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Preface 
 

Nowadays, the use of small-scale structures in micro/nanomachines has become more 
and more widespread. The most important applications of such small-sized parts are 
in micro-electro-mechanical systems (MEMS) as well as nano-electro-mechanical 
systems (NEMS) as actuators, sensors, energy harvesters. For example, nanosensors 
are nanoscale devices that measure physical quantities and convert these to signals that 
can be detected and analyzed. On the applications of micro/nanosensors in civil 
engineering, one can state that nanosensors can be developed and used in construction 
to monitor and/or control the environmental conditions and the materials/structures' 
performance. As an example, nanosensors can be used to monitor concrete corrosion 
and micro-cracking. The smart sensor can also be employed for structural health 
monitoring in bridges and other structures. In this regard, understanding the 
mechanical response of such structures in various environmental and physical 
situations is seriously required. 

For the design and modelling of such a device, one can use various approaches. 
First, we mention straightforward experiments which need special equipment and 
result in high costs. Second, molecular dynamics could be used, which requires a lot of 
computational efforts, in general. Moreover, this method cannot be implemented for 
all types of nanostructures. Finally, the application of continuum models properly 
modified for modelling materials and structures at small scales is worth mentioning. 
Among various enhancements of classic mechanics of continua and structures, we 
mention the non-local approach related to the description of long-range interactions. 
In what follows, we apply the third technique based on non-local models and 
corresponding modelling to thin-walled structures as principal elements of MEMS and 
NEMS. Moreover, we consider the coupling between mechanical and electromagnetic 
fields. So this dissertation is based on this approach.  Using it, the mechanical behavior 
of the MEMS and NEMS has been predicted. 

This dissertation is organized as follows: it consists of three main parts. The 
problem and nonlocal continuum theories will be stated and reviewed in the first part. 
Here the attention to magneto-elastic phenomena is paid. The lower and higher-order 
magnetic effects will be considered. In the second part, the conclusions and scientific 
contributions are summarized, possible new works are discussed, and some novel 
topics are recommended. The list of main publications is also given. The third part 
collects those papers published in high-rank journals where the main results of the 
thesis were published.  
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Streszczenie 

 
W obecnych latach systemy mikro- i nanoelektromechaniczne (MEMS i NEMS) są 
szeroko stosowane w inżynierii. Przykładowo mikro/nanoczujniki można zastosować 
do pomiaru temperatury, wilgotności, siły, częstotliwości i ciśnienia z bardzo dużą 
precyzją. Materiały nanostrukturalne mogą również być stosowane jako wzmocnienie 
o wysokiej wytrzymałości dla zaawansowanych struktur kompozytowych. Ponieważ 
główne elementy MEMS i NEMS są elementami cienkościennymi, zazwyczaj są one 
modelowane jako konstrukcje belkowe, płytowe i powłokowe. Mechaniczne 
zachowanie tych elementów konstrukcyjnych w małej skali ma istotne znaczenie dla 
rzeczywistej mechaniki materiałów i konstrukcji. Powszechnie wiadomo, że 
modelowanie materiałowe materiałów w małych skalach wymaga odpowiedniego 
wzbogacenia modeli klasycznych. Na przykład, niektóre efekty wielkości powinny być 
prognozowane. Efekty te można opisać na podstawie nielokalnych modeli ciągłości, 
takich jak elastyczność gradientu naprężeń i odkształceń. Ponadto warto wspomnieć o 
różnych efektach sprzężenia, takich jak fleksoelektryczność i fleksomagnetyczność, 
które również są zależne od wielkości i obserwowane w nanoskali. Na przykład, 
flexoelektryczność jest ogólną właściwością wszystkich dielektryków i może 
dominować w małej skali. 

Niniejsza rozprawa doktorska jest poświęcona nowemu podejściu do analiz 
mechanicznych struktur cienkościennych w oparciu o modele nielokalne. W 
rzeczywistości istnieje wiele nieznanych problemów w dziedzinie mechaniki elementów 
w saki mikro/nano. Nacisk położono na zastosowaniu podejścia nielokalnego do analiz 
dotyczących mechaniki magneto-elastycznych struktur w mikro/nanoskali. W 
szczególności przeprowadzono analizę dotyczącą badania odpowiedzi 
piezomagnetyczno-fleksomagnetycznych mikro/nanoczujników w powiązaniu z 
wpływami różnych warunków wewnętrznych/zewnętrznych. Te ostatnie obejmują 
wpływy środowiskowe (temperaturę), wibracje, obciążenia statyczne i dynamiczne, 
wady materiałowe (porowatość), efekty odkształceń ścinających, zewnętrzne pola 
magnetyczne, propagację fal, siły w płaszczyźnie i inne. Co więcej, w kilku pracach 
zaproponowano i zbadano inteligentny czujnik mikro/nanorozmiarowy z materiałów 
funkcyjnie zmiennych. Zważywszy na to, że zjawisko fleksomagnetyczności jest 
znacznie mniej zbadane w porównaniu z piezomagnetycznością, a nawet 
fleksoelektrycznością, analizy cienkich elementów fleksomagnetycznych stanowią 
istotną część pracy o charakterze nowatorskim. Ponieważ fleksoelektryczność odnosi 
się do polaryzacji elektrycznej i gradientu naprężeń, fleksomagnetyczność odpowiada 
wzajemnym relacjom gradientów naprężeń i namagnesowania. Oba zjawiska mogą być 
korzystne w małej skali. W pracy opracowano nowe modele matematyczne elementów 
cienkościennych (belek, płyt i powłok), uwzględniając te zjawiska i interakcje 
nielokalne. Zastosowane założenia kinematyczne w większości przypadków 
odpowiadają hipotezie Eulera-Bernoulliego lub Kirchhoffa-Love'a. Ponadto 
opracowano również modele odkształcalne przy ścinaniu. Efekty na małą skalę 
zbadano za pomocą nielokalnych modeli gradientu odkształceń. Zbadano również inne 
znaczące efekty, które mają kluczowe znaczenie w małej skali, takie jak efekty 
powierzchniowe. 
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Analizy zawarte w pracy zostały wykonane z wykorzystaniem różnych technik 
obliczeniowych, obejmujących podejście analityczne (Naviera, Galerkina), 
półanalityczne i numeryczne (Rayleigha-Ritza, kwadratura różnicowa). W celu 
rozwiązania problemów nieliniowych opracowano również nową półanalityczną 
metodę rozwiązywania, zwaną techniką analityczno-numeryczną, która została 
przeprowadzona w kilku pracach. Jednak nadaje się do niezbyt dużych ugięć. 
Przeprowadzono obszerną analizę literatury w celu zebrania odpowiednich danych w 
celu walidacji przeprowadzonych procesów matematycznych i rozwiązań dla 
niektórych przypadków. 

Najistotniejsze wnioski opisano w sekcji podsumowującej Część II. Zawarto tam 
również przyszłe plany badawcze ukierunkowane na obliczenia problemów 
trójwymiarowych. 

Słowa kluczowe rozprawy doktorskiej: Belki, płyty i powłoki; mikro/nanomechanika; 
Modele nielokalne; Piezomagnetyczność; Flexomagnetyczność; Rozwiązania analityczne i 
półanalityczne 
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Abstract 

Nowadays, micro-and nano-electromechanical systems (MEMS and NEMS) are widely 
used in engineering. For example, micro/nanosensors can be deployed to measure 
temperature, humidity, force, frequency, and pressure with very high precision. 
Nanostructured materials can also be high-strength reinforcement for advanced 
composite structures. Usually, as principal elements of MEMS and NEMS are thin-
walled elements, they are modelled as beams, plates, and shells. Thus, the mechanical 
behavior of these structural elements at small scales is of serious interest to the actual 
mechanics of materials and structures. It is well-established that material modelling of 
materials at small scales requires a proper enhancement of the classic models. For 
example, some size effects should be forecasted. These effects could be described on 
the base of nonlocal models of continua such as stress- and strain gradient elasticity. In 
addition, it is worth to mention about various coupling effects, such as flexoelectricity 
and flexomagneticity, which are also size-dependent and observed at the nanoscale. For 
example, flexoelectricity is a general property of all dielectrics and could be dominant 
at small scales. 

Thus, this thesis is devoted to performing new mechanical analyses of thin-walled 
structures based on nonlocal models and representing new findings. In fact, there are 
vast unknown issues in the field of mechanics of micro/nanosized elements. An effort 
has been made to represent all of the analyses regarding the mechanics of magneto-
elastic micro/nanoscale structures through the nonlocal approach. In particular, the 
analysis has been done on the investigation of the piezomagnetic-flexomagnetic 
responses of micro/nanosensors in connection with influences of various 
internal/external conditions. The latter include environmental impacts (temperature), 
vibrations, static and dynamic loads, material defects (porosity), shear deformation 
effects, external magnetic fields, wave propagations, in-plane forces, and others. 
Moreover, in a few works, an intelligent micro/nanosize sensor within a functionally 
graded composition has been studied to explore more efficiency of such smart parts 
through the new material structure. Let us note that the flexomagneticity phenomenon 
is much less studied in comparison with piezomagneticity or even flexoelectricity. So 
the study of flexomagnetic thin elements constitutes a significant novel part of the 
thesis. As flexoelectricity relates to the electric polarization and gradient of strains, the 
flexomagneticity corresponds to the interrelations of strain gradients and 
magnetization. Both phenomena could be beneficial at small scales. In the work, the 
new mathematical models of thin-walled elements (beams, plates, and shells) were 
developed, taking into account these phenomena and nonlocal interactions. The used 
kinematical assumptions in most cases correspond to Euler-Bernoulli or Kirchhoff-
Love hypothesis. In addition, shear deformable models were also developed. The small-
scale effects were studied by means of the nonlocal strain gradient models. Some other 
significant effects that are crucial at the small scales, such as surface effects, have also 
been investigated.  

Furthermore, all the numerical results have been computed on the basis of 
different solution techniques, which include analytical (Navier, Galerkin residual), semi-
analytical, and numerical (Rayleigh-Ritz, Differential quadrature) approaches. In order 
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to solve nonlinear problems, a new semi-analytical solving method has also been 
derived called the analytical-numerical solution technique and was carried out in a few 
papers. However, it suits for not very large deflections. An extensive analysis of 
literature was performed to collect relevant data in order to validate the performed 
mathematical and solution processes for some cases. 

The most significant and valuable findings are briefly indicated in the conclusion 
section of Part II as well as future steps towards the three-dimensional problems. 

Keywords of PhD dissertation: Beams, plates, and shells; Micro/Nanomechanics; Nonlocal 
models; Piezomagneticity; Flexomagneticity; Analytical and Semi-Analytical solutions  
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Part I Introduction 

 

 

 

 

 

 

Chapter I 

The dissertation addresses the development of new models of thin-walled structures, 
i.e., beams, plates, and shells, using non-local models of continua and magneto-elastic 
coupling. In order to discuss these topics in more details, in what follows, we briefly 
introduce the corresponding topics.   

 

 

Thin-walled Structures Models with  

Applications to MEMS and NEMS 
 

 
 

1 Beams/Plates/Shells 

Beams, Plates, and Shells (Figures I.1-3)) have been considered as essential elements in 
engineering structures and thus have been paid significant attention by designers and 
researchers around the world [1]. In recent years, the extensively wide applications of 
these domains in several industries, including aerospace, shipbuilding, reactors, 
constructions, biomechanics, and many others, have required accurate approaches to 
analyze their mechanical behavior and begun to push the boundaries of available 
studied methods seriously. Heretofore, many approaches have been presented to 
investigate the beams, plates, and shells. These approaches included three-dimensional 
continuum theories and some two-dimensional procedures. Although three-
dimensional elasticity analysis has confronted complexities and difficulties, it has been 
considered the most realistic and precise one so far. The simplest theory for analysis of 
the kinematic displacements is the classical hypothesis which is based on Euler-
Bernoulli (for beams) and Kirchhoff's (for plates) assumptions in which the influences 
of transverse shear deformation are excluded. In this theory, it is supposed that each 
planar or perpendicular section to the mid-plane remains perpendicular on the middle 
surfaces during loading. This is an appropriate theory for studying thin models; 
however, due to the ignorance of the shear and transverse strains along with the 
thickness, this theory is accompanied by errors when using it for moderately thick and 
thick beams/plates. Therefore, another theory known as the shear deformation model 
is introduced to diminish the analysis's inaccuracy of relatively thick beams/plates [2]. 
In this theory, the transverse shear effects are taken into consideration. With regard to 
the number of sentences placed in the expansion of the displacement field along with 
the thickness, the order of the theory (first, second, etc.) is determined. Although the 
shear deformation theories in the analysis of thick beams/plates/shells have shown 
capturing the transverse shear effects and consequently reasonable results, they are still 
far from obtaining exact results due to the non-consideration of the effect of the 
transverse strain. 
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Part I Introduction 

  

The first-order of the shear deformation theory called Timoshenko's (for beams) 
and Reissner-Mindlin's (for plates) is accompanied by a serious error (the assumption 
of constant value for shear stress along with the thickness of beams/plates from upper 
to bottom surfaces), and for that reason, the shear correction parameter has been used. 
This means that the assumption of constant shear stress through the entire thickness 
is not always correct. The most common higher-order shear deformation theory can 
be the third-order shear deformation theory raised by Reddy [3]. Although shear 
deformation theories have yielded good results in comparatively thick 
beams/plates/shells analysis, they are far from accurate answers yet because of the 
neglect of transverse strains and stretching effects across the thickness. To fix this 
problem and maximize the accuracy, quasi-3D elasticity came [4]. However, these 
theories work well only for isotropic thick materials and cannot be a general quasi-3d 
elasticity model appropriate for all materials such as laminated composites. Therefore, 
this theory complements previous theories and considers both the effects of shear and 
transverse deformation along with the thickness in the form of a higher-order theory. 

The most capable of engineering structures, shells (Figures I.3-5), have shown a 
superb resistance and robustness in the matter of the ratio of strength-to-weight. 
Correspondingly, several scientific areas have exploited the shell structures. In the case 
of the shape of shell structures, there is an endless possibility, and infinite shapes shell 
compositions can be designed. In terms of engineering, shells can be generally divided 
into two classes, developable and non-developable shells. Developable shells are those 
that can be unrolled and flat without stretching and tearing in them, e.g., barrel shells. 
However, there is no ability and possibility to unroll the non-developable shells such 
as double curvature ones (Figure I.3). In order to generate a displacement field for a 
shell, it is possible to change the coordinates of the plate's deformation theories into 
spherical or cylindrical coordinates depending on the type of the shell. 

 

Figure I.1: A beam in the Cartesian coordinate system [5] 
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Part I Introduction 

 

Figure I.2: A plate in the Cartesian coordinate system [6] 

 

 

Figure I.3: A doubly-curved shell with spherical sections 

 

Figure I.4: A conic shell (SWCNTs) [7] 
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Figure I.5: A cylindrical curved shell (SWCNTs) [8] 

2 State of the art 
 

2.1 Micro/nanomechanics  
 

Engineering knowledge always seeks to develop its boundaries to achieve the greatest 
benefit of human life and meet the growing needs of today, so that, without a doubt, 
one of the most effective tools to achieve these goals is the creation and expansion of 
interdisciplinary scientific fields and technology. Nanomechanical engineering is a 
branch of nanotechnology that studies the mechanical behaviors (structural, thermal, 
fluid, biological, mechatronics, etc.) of materials, structures, and systems with nano-
dimensions and will pay their practical and engineering applications from an 
engineering point of view. This field is, in fact, an interdisciplinary field in which 
successful students and researchers, in addition to having classical knowledge of 
mechanical engineering tailored to their specific field of work, they also learn sciences 
related to quantum mechanics, solid-state physics, nanochemistry, and nanomaterials, 
nanobiotechnology, optics, electronics, etc. Various related topics can be listed under 
the micro/nanomechanics field as follows: 

 
1- Atomic simulation of materials at the nanoscale (ab initio principles) 
2- Experimental nanomechanics 
3- Identifying the properties of nanoparticles, nanostructured materials, and 
structures 
4- Computational nanomechanics (molecular dynamics) 
5- Nano-composites (effective properties, optimization) 
6- Energy transfer in nano dimensions 
7- Micro and nanofluids 
8- Micro and nano-electro-mechanical systems (MEMS / NEMS) 
9- Bio micro and nano-electro-mechanical systems (BioMEMS / BioNEMS) 
10- Nanobiomechanics 
11- Basics of optics engineering and optomechanics 
12- Micro and nanorobotics 
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2.2 Magnetic structures 

 

In terms of magnetic properties, magnetic materials are divided into different 
categories: diamagnetic, paramagnetic, and ferromagnetic materials. Ferromagnetic 
materials are magnetic structures with high permeability, such as cobalt and iron. 
Ferromagnetic materials are divided into hard (e.g., CoFe2O4) and soft groups (e.g., 
Fe3O4). Hard magnetic materials are materials that become magnetized hardly ever; 
That is, a strong magnetic field is required to create magnetism in them. As these 
materials become magnetized hardly, they also lose scarcely ever their magnetic 
properties. These structures are suited to be used as a steady magnetic state, such as 
sensors and measuring instruments. Conversely, soft magnetic structures are easily 
magnetized and just as easily lose their magnetic properties [9-13].  

CoFe2O4 magnetic nanostructures have received particular attention among 
different spinel ferrites, such as exclusive physical features, excellent mechanical 
hardness, significant magnetostrictive coefficient, high coercivity, moderate saturation 
magnetization, etc. [14, 15]. From a technological perspective, these characteristic 
properties cause the structure described above to be entirely significant, leading to its 
application in gas sensors, magnetic hyperthermia, biosensors, ferrofluid technology, 
and high-density magnetic media [16-19]. 

2.3 Micro/nanosensors 

Micro/nanosensors have very high accuracy and responsiveness. Therefore, the sensor 
is a very delicate, precise, and sensitive device that is able to detect and respond to 
physical, chemical, and biological stimuli. The use of these types of sensors in 
engineering fields especially will help a lot to measure pressure, force, temperature, 
humidity accurately, and so on. Also, due to the advantages of wireless communication, 
this technology will be much cheaper, easier, and more convenient than other methods. 
Nanosensors used include carbon and graphene nanotubes, wireless sensors, and 
nanotechnology-based micro/nano-electro-mechanical systems. Nanotechnology-
based micro/nano-electro-mechanical systems can, for example, measure soil 
temperature and humidity simultaneously. These systems consist of micro and 
nanosensors and an actuator that are sensitive to environmental changes. The sensor 
of micro-electro-mechanical systems uses the principle of shear stress to measure water 
vapor, in which the microsensor chip is combined with a particular nano-polymer and 
piezo resistor circuit, and the resulting voltages with relative humidity from zero to 
100% and temperature from +30 to +100 degrees Celsius have a linear relationship. 
Sensor response time is speedy (about two to three minutes). For example, graphene 
nanofibers are suitable for fast and accurate moisture measurement [20]. 

2.4 Applications of smart sensors 
 

The recognition of intelligent structures in material science and engineering 
applications in the last few years has taken place as the most noteworthy 
accomplishment by researchers all over the world. The importance of smart materials 
such as piezoelectric and magneto-electro-elastic ceramics in the development of 
advanced precise structures in material science and engineering technologies would be 
more explicit when noting that access to High Tech in all areas without the use of a 
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Types of 
nanosensors

Optical Biological Chemical Physical

Pressure

Force

Displacement

piece of smart ceramics in its original structures has not been possible before. The 
existence of electrical, electronic, chemical, mechanical, and magnetic properties of 
these materials have made them more and more widespread tendency in a wide range 
of applications as they not only transformed electronics, optics, and magnetism but 
also significantly changed their applications, resulting in constructing the small-scale 
devices with self-controlling and self-monitoring capabilities [1]. The below flowchart 
will briefly represent the applications of the nanosensors. 

 

 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 

2.5 Applications in civil engineering 

Civil engineering structures have a long service life and are difficult to replace once they 
are built. However, the performance of any civil structure can deteriorate over time. 
This is mainly due to aging, excessive use, overloading, environmental erosion, and lack 
of maintenance and inspection methods. An effective structural health monitoring 
system (Figures I.6-8) for civil engineering can diagnose the location and extent of 
defects (cracks, damage, rust, etc.) in real time so that the structure can be repaired and 
reinforced in time to ensure structural integrity and safety. At present, many structural 
health detection methods are applied to various civil engineering structures or their 
components, such as classical static strain (or displacement) testing, vibration 
identification methods, and non-destructive testing methods: acoustic emission, 
ultrasonic, impedance, infrared thermal imaging, pulse radar and X-ray [21]. Mentioned 
above methods have some limitations; for example, it is difficult to carry out real-time 
detection. Smart materials such as piezoelectric/piezomagnetic materials, optical fiber 
sensors, magnetostrictive materials, and cement-based intelligent composites all 
provide a new method for long-term, real-time health monitoring of civil engineering 
structures. These intelligent material devices have sensing, or sensing and driving the 
dual function, and they are integrated with the civil structure to form an intelligent 
structural system. Such a structural health detection system also includes signal 
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processing, signal interpretation software, and user interface. To achieve long-range 
detection, signal transmission should also be considered. Among the many smart 
materials, piezoelectric materials, which are mainly represented by piezoelectric 
ceramics, have the advantages of integrated sensing and driving integration, making 
them suitable for structural health monitoring. At the same time, 
piezoelectric/piezomagnetic materials have a fast response and good linear 
relationship. Most of these materials have low energy consumption, low cost, and easy 
processing. Therefore, the piezoelectric/piezomagnetic material working as the 
essential components, the development of a convenient and practical structural health 
monitoring system is also in line with current standard conditions. Based on the above 
definitions, this dissertation is devoted to researching piezoelectric/piezomagnetic 
micro/nano-ceramics used for structural health monitoring technology. 

 

Figure I.6: Structural health monitoring with smart micro/nanobeam-like sensors (PZT) 

[22] 

 

Figure I.7: Structural health monitoring for an I-shaped beam with smart micro/nano 

plate-like sensors (PZT1 up to PZT3) [22] 
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Figure I.8: Structural health monitoring for a pedestal with smart micro/nano plate-like 

sensors (PZT) [23] 
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Chapter II 
 

 
 

Nonlocal models 
 

 

Owing to the magnificent mechanical, electrical, chemical, and thermal properties of 
the nanostructures, they have obtained the attention of many researchers. Therefore, 
to exploit the incredible industrial characteristics of nanostructures, it can be highly 
recommended that their mechanical behavior be analyzed. 

Besides experimental efforts, which may be formidable and expensive at the 
nanoscale, there are three main approaches for mechanical modeling of nanostructures: 
(a) atomistic modeling, (b) hybrid atomistic-continuum mechanics, and (c) continuum 
mechanics. Both atomistic and hybrid atomistic-continuum mechanics are 
computationally expensive and are not suitable for analyzing large-scale systems, in 
general. Computationally, the continuum mechanics technique is less expensive than 
the former two approaches. It was earned that the results of continuum mechanics are 
in good agreement with atomistic and hybrid approaches [24]. 

Upon physical view, extensive interactions between lattice atoms and large strain 
gradients oblige the theoretical studies on the nanoscale to a different constitutive 
formulation based on size-dependent continuum models. Mathematically, these 
models are up to differential or integral forms. From a macro scale point of view, 
interactions in a material plane are short and mostly between neighbor crystalline. 
Hence, strain non-localization implemented by nonlocal theories can help us to study 
large strain gradients. High contrast composite nanostructures such as FGMs may be 
worthy of investigation in the case of size dependency. Strain gradient phenomena 
occur in beam-lattice structures with homogeneity. The nanobeam/plate continua 
include large strain gradient resists against mechanical deformations, and because of 
the strain gradient, the structure's intrinsic reaction will alter. Generally, modeling the 
nanoscale on the basis of the strain gradient leads to accuracy in forecasting mechanical 
deformation of micro/nanostructures. 

The influence of inter-atomic and/or intermolecular interactions must be taken 
into the investigation while the size of a structure is diminished from macroscale up to 
nanoscale. This is to precisely and properly predict the nanosize structure's mechanical 
response. The role of nonlocal impacts is significant in examining the mechanical 
behavior of small-scale domains. This property has been confirmed via simulations by 
molecular dynamics (MD) and experimental works. 
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Moreover, the nonlocal influences do not exist in the classical elasticity theory 
that is called local mechanics. Thus, it has been necessary to reform the local elasticity 
models. The size-dependent results due to the considerable interaction of atoms can 
be mathematically yielded by means of nonlocal models. 

1 Eringen's nonlocal elasticity theory 

The basis of the nonlocal elasticity theory is that the stress at a point in a continuous 
elastic medium depends not only on the strain at that point but on all other strains on 
the whole elastic domain (interactions between atoms (Figure I.9)). This position is in 
line with atomic theories and laboratory observations [25]. 

The general form of the fundamental equation in nonlocal elasticity theory 
involves integrals over the elastic media. This integral contains a kernel function (Figure 
I.10) that shows the effects of strains at different positions on stresses. The basic 
equations for a nonlocal and homogeneous elastic body without considering external 
forces are as follows [25-29]: 

     ( )  ij ijkl ij

v

X k X X C X dV X                                                                                 (1) 

Respectively, ( )ij X ,  k X X  , ijklC , and  ij X   depicts nonlocal stresses, kernel 

function, fourth-order tensor of elasticity modulus, and elastic strains.  Furthermore, 

the expression X X   is a Euclidean distance. 

A differential form of Eq. (1) on the basis of Eringen's assumptions can be 
expressed as follows [25-29]: 

 2 2 2

01  ,  ( ) ( )ij ijkl ijC nm e a                                                                                 (2) 

in which e0a term is called nonlocal parameter and is equal to (0 < e0a ≤ 2nm) [25-29]. 
Also, 2 is the Laplace operator as follows: 

2 2
2

2 2x y

 
  

 
                                                                                                           (3) 

 

Figure I.9: Nonlocal elasticity in a plate domain [30] 
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Figure I.10: Kernel function [31] 

2 Nonlocal strain gradient elasticity theory 

It is clear that nonlocal theories such as Eringen's nonlocal elasticity theory have been 
widely employed for studying nanoscale materials [32-34]. However, the ability of 
nonlocal elasticity theory in determining the size-dependence of nanostructures is 
limited due to that the strain gradient elasticity is not included in the energy density in 
Eringen's formulation [35], and the fact is that it can be only possible to predict the 
interaction effects of atoms in a domain by using the stress gradient parameter. 
Furthermore, unlike the nonlocal elasticity theory, the strain gradient theory enabled 
including the strain gradient effect by utilizing an additional factor called strain gradient 
length scale (SGLS) parameter. On the other hand, the modified couple stress theories 
are forms of strain gradient theories but have been rarely used for nanoscale materials 
as they only included the first strain gradient. In fact, the couple stress theories are 
weak in examining nanomaterials due to the lack of surface nonlocality in the theory 
[36]. 

Surface nonlocality can be defined with second gradient parameters due to the 
physical explanation of Laplacian, and the couple stress theories just represented the 
material hardness increased with decreasing material size from macro to micro [37]. 
On the other hand, Micro and nano tests have shown that the material hardness 
increased with decreasing size [38-40]. Generally, the classical continuum theory is 
unable to predict the size dependency since it does not possess an intrinsic material 
length scale. 

As an explicit definition of the Laplacian operator, the Laplacian term in size-
dependent theories means that the potential energy-density value at a reference point 
is equal to the average energy of all the points around it. In two dimensions, the around 
points are considered as a circle with radius R around the reference point. The primary 
aim of using nonlocal strain gradient theory is to synthesize stress nonlocality and strain 
gradient parameters in a unique theory. 

It is also clear that the length scale in Eringen's nonlocal elasticity theory and the 
strain gradient theories (strain gradient and couple stress theories) represent two 
entirely different physical characteristics of materials at the nanoscale. Therefore, there 
has been a serious need to apply both of the length scales into a single theory so that 
the actual effect of the two length scales on the structural response can be assessed [41-
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43]. Nonlocal strain gradient theory opened a way to develop such a size-dependent 
theory for investigating the nanoscale behavior. According to this non-classical 
hypothesis, the stress-gradient and strain-gradient parameters can be used together. In 
fact, by considering both second stress and strain gradient parameters, there can be a 
robust investigation for nanostructures. 

In the present, the higher-order size-dependent theory is considered in order to 
reveal the length scale parameters in the aspect of the following equations [41-43]: 

2 2 2 2 2
1 0 1 01 1 1 1ij ijkl kl ijkl klC C l                                                         (4) 

2 2

0 0 1 1 2 2
( ) , ( ) ,nm e a  nm e a  

x y
 

 
    

 
                                                                (5) 

where μ0, μ1, and l are lower and higher-order stress nonlocality factors and strain 
gradient length scale (SGLS) parameter, respectively. e0 and e1 are nonlocal elasticity 
constants associated with the types of materials [44]. Also, a is a determined interior 
length regarding intrinsic properties of the material such as lattice parameter, 
connection length of two atoms, etc. [41-44]. As a matter of fact, the amounts of these 
three small scale parameters are independent and changeable for minor scale effects 
that define the dependence of mechanical responses on the structure size. Moreover, 
using a single separate small-scale parameter in size-dependent theories (Eringen's 
nonlocal elasticity, couple stress, and pure strain gradient theories) cannot appropriately 
predict the wide range of small-scale phenomena behavior [45-46].  

Therefore, a size-dependent theory with multiple length-scale parameters was 
necessary to capture the size effects of structures' mechanical, electric, and magnetic 
behavior at the nanoscale [47]. These parameters are directly related to the internal 
properties of small-sized materials (granular distances, lattice parameters, and many 
other properties [25, 48]). Moreover, a fixed value for these parameters is not always 
realistic because different problems can require different values. Eq. (4) can be 
therefore converted into other forms of theories: 

a) Eringen's nonlocal elasticity theory (ENET) [49] (strong nonlocality considering 
second stress gradient parameter, that is suitable for nanostructures [25]). 

  2 2
1 00 1 ij ijkl kll C                                                                                      (6) 

b) Strain gradient elasticity theory (considers the strain gradient parameter based on the 
first and second strain gradient parameters of Mindlin [50, 51]). As mentioned earlier, 
the couple stress theories are forms of strain gradient theories by taking Mindlin's first 
strain gradient parameter [6, 37, 52]. In couple stress theory, the cell of the material can 
be interpreted as a molecule of a polymer, a crystallite of a polycrystal, or a grain of a 
granular material [53-56]. In this theory, the unit cell is taken to be a parallelepiped to 
represent a crystal lattice's unit cell. The potential energy density is assumed to be a 
function of the strain and the curl of the strain instead of the strain alone [53-56]. In 
Mindlin's first strain gradient theory, the first gradient of the displacement enters the 
potential energy-density only in the symmetric form of strains. In fact, the potential 
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energy density depends on the gradient of the strain in addition to the strain itself [50, 
51]. 

  2 2
0 1 0 1ij ijkl klC l                                                                                      (7) 

It is now vivid that the nonlocal continuum mechanics has been treated with two 
different approaches [57, 58]; the stress nonlocality (Eq. (6)) [25, 26, 48, 59] and the 
gradient elasticity theory (Eq. (7)) [60]. The strain gradient in Eq. (7) with the negative 
sign was derived from the positive-definite deformation energy density, and this model 
of strain gradient is stable. However, the positive sign of the strain gradient term in the 
equation made this term destabilizing [61, 62]. By consolidating Eq. (4), the nonlocal 
strain gradient elasticity theory can be achieved in the equation below.  

c) Nonlocal strain gradient theory [63]: 

   0 0 2 2 2 2
0 1

1 1

1 1ij ijkl kl

e a
C l

e a


     



 
        



                                              (8) 

By applying nonlocal strain gradient theory, the problem might have stronger 
nonlocality against cases a, b by having stress-gradient and strain-gradient as second 
gradient parameters. It was because stress and strain gradient tensors are coupled 
together in the energy density of the nanomaterial. Mathematically interpreted based 
on the Taylor series expansion, it is permissible to incorporate the second deformation 
gradient (strain gradient) in the energy density to quantify size-dependent 
characteristics [47]. 

 

 

 

 

 

 

 

 

 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

16  

Part I Introduction 

 
 
 
 
 
 
 
 
 

Chapter III 
 
 

 

Magneto-elastic coupling effects 
 

 

 

 

Magneto-elastic effect (ME) is a phenomenon that relates the magnetic field to elastic 
strains and vice versa. Among these effects, the piezomagneticity and flexomagneticity 
should be first mentioned among others. These effects can be linear or nonlinear with 
respect to external fields. Combined magnetic is a combination of magnetic tensile 
materials (materials that are deformed by magnetism), such as ferromagnetic materials. 
The microscopic mechanism determines the value of the aforesaid effect. This effect 
is due to coupling between the elastic strain and magnetic parameters in single-phase 
magneto-elastic, as observed in some multiferroics. In composite materials, this effect 
is due to the effect of surface coupling, such as tension. Some promising applications 
of the ME effect include sensitive magnetic field search, advanced logic devices, and 
adjustable microwave filters. 

1 Lower-order magneto-elastic effect 

1.1 Piezomagneticity 

Piezomagnetic materials represent a particularly interesting class of smart materials, 
possessing highly efficient magneto-mechanical coupling, i.e., piezomagneticity, which 
is a unique feature for non-centrosymmetric dielectric materials (Figure I.11). A range 
of piezomagnetic nanoparticles has been created under various growth circumstances 
thanks to advancements in nanotechnology and synthesis techniques. Nanostructured 
materials are those with morphological features on the nanoscale in general, which are 
smaller than one-tenth of a micrometer in at least one direction. 

Because of their nanoscale characteristics, such nanostructured materials may 
have unique physical and mechanical capabilities. In particular, piezomagnetic 
nanomaterials' enhanced electro-magneto mechanical coupling makes them attractive 
for potential applications as generators, sensors, and transducers, in micro and nano-
electro-mechanical systems (MEMS/NEMS). In order to further explore the 
piezomagnetic nanomaterials and apply them commercially, it is of great importance 
to get a comprehensive understanding of their electro-magneto-mechanical coupling 
properties at the nanoscale. 
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Figure I.11: PM effect [64] 

2 Higher-order magneto-elastic effect 

2.1 Flexomagneticity 

A higher-order multiphysics impact, flexomagneticity (FM), is a novel discovery in 
micro/nanotechnology. To study the flexomagnetic effect and to better identify it, one 
can use the family close to it, that is, the piezomagnetic effect. In piezomagnetic, an 
internal magnetic field is created in the materials simply by compressing or stretching 
the structure. The piezomagnetic effect and its application can be seen in many 
materials and structures. However, besides these beneficial applications, there is a 
significant drawback; that is, this effect can only exist in about 20 crystal structures with 
a specific symmetrical classification. However, there is no such limit to the FM effect, 
and materials with broader symmetry classes can cause such a phenomenon. Therefore, 
the flexomagnetic effect can be powerful and effective so that it can be used in 
nanosensors or nanometer actuators. As a brief explanation of the FM effect, it can be 
noted that by bending an ionic crystal, the atomic layers are drawn inside it (Figure 
I.12), and it is clear that the outermost layer will have the most tension. This difference 
in traction in different atomic layers can cause ions to transfer to the crystal so much 
that they eventually create a magnetic field. In other words, strain gradient in some 
materials creates a magnetic field, a corresponding phenomenon called the 
flexomagnetic effect. 

The effect of strain gradients shows that the importance of the FM effect in 
micro and nanosystems is comparable to that of piezomagnetic and even beyond. 
Additionally, unlike piezomagnetic, flexomagnetic can be found in a wider class of 
materials. This means that compared to piezomagnetic, which is invalid and inefficient 
in materials with central symmetry, there is an FM effect in all biological materials and 
systems. These traits have led to a growing interest in and research into the 
flexomagnetic effect in recent years. Currently, the role of the flexomagnetic effect in 
the physics of dielectrics has been investigated in some studies and has shown 
promising practical applications. On the other hand, the difference between theoretical 
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and experimental results shows a limited understanding in this field. This thesis 
improves the current knowledge of FM in engineering [65]. 

The flexomagnetic effect exists in many solid dielectrics, soft membranes, and 
biological filaments. The flexomagnetic effect is introduced as the effect of size-
dependent electromagnetic coupling due to the presence of strain gradients and 
magnetic fields and promises many applications in nano-electronic devices (with strong 
strain gradients). Just as the piezomagnetic effect is expected to have important 
applications in nano-engines and particles, the FM effect can also play this role. 
Different fields of science are used to study nanodielectrics by considering the FM 
effect. These significant parts can be examined from a chemistry and physics point of 
view or put under a magnifier in the engineering and industrial aspects. In the 
engineering aspects, the study of external factors on dielectrics and their mechanical 
and physical behavioral responses will naturally be the criterion for evaluation. The 
purpose of this dissertation is to evaluate this aspect in static and dynamic analyses of 
micro/nano actuator beams/plates and shells [65]. 

 

Figure I.12: FM effect [66] 
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Part II Summary, Discussions, Conclusions, and Outlook 

1 Objectives of the thesis 

The point aim of this thesis is to provide new concepts on the nonlocal models applied 
to thin-walled structures. A particular attention will be paid to magneto-elastic 
coupling. These concepts include forecasting the mechanical response of 
MEMS/NEMS structures in several and different conditions. Within performing this 
thesis, it has now able to answer the below questions that were ambiguous before this 
dissertation and are helpful for MEMS/NEMS industries; 

 

• How significant is the flexomagneticity (FM) role when a piezomagnetic 
nanosensor is confronted with linear and nonlinear vibrations? 

•  Is there any connection between shear deformations and FM in a structure? 
• As the literature analyzed a piezomagnetic material containing FM based on linear 

bending, it has shown that FM could play a vital role in nonlinear bending and large 
deflections. 

• How is FM in mechanical stability and post-stability situations of a 
micro/nanosensor? 

• What will be the FM's role if a structure involves imperfection and porosities? 
• What is the relationship of FM to the temperature of the environment? 
• How does FM act in 2d nanostructures such as nanoplates? 
• Is there any linkage between FM and surface effects through 

micro/nanostructures? 
• Is the FM more dominant if the nanosensor is produced based on FGMs? 
• What is the mechanical response of a piezomagnetic nanoshell against 3d external 

magnetic fields? 

Moreover, the works done during this thesis also provided a new semi-analytical 
solution applied for nonlinear bending problems. The mentioned objectives were 
obtained in the chosen arbitrarily part of the thesis. As shown later, the results of the 
PhD works can be collected as more than one dissertation. Thus, the current results are 
related to this thesis's part of MEMS/NEMS.  

2 List of published papers 

During the work within the PhD school, various scientific activities were performed. 
These attempts have resulted in a series of published papers listed below. In order to 
present a compact and consistent study, we restricted ourselves to some of these results 
in the dissertation related to   

 Mechanics of magneto-elastic smart micro/nanostructures (no. 1 to 13) 

Note that ten works out of this topic are in the form of articles, and the rest are book 

chapters that are excluded in the outlook due to their shortness. 

 Mechanics of electro-elastic smart micro/nanomaterials (no. 14) 

 Mechanics of functionally graded materials (no. 15 to 21) 

 Mechanics of carbon nanostructures (no. 22 to 35) 
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 Mechanics of shell structures (no. 36 to 38) 

 Mechanics of thermoelastic problems (no. 39 and 40) 

 Miscellaneous works (no. 41 to 43) 

1. Malikan, M., & Eremeyev, V. A. (2021). Flexomagnetic response of buckled piezomagnetic 
composite nanoplates. Composite Structures, 267, 113932. Points: 140 

2. Malikan, M., Wiczenbach, T., & Eremeyev, V. A. (2021). Flexomagneticity in Functionally 
Graded Nanostructures. In book: Advanced Materials Modelling for Mechanical, Medical and Biological 
Applications, Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-81705-
3_17. Points: 80 

3. Malikan, M., & Eremeyev, V. A. (2021). Effect of surface on the flexomagnetic response of 
ferroic composite nanostructures; nonlinear bending analysis. Composite Structures, 271, 114179. 
Points: 140 

4. Malikan, M., Wiczenbach, T., & Eremeyev, V. A. (2021). On thermal stability of piezo-
flexomagnetic microbeams considering different temperature distributions. Continuum 
Mechanics and Thermodynamics, 33, 1281-1297. Points: 100 

5. Malikan, M., Wiczenbach, T., & Eremeyev, V. A. (2021). Thermal buckling of functionally 
graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect. Continuum 
Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-021-01038-8. Points: 100 

6. Malikan, M., & Eremeyev, V. A. (2021). Flexomagneticity in buckled shear deformable hard-
magnetic soft structures. Continuum Mechanics and Thermodynamics. 
https://doi.org/10.1007/s00161-021-01034-y. Points: 100 

7. Malikan, M., & Eremeyev, V. A. (2020). On Nonlinear Bending Study of a Piezo-
Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution. Nanomaterials, 10, 1762. 
Points: 70 

8. Malikan, M., Eremeyev, V. A., & Żur, K. K. (2020). Effect of Axial Porosities on 
Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams. Symmetry, 12, 
1935. Points: 70 

9. Malikan, M., Uglov, N. S., & Eremeyev, V. A. (2020). On instabilities and post-buckling of 
piezomagnetic and flexomagnetic nanostructures. International Journal of Engineering Science, 157, 
103395. Points: 200 

10. Malikan, M., & Eremeyev, V. A. (2020). On the geometrically nonlinear vibration of a 

piezo‐flexomagnetic nanotube. Mathematical Methods in the Applied Sciences. 
https://doi.org/10.1002/mma.6758. Points: 100 

11. Malikan, M., Krasheninnikov, M., & Eremeyev, V. A. (2020). Torsional stability capacity 
of a nano-composite shell based on a nonlocal strain gradient shell model under a three-
dimensional magnetic field. International Journal of Engineering Science, 148, 103210. Points: 200 

12. Malikan, M., & Eremeyev, V. A. (2020). Free Vibration of Flexomagnetic Nanostructured 
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Tubes Based on Stress-driven Nonlocal Elasticity. In book: Analysis of Shells, Plates, and Beams, 
Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-47491-1_12.Points: 80 

13. Malikan, M., & Eremeyev, V. A. (2021). On forced vibrations of piezo-flexomagnetic 
nano-actuator beams. In book: Modeling and Computation in Vibration Problems, IOP Publishing. 
DOI: 10.1088/978-0-7503-3483-9ch7. Points: 80 

14. Malikan, M., & Eremeyev, V. A. (2020). On the dynamics of a visco-piezo-flexoelectric 
nanobeam. Symmetry, 12, 643. Points: 70 

15. Dastjerdi, S., Malikan, M., Eremeyev, V. A., Akgöz, B., & Civalek, Ö. (2021). On the 
generalized model of shell structures with functional cross-sections. Composite Structures, 272, 
114192. Points: 140 

16. Golmakani, M. E., Malikan, M., Pour, S. G., & Eremeyev, V. A. (2021). Bending analysis 
of functionally graded nanoplates based on a higher-order shear deformation theory using 
dynamic relaxation method. Continuum Mechanics and Thermodynamics. 
https://doi.org/10.1007/s00161-021-00995-4. Points: 100 

17. Dastjerdi, S., Malikan, M., Dimitri, R., & Tornabene, F. (2021). Nonlocal elasticity analysis 
of moderately thick porous functionally graded plates in a hygro-thermal environment. 
Composite Structures, 255, 112925. Points: 140 

18. Jena, S. K., Chakraverty, S., & Malikan, M. (2020). Application of shifted Chebyshev 
polynomial-based Rayleigh–Ritz method and Navier's technique for vibration analysis of a 
functionally graded porous beam embedded in Kerr foundation. Engineering with Computers, 37, 
3569-3589. Points: 70 

19. Jena, S. K., Chakraverty, S., Malikan, M., & Sedighi, H. (2020). Implementation of 
Hermite–Ritz method and Navier's technique for vibration of functionally graded porous 
nanobeam embedded in Winkler–Pasternak elastic foundation using bi-Helmholtz nonlocal 
elasticity. Journal of Mechanics of Materials and Structures, 15, 405–434. Points: 70 

20. Dastjerdi, S., Tadi Beni, Y., & Malikan, M. (2020). A comprehensive study on nonlinear 
hygro-thermo-mechanical analysis of thick functionally graded porous rotating disk based on 
two quasi-three-dimensional theories. Mechanics Based Design of Structures and Machines, 1–30. 
https://doi.org/10.1080/15397734.2020.1814812. Points: 70 

21. Malikan, M., & Eremeyev, V. A. (2020). A new hyperbolic-polynomial higher-order 
elasticity theory for mechