc|yz) = r(bc|yz) does not have a quantum realization. One may repeat this
procedure inductively, starting construction for step l + 1 from the correlations box constructed in the
previous step l.

Now let us consider the second statement of the theorem. The inclusion part is obvious. For n � 2
consider P = {p(a1 . . . an+1|x1 . . . xn+1)} ∈ HNSQ(n + 1, m, k) such that the marginal box
P̃ = {p(a1 . . . an|x1 . . . xn)} ∈ NS(n, m, k) is non-local and extremal in NS(n, m, k). According to the main
results of [29], such box does not admit quantum realization so P̃ /∈ Q(n, m, k) and we see that
P /∈ Q(n + 1, m, k) as well. This concludes the proof. �

To provide further description of the simplest nontrivial example of a set of
hybrid-no-signaling-quantum correlations let us recall the well-known Jordan’s lemma.

Lemma 1 (Jordan’s lemma [38, 39]). Let P, Q ∈ B(Cd) denote any projections. Related Hilbert space Cd can
be presented as a direct sum of Hilbert spaces Cd = ⊕jHj where dimHj � 2, PHj ⊂ Hj, QHj ⊂ Hj for any j,
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i.e. there exists a choice of orthonormal basis such that both P, Q are block diagonal (with respect to that basis)
with at most two-dimensional blocks.

The following observation will become relevant for proposed method of outer approximation of a set of
hybrid-no-signaling-quantum correlations in a case with binary measurements and outcomes (compare
with appendix E).

Observation 1. Let NSA2(n + 1, 2, 2) denotes a set of correlation obtained by projective measurements
performed on assemblages acting only on a two-dimensional Hilbert space, then
HNSQ(n + 1, 2, 2) = conv(NSA2(n + 1, 2, 2)).

Proof. Consider P = {p(anc|xnz)} ∈ HNSQ(n + 1, 2, 2). Without loss of generality (up to the action of
an isometry) there exist a no-signaling assemblage Σ =

{
σan|xn

}
∈ nsA(n, 2, 2, dB) and PVMs

(projection-valued measures) elements Pc|z such that p(anc|xnz) = Tr(Pc|zσan|xn ). As P1|0 = 𝟙− P0|0 and

P1|1 = 𝟙− P0|1, according to lemma 1, one can write Pc|z = ⊕jP
(j)
c|z where for any j P(j)

c|z are PVMs elements
acting on a Hilbert space Hj respectively—without loss of generality (up to the action of an isometry)
Hj = C2 for all j. For the sake of simplicity, we identify Hj with its copy inside ⊕jHj. Let 𝟙j denote
projection onto Hj, then

p(anc|xnz) =
∑

j

Tr(P(j)
c|z𝟙jσan|xn𝟙jP

(j)
c|z). (12)

Observe that for any j one can find qj = Tr(𝟙jσan|xn𝟙j) � 0 and no-signaling assemblage

Σj =
{
σ

(j)
an|xn

}
∈ nsA(n, 2, 2, dB̃) where dB̃ = 2, such that

p(anc|xnz) =
∑

j

qjTr(P(j)
c|zσ

(j)
an|xn

) (13)

which ends the proof. �

4. Quantum realization of extreme points

It has been established in [29] that it is not possible to have a quantum realization of a non-local
(non-classical) extreme point in the set of no-signaling correlations (regardless of the numbers of parties,
settings, and outcomes). Recently, the analogous question has been found to have a positive answer in the
simplest nontrivial steering scenario with no-signaling assemblages [24], that is, there are examples of
quantum assemblages which are extremal in nsA(2, 2, 2, dB) and non-classical (where classicality is defined
as admitting a local hidden state model [21]).

Considering the case of the intermediate set of hybrid no-signaling-quantum correlations
HNSQ(n + 1, m, k), it is natural to pose the analogous question—is it possible to obtain a quantum
realization of a non-local extreme point in HNSQ(n + 1, m, k)? The following theorem shows a surprising
positive solution for this problem.

Theorem 3. Let P = {p(abc|xyz)} ∈ Q(3, m, k) be given by

p(abc|xyz) = TrABC(Pa|x ⊗ Qb|y ⊗ Rc|z|0A〉〈0A| ⊗ |ψBC〉〈ψBC |) (14)

with projections Pf(x)|x = |0〉〈0| defined by some fixed function f (x) ∈ {0, . . . , k − 1} and where projections
Qb|y, Rc|z together with a state |ψBC〉〈ψBC| give a rise to the maximal quantum violation of a given bipartite Bell
inequality B that is self-testable in the set of quantum correlations. Then P is extremal in HNSQ(2 + 1, m, k)

Proof. Observe that
p(abc|xyz) = δa,f (x)p(bc|yz), (15)

where quantum correlations
p(bc|yz) = TrBC(Qb|y ⊗ Rc|z|ψBC〉〈ψBC|) (16)

obtain a quantum maximum for some fixed inequality B with desired properties. Consider a presentation
of P as a convex combination of elements from the set of hybrid no-signaling-quantum correlations, i.e.
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p(abc|xyz) =
n∑
i

qip
(i)(abc|xyz) =

n∑
i

qiTrC(R(i)
c|zσ

(i)
ab|xy), (17)

where qi > 0,
∑n

i qi = 1, Σi =
{
σ(i)

ab|xy

}
are some no-signaling assemblages and R(i)

c|z stand for elements of

some POVMs. Note that due to (15) and (17) we obtain

p(ab|xy) = δa,f (x)p(b|y) =
n∑
i

qiTrC(σ(i)
ab|xy) (18)

and as a result
σ(i)

ab|xy = δa,f (x)σ
(i)
b|y. (19)

On the other hand, we also have

p(bc|yz) =
n∑
i

qip
(i)(bc|yz) =

n∑
i

qiTrC(R(i)
c|zσ

(i)
b|y). (20)

Since any Σ̃i =
{
σ(i)

b|y

}
is a bipartite no-signaling assemblage, there is a quantum realization

σ(i)
b|y = TrB(S(i)

b|y ⊗ 𝟙|φ(i)
BC〉〈φ

(i)
BC |), (21)

where in general S(i)
b|y are elements of POVMs. If so, then by (20)

p(i)(bc|yz) = TrBC(S(i)
b|y ⊗ R(i)

c|z|φ
(i)
BC〉〈φ

(i)
BC |) = TrB̃C̃(S̃(i)

b|y ⊗ R̃(i)
c|z|φ̃

(i)
B̃C̃
〉〈φ̃(i)

B̃C̃
|), (22)

where states |φ̃(i)
B̃C̃
〉〈φ̃(i)

B̃C̃
| and PVMs elements S̃(i)

b|y, R̃(i)
c|z come from Naimark’s dilation of elements S(i)

b|y and R(i)
c|z

respectively. In particular, p(i)(bc|yz) admits quantum realization (for any i).
Because of (16) and (20) each p(i)(bc|yz) maximizes B. Since (22) holds, by the self-testing statement for

projections Qb|y, Rc|z and state |ψBC〉〈ψBC|, we obtain

p(i)(bc|yz) = p(bc|yz). (23)

Finally, the above result together with (15) and (19) show that for any i

p(i)(abc|xyz) = TrC(R(i)
c|zσ

(i)
ab|xy) = δa,f (x)TrC(R(i)

c|zσ
(i)
b|y) = δa,f (x)p(bc|yz) = p(abc|xyz)

which ends the proof. �

For a given Bell inequality B let BoxesT(B, B) denote the set of all boxes of the theory T (understood as
a convex set of all allowed correlations) for which the value of the Bell operator B attains at least the value
B. Define Tsirelson’s bound as TsnT(B) ≡ maxP∈TB(P). Those terms allows as to introduce a new form of
self-testing, viz. self-testing for boxes:

Definition 3. A Bell operator B is self-tested for boxes within the theory T if and only if the set
BoxesT(B, TsnT(B)) has cardinality 1, i.e. when the box attaining the Tsirelson’s bound is unique.

In our considerations we will use the following lemma for tripartite boxes with two settings and
outcomes (generalization for more parties, settings and outcomes is straightforward):

Lemma 2. For given theory T, Bell operator B and B ∈ R let:

FlexT(B, B) ≡ 1

8

∑
a,b,c,x,y,z

max
p∈BoxesT(B,B)

p(a, b, c|x, y, z). (24)

Then, it holds that B is self-tested for boxes in T if and only if FlexT(B, TsnT(B)) = 1.

Proof. Assume that B is not self-tested for boxes in T, so there exist at least two different boxes
p1, p2 ∈ BoxesT(B, B). Let (a1, b1, c1|x1, y1, z1) be a tuple of settings and outcomes for that
p1(a1, b1, c1|x1, y1, z1) > p2(a1, b1, c1|x1, y1, z1) (from normalization of probabilities it follows that for two
different probability distributions such tuple exist). Then
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FlexT(B, B) � 1

8

⎡
⎢⎢⎣ ∑

(a,b,c,x,y,z)
=
(a1,b1,c1,x1,y1,z1)

p2(a, b, c|x, y, z)

⎤
⎥⎥⎦+ p1(a1, b1, c1|x1, y1, z1)

>
1

8

∑
a,b,c,x,y,z

p2(a, b, c|x, y, z) = 1. (25)

�

Let B be any bipartite Bell inequality for subsystem BC that is self-testable within the quantum theory
(like in the above theorem). For any P = {p(abc|xyz)} ∈ HNSQ(2 + 1, m, k) define a new tripartite
inequality given by

Iα(P) = B(PBC) −
m−1∑

x,y,z=0

k−1∑
b,c=0

∑
a
=f (x)

αabc|xyzp(abc|xyz), (26)

where αabc|xyz > 0 for any a, b, c, x, y, z and B(PBC) stands for value of B computed on marginal conditional
probabilities for subsystem BC coming from tripartite box P, i.e. PBC = {p(bc|yz)}. One can show that
TsnHNSQ(2+1,m,k)(Iα) = TsnQ(3,m,k)(Iα) = TsnQ(2,m,k)(B) and as a consequence we obtain the following
observation.

Observation 2. Inequality Iα serves as a self-testing certificate for boxes of the extremal box within
HNSQ(2 + 1, m, k) with a quantum realization (14) given with respect to the bipartite Bell inequity B
defining Iα.

It easy to see that this line of reasoning can be generalized to the case of HNSQ(n + 1, m, k) with an
arbitrary number of untrusted no-signaling parties n when a considered box is a product of some
deterministic (n − 1)-partite box and some bipartite box that is self-testable within the quantum
theory.

Note that these results open new potential one-sided cryptographic applications. While quantum
correlations cannot provide extremality-based full security within a fully no-signaling theory, they can still
do so against attacks within the restricted super-quantum HNSQ set.

5. Numerical results

We have numerically calculated maximal values for the set of Bell operators provided by Śliwa [31] and
related values of FlexT parameter allowed within sets Q(3, 2, 2), HNSQ(2 + 1, 2, 2) and NS(3, 2, 2). Upper
bounds for an intermediate set HNSQ(2 + 1, 2, 2) has been obtained with a proposed method from
appendix D using DPS [32, 33] with symmetric extension involving two copies of the measurement of
Charlie and PPT-constraints imposed, see the appendix E for presentation of proposed method for binary
measurements and outcomes. (Note that alternative approach to upper approximation of intermediate set
HNSQ in the general case can be also preformed based on the notion of assemblage moment matrices
[40, 41].) The lower bound has been obtained using the see-saw method (for an explanation, see [42]) and
confirms the upper bound in all cases. Results of the aforementioned calculations (compared with bounds
for the set of local correlations LOC, i.e. correlations admitting a local hidden variable model) are presented
in table 1 with the numbering of Śliwa’s Bell operators taken from [31].

Our results confirm that the HNSQ theory is strictly between Q and NS. For example for Śliwa’s Bell
operators 3, 5, 8, 9, 11–17, 22, 42, and 43 (numbering according to the one presented in [31]) the HNSQ
and NS Tsirelson’s bounds are the same and strictly larger than Q. This shows a striking property that
HNSQ, contrary to Q, contains extremal no-signaling non-local boxes.

On the other hand, for Bell operators 4, 6 and 20 (numbering according to the one presented in [31]),
both the quantum and HNSQ Tsirelson’s bounds are the same (strictly smaller than NS), meaning that in
laboratory it is possible to realize experiments that are secure against HNSQ adversary. We observe that for
operator 20 (numbering according to the one presented in [31]) the value of Flex in HNSQ is equal to 1
meaning that we provide a self-testing for boxes of a quantumly-realizable boxes within super-quantum
theory.

Note that for example operators 7, 10, 18, 19, 21, 24, 25, 26, 27, 32, 36, 39 and 40 (numbering according
to the one presented in [31]) have different Tsirelson’s bound for each theory.
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Table 1. Numerical bounds for Śliwa’s Bell inequalities.

Śliwa’s Bell inequality LOC Q HNSQ NS

1 0 0.0000 0.0000 0
2 0 2 2 2
3 0 0.8284 2 2
4 0 1.6569 1.6569 4
5 0 1.8885 4 4
6 0 1.6569 1.6569 4
7 0 2.6667 4 6
8 0 2.6667 4 4
9 0 1.6569 4 4
10 0 0 1.3726 2.666 667
11 0 1.6569 4 4
12 0 1.6569 4 4
13 0 1.6569 4 4
14 0 1.6569 4 4
15 0 2 4 4
16 0 2.1288 4 4
17 0 1.6569 4 4
18 0 1.7538 1.8101 4
19 0 1.7829 1.8450 4
20 0 2.4853 2.4853 6
21 0 1.9554 4 4.571 429
22 0 2.1979 4 4
23 0 0.6847 2.2711 4
24 0 2.9402 4 5.333 333
25 0 1.8242 4 5.333 333
26 0 2.9282 4 5.333 333
27 0 1.9547 4 5.333 333
28 0 3.9098 4.2090 8
29 0 3.3137 4 8
30 0 3.3137 4.1776 8
31 0 1.8043 4.1653 6
32 0 2.1516 4 6
33 0 3.7899 4.2372 6
34 0 2.2514 4 6
35 0 1.8552 4.1776 6
36 0 3.4614 4.0283 8
37 0 3.3137 4.0998 8
38 0 3.3137 4.0794 8
39 0 3.3253 4 6
40 0 2.1298 4 6
41 0 3.3680 4.1780 8
42 0 5.0471 8 8
43 0 3.3137 8 8
44 0 4.9706 5.1362 12
45 0 4.9706 4.9733 12
46 0 2.9852 8 10.666 667

6. Conclusions

In this paper, we have introduced and studied a set of hybrid no-signaling-quantum Bell correlations
obtained by performing quantum measurements on trusted parts of no-signaling assemblages. We
introduced a tool for optimization over the set, namely a hierarchy of semi-definite programming based
outer approximations. As a central interesting property of this set of super-quantum correlations that makes
it more appealing than the set of no-signaling correlations, we have proved that there exist extremal points
(boxes) in this set that admit quantum realization, and that furthermore these realizations are self-testing
for boxes in some cases. A central open question is to formulate (one-sided)-DI protocols against
super-quantum adversaries that are restricted to prepare boxes within the hybrid no-signaling-quantum
correlation set. In particular, it would be interesting to investigate if these new correlations allow to
circumvent some of the no-go theorems against super-polynomial privacy amplification that were proven in
the scenario of general no-signaling adversaries [28].
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Appendix A. Bound for operator norm of W in a binary case

In the discussion following theorem 1 we stated, that by fixing all measurements M(i)
ai|xi

for a given scenario,
one can provide an upper bound on operator norms of all W that are sufficient for realization of any
no-signaling assemblage (in a given scenario (n, m, k, dB)). Here we provide an explicit calculation of this
bound in the case of binary measurements with binary outputs performed on each untrusted party.

According to construction of W described in the proof of theorem 1 it is enough to consider the same
set of measurements on each untrusted subsystem. In the binary case we choose positive operators

M0|0, M0|1 in such a way that
{
𝟙, M0|0, M0|1

}
is a linearly independent system. Dual system

{
𝟙̃, M̃0|0, M̃0|1

}
is given by 𝟙̃ = a1𝟙+ a2M0|0 + a3M0|1, M̃0|0 = b1𝟙+ b2M0|0 + b3M0|1 and M̃0|1 = c1𝟙+ c2M0|0 + c3M0|1,
where a = (a1, a2, a3)T, b = (b1, b2, b3)T, c = (c1, c2, c3)T and a = M−1e1, b = M−1e2, c = M−1e3 with {ei}i

denoting the standard basis in C3 and

M =

⎛
⎝ Tr(𝟙) Tr(M0|0) Tr(M0|1)

Tr(M0|0) Tr(M2
0|0) Tr(M0|0M0|1)

Tr(M0|1) Tr(M0|1M0|0) Tr(M2
0|1)

⎞
⎠. (A1)

We will restrict our attention to projective measurements. In other words without loss of generality
(i.e. up to unitary transformation) we may put M0|0 = |0〉〈0|, M0|1 = |θ〉〈θ| with |θ〉 = (cos θ, sin θ)T where
θ ∈ (0, π

2 ) ∪ ( π
2 ,π). From direct calculations based on the above description we obtain

∥∥∥𝟙̃∥∥∥ =

⎧⎪⎨
⎪⎩

1

2 cos θ
+

1

2
if θ ∈

(
0,
π

2

)
− 1

2 cos θ
+

1

2
if θ ∈

(π
2

,π
) (A2)

and ∥∥M̃0|0
∥∥ =

∥∥M̃0|1
∥∥ = |(2 sin θ cos θ)−1|. (A3)

Because of these particular forms, we may restrict our attention to the case θ ∈ (0, π
2 ). With this choice and

by the construction of W presented in the proof of theorem 1 (having in mind that for any no-signaling
assemblage Σ =

{
σan|xn

}
we have ‖σI‖ � 1) we may use a subadditive property of the operator norm in

order to show that (5) implies the following bound

‖W(θ)‖ �
n∑

k=0

(n

k

)∥∥∥𝟙̃∥∥∥k n−k∑
i=0

(
n − k

i

)∥∥M̃0|0
∥∥i∥∥M̃0|1

∥∥n−k−i

=

n∑
k=0

(n

k

)( 1

2 cos θ
+

1

2

)k( 1

sin θ cos θ

)n−k

= (f (θ))n (A4)

with

f (θ) =
1

2
+

1

2 cos θ
+

1

sin θ cos θ
. (A5)
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Expression (A4) attains minimal value for θ ∈ (0, π
2 ) such that f ′(θ) = 0 (regardless of n), i.e. when

angle θ fulfills sin3θ + 4 sin2θ − 2 = 0. Numerical calculations [43] shows that θmin ≈ 0.715 and

f(θmin) ≈ 3.182 (for comparison when θ+ = π
4 , i.e. |θ+〉 = |+〉, one obtains f (θ+) = 5+

√
2

2 ≈ 3.207—when
the number of untrusted subsystems n is small the choice of angle θ+ leads to upper bound close to the
optimal one).

Appendix B. Doherty–Parrilo–Spedalieri hierarchy, the SWAP trick, and bilinear
optimization

In order to describe the outer approximations hierarchy, we first recapitulate the
Doherty–Parrilo–Spedalieri hierarchy (DPS) [32–34]. Let us consider a state ρ on HA ⊗HB ⊗HC ⊗ . . .

that is separable, i.e. can be written as a convex combination of pure product states:

ρ =
∑

i

λi|φ〉〈φ |A ⊗ |ϕ〉〈ϕ |B ⊗ |χ〉〈χ |C ⊗ . . . , (B1)

where
∑

i λi = 1, λi � 0. Now, let ρ̃ be a state on HAk ⊗HBl ⊗HCm ⊗ . . ., where HAk is a product of k
spaces HA, and similarly for B, C etc. The state ρ̃ is an extension of ρ if

ρ = TrAk−1Bl−1Cm−1...[ρ̃], (B2)

where the partial trace is over all but the first copy of each space. Let SA be the set of all permutation
operators between copies of the space HA, and similarly for B, C etc. The state extension ρ̃ is symmetric if
for all P ∈ SA ⊗ SB ⊗ SC it holds that

ρ̃ = Pρ̃P. (B3)

The state extension ρ̃ is PPT if ρ̃ remains positive after any partial transposition over subsystems. If ρ is
separable then for any k, l, m, . . . , there exist ρ̃ that is a PPT symmetric extension of ρ. The core idea of the
DPS hierarchy is to check whether for fixed k, l, m, . . . a PPT symmetric extension of ρ exist; if not this
means that ρ is not separable.

Since the PPT symmetric extension constraints can be formulated as an SDP, the DPS method allows to
optimize over a relaxation of the set of separable states on given spaces; the higher are k, l, m, . . . , the
relaxation is closer to the actual set of all separable states. Thus, from a PPT symmetric extension state ρ̃ we
may construct a state 
 on HA ⊗HB ⊗HC ⊗ . . . that is in some sense close to be separable.

Further we denote by DPS(HA,HB,HC, . . .) the set of all subnormalized states satisfying DPS criteria for
some fixed level of that hierarchy. We then write (cf (B1)):

ρ =
∑

i

λi|φ〉〈φ |A ⊗̃|ϕ〉〈ϕ |B⊗̃|χ〉〈χ |C⊗̃ . . . , (B4)

where ⊗̃ denotes the fact that the state is only close to the product form, in the sense of DPS relaxation. In
the case of higher dimensions, or more parties, one needs to include more subspaces to include
optimization over more measurements.

Another property that we will use is the relation [44]:

Tr
[

SWAP(A, A′)ρ(1)
A ⊗ ρ(2)

A′

]
= Tr

[
ρ(1)

A ρ(2)
A

]
, (B5)

where HA and H′
A are isomorphic, and SWAP(A, A′) is the SWAP operator between them. Below we denote

space isomorphic to A by A′ and A′′, and similarly for B, C, etc.
In order to perform the optimization over boxes we need to optimize both over the state and

measurements. Consider the following

ξA′B′C′ ...A′′B′′C′′ ··· ≡
∑

i

λi|φi〉〈φi |A′B′C′... ⊗ ⊗|ψA
i 〉〈ψA

i |A′′ ⊗ |ψB
i 〉〈ψB

i |B′′ ⊗ |ψC
i 〉〈ψC

i |C′′ ⊗ . . . , (B6)

where
∑

i λi = 1. From (B5) one can see that

TrA′A′′
[
SWAP(A, A′)ξA′B′C′ ...A′′B′′C′′···

]
=

∑
i

λiTrA′
[
|φi〉〈φi |A′B′C′ ...

(
|ψA

i 〉〈ψA
i |A′′ ⊗ 𝟙B′C′...

)]
, (B7)

thus the result is the post-measurement state after measurement on HA′ . This construction easily generalizes
if more measurements on each Hilbert space are possible, simply by adding subspaces ‘storing’ their
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projections. Thus all probabilities of measurements can be extracted as a linear function of ξA′B′C′C′′ , see
[32], equation (5).

In most cases, where only quantum systems are considered, one assumes in (B6) that λi � 0. Since SDP
allows only to optimize for a target that is linear in variables, we combine DPS hierarchy and the SWAP
trick to create an SDP variable approximating a joint state of a multipartite quantum state on systems
A′B′C′ . . . and a measurement represented on a system A′′B′′C′′ . . .. On the other hand, if it does not hold
that λi � 0 for all i, then the direct application of DPS is not possible.

Appendix C. Bounded-norm operators optimization

For a given Hilbert space H let Dim(H), Op(H) and PSD(H) be its dimension, the set of all bounded
operators, and the set all bounded positive semidefinite operators acting on it, respectively. We also denote
PSD(H1,H2, . . .) as the set of operators of a form of product of semidefinite operators over those spaces,
i.e.

PSD(H1,H2, . . .) ≡ PSD(H1) ⊗ PSD(H2) ⊗ . . . . (C1)

For any W ⊆ Op(H) let

Spec[W] ≡ inf{Λ ∈ R+ : ∀w∈W (−Λ𝟙 � w � Λ𝟙)}, (C2)

i.e. Spec[W] is the boundary of the spectrum of all operators in W. Let Eig(w) for w ∈ Op(H) be the set of
all eigenvalues of w. Obviously,

Eig(w) ⊆ [−Spec[{w}], Spec[{w}]]. (C3)

Let

L : Op(HX ⊗HY1 ⊗HY2 ⊗ . . .) →
[
Op(HZi)

]
i
, (C4a)

T : Op(HZ) → R, (C4b)

be linear functionals, and let

MX ≡ 1

Dim(HX)
𝟙X , (C5)

be the maximally mixed normalized state operator on HX . In (C4a) the expression
[
Op(HZi)

]
i

denotes an
indexed sequence of operators. We write Z = [Zi]i � 0 for Z ∈

[
Op(HZi)

]
i

as a joint condition that Zi � 0
for all i.

Consider the following optimization problem for given (WX ,L, T ), where WX ⊆ Op(HX) is some fixed
set of operators on HX :

maximize T (z),

over x ∈ WX ,

y ∈ PSD(HY1,HY2, . . .),

subject to Tr[x] = 1,

Tr[y] = 1,

z = L(x ⊗ y),

z � 0.

(C6)

Let Λ ≡ Spec[WX], and d ≡ Dim(HX). Now, consider the following optimization:

maximize T (z),

over ξ ∈ DPS(HX ,HY1,HY2, . . .),

subject to x = TrY (ξ),

x � 2Λ

1 + Λd
𝟙X ,

y = TrX(ξ),

z = L
[
(1 + Λd)ξ − ΛdMX ⊗ y

]
,

z � 0.

(C7)
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Lemma 3. For any (WX ,L, T ) it holds that the solution of (C6) is upper bounded by the solution of (C7).

Proof. We first show the following inclusion:

{x ∈ WX : Tr[x] = 1} ⊆ {x ∈ Op(HX) : Eig[x] ∈ [−Λ,Λ], Tr[x] = 1}

= {x − Λ𝟙X : x ∈ Op(HX), Eig[x] ∈ [0, 2Λ], Tr[x] = 1 + Λd}

⊆ W̃X ≡ {(1 + Λd)x − ΛdMX : x ∈ PSD(HX), x � 2Λ/(1 + Λd)𝟙X , Tr[x] � 1}.

(C8)

The first inclusion follows from replacing the subset WX of operators on HX bounded by Λ with the set of
all operators on HX bounded by Λ. The equality follows from the shift of spectra by Λ that is equivalent to
adding the operator Λ𝟙X . The second inclusion follows replacement of x with 1

1+Λd x, rewriting eigenvalue
boundaries in matrix inequality form and relaxing the constraint Tr[X] = 1.

In this proof we will use the following abbreviation: PSDY ≡ PSD(HY1,HY2, . . .).
It is easy to see that

{x ⊗ y : x ∈ WX , y ∈ PSDY , Tr[x] = 1, Tr[y] = 1} ⊆
{

x ⊗ y : x ∈ W̃X , y ∈ PSDY , Tr[x] = 1, Tr[y] = 1
}

= {[(1 + Λd)x − ΛdMX] ⊗ y : x ∈ PSD(HX), y ∈ PSDY , Tr[x] = 1, Tr[y] = 1, x � 2Λ/(1 + Λd)𝟙X},

(C9)

where the inclusion follows from WX ⊆ W̃X , and equality from direct writing the definition of W̃X .
The last expression of the set can also be rewritten as:

{(1 + Λd)ξ − ΛdMX ⊗ TrX[ξ] : ξ = x ⊗ y, x ∈ PSD(HX),

y ∈ PSDY , Tr[x] = 1, Tr[y] = 1, x � 2Λ/(1 + Λd)𝟙X}.
(C10)

Next, we use the fact that DPS(HX ,HY1,HY2, . . .) is a relaxation of the set of product states, i.e. it
contains the set {ξ ∈ PSD(HX) ⊗ PSDY : Tr[ξ] � 1}. Thus we get that the set given in (C10) is contained in

{(1 + Λd)ξ − ΛdMX ⊗ TrX[ξ] : ξ ∈ DPS(HX ,HY ), TrY [ξ] � 2Λ/(1 + Λd)𝟙X}. (C11)

Direct comparison of the definition of the first set in (C9) with the constraints in (C6), and the
definition of the set (C11) with the constraints in (C7) concludes the proof. �

Appendix D. Hierarchy of outer semi-definite programming approximations of
hybrid no-signaling-quantum correlations

In order to model the set of boxes in a hybrid scenario, we identify the Hilbert space of the operator W from
the theorem 1 with HX , spaces of operators M(i)

ai|xi
∈ B(Cd) with HY(ai,xi), and the spaces of operators

Man+1|xn+1
from the definition 2 with HY(an+1,xn+1). We assume all the measurement operator to be

projective with trace 1.
Let us now define the operator L of (C4a) as the operator that transforms the state W and the

measurements M(i)
ai|xi

∈ B(Cd), i = 1, . . . , n + 1, to the sequence

(
σan|xn ⊗ Man+1|xn+1

)
. (D1)

This operator can be constructed using the SWAP trick (B5).
Next, let P be a transformation from (D1) to probabilities p(an+1|xn+1) = Tr(Man+1|xn+1

σan|xn )
(cf definition 2). Let B be a Bell operator over those probabilities and let

T ≡ B ◦ P , (D2)

i.e. a transformation from (D1) to the Bell operator value, cf (C4b).
Now, if we provide some bound Λ on the spectrum of the state W, we may use the lemma 3 to perform

SDP optimization of the Bell operator B over hybrid boxes. The levels of the hierarchy are specified by the
bound Λ of W and the level of the DPS hierarchy used.

Appendix E. The case with two no-signaling and one quantum party

We illustrate the results of appendix D for the case with two no-signaling and one quantum party. For the
sake of simplicity we denote in this section the no-signaling parties by A and B, and the quantum party by
C. Moreover, we assume all the parties use binary settings and outcomes—in this case we may use the
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previous discussion for outer approximation of HNSQ(2 + 1, 2, 2), since according to observation 1 the set
of hybrid no-signaling-quantum correlations is a convex hull of correlations obtained by projective
measurements on no-signaling assemblages acting only on two-dimensional space.

As shown above in the construction of operator W from theorem 1 (see also appendix A) for the
three-partite scenario in the dimension 2 with no-signaling A and B, and quantum C, in fact for
measurements only optimization over second measurement on C is necessary, since the rest of them is taken
in either computational or Hadamard basis, and thus in (B6) we may assume that only one additional
subspace C′′ is needed.

Indeed, let Ma|x
A′ and Mb|y

B′ be measurements in computational (x, y = 0) and Hadamard basis (x, y = 1),
for Alice and Boba, that are sufficient as show in theorem 1. Using (B5) the Charlie’s measurements can be
expressed using:

Mc=0|z=0
C′C′′ ≡ SWAP(C′, C′′), (E1a)

Mc=0|z=1
C′C′′ ≡ | 0〉〈0 |C′ ⊗ 𝟙C′′ , (E1b)

and for c = 1 obtained by summing to identity.
Note that the construction (E1a) works for any number of parties and outcomes, whereas (E1b) works

only in this particular case.
From the bound provided according to construction given in theorem 1 (see appendix A) with a choice

of basis dual to {𝟙, |0〉〈0|, |+〉〈+|} it follows that in order to cover all cases allowed by theory in this case we
may bound the eigenvalues of W by Λ = 11, as ‖W‖ � (f (θ+))2 � 11.

Let us now consider the following state where on space ABC there is an additional maximally mixed
stated:

ΞABCA′B′C′C′′ ≡ 1

8
𝟙ABC ⊗ ξA′B′C′C′′ =

∑
i

λi

[
1

8
𝟙ABC ⊗ |φi〉〈φi |A′B′C′ ⊗̃|ψi〉〈ψi |C′′

]
, (E2)

where
∑

i λi = 1, λi � 0.
Following the lemma 3 we get that any product of allowed operator W with the state representing the

second measurement for C can be expressed in the following form:

(1 + Λd)TrABC[ΞABCA′B′C′C′′] − ΛdTrA′B′C′[ΞABCA′B′C′C′′] . (E3)

Now, applying the measurements discussed above (E1), we see that

Σab|xy ≡ (1 + Λd)TrABCA′B′

[
Ξμ

ab|xy
A′B′

]
− Λd TrABA′B′C′

[
Ξμ

ab|xy
AB

]
, (E4)

where
μ

ab|xy
A′B′ ≡ 𝟙ABC ⊗ Ma|x

A′ ⊗ Mb|y
B′ ⊗ 𝟙C′C′′ , (E5a)

μ
ab|xy
AB ≡ Ma|x

A ⊗ Mb|y
B ⊗ 𝟙CA′B′C′C′′ , (E5b)

provides us the joint state of the steered states of C, σab|xy, and the C’s measurement, i.e.

Σab|xy = σab|xy ⊗ |ψi〉〈ψi |. (E6)

From the main text it follows that we should also impose a constraint σab|xy � 0, or, equivalently,
Σab|xy � 0. This is expressed by the constraint z � 0 in (C6) and (C7). From the above and (B5) it follows
that the probabilities are given by

p(a, b, c|x, y, z) ≡ Tr
[
Σab|xyMc|z

]
, (E7)

that defines the function P from the appendix D.
We have observed that it is beneficial to impose an additional PPT constraint on (E4) to strenghten the

separation relaxation between the state and measurement operators. The same can be obtained directly by
considering a higher level of the DPS relaxation, but our observation suggest that the direct constraining of
(E4) provides significant improvements at relatively low computational cost.

ORCID iDs

Michał Banacki https://orcid.org/0000-0002-1184-4087
Piotr Mironowicz https://orcid.org/0000-0003-4122-5372
Ravishankar Ramanathan https://orcid.org/0000-0003-1119-8721

14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://orcid.org/0000-0002-1184-4087
https://orcid.org/0000-0002-1184-4087
https://orcid.org/0000-0003-4122-5372
https://orcid.org/0000-0003-4122-5372
https://orcid.org/0000-0003-1119-8721
https://orcid.org/0000-0003-1119-8721
http://mostwiedzy.pl


New J. Phys. 24 (2022) 083003 M Banacki et al

References

[1] Bell J S 1964 On the Einstein Podolsky Rosen paradox Physics 1 195–200
[2] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Bell nonlocality Rev. Mod. Phys. 86 419
[3] Pironio S et al 2010 Random numbers certified by Bell’s theorem Nature 464 1021–4
[4] Barrett J and Pironio S 2005 Popescu–Rohrlich correlations as a unit of nonlocality Phys. Rev. Lett. 95 140401
[5] Pirandola S et al 2020 Advances in quantum cryptography Adv. Opt. Photon. 12 1012–236
[6] Acı́n A, Gisin N and Masanes L 2006 From Bell’s theorem to secure quantum key distribution Phys. Rev. Lett. 97 120405
[7] Kessler M and Arnon-Friedman R 2020 Device-independent randomness amplification and privatization IEEE J. Sel. Areas Inf.

Theory 1 568–84
[8] Brandão F G S L, Ramanathan R, Grudka A, Horodecki K, Horodecki M, Horodecki P, Szarek T and Wojewódka H 2016 Realistic
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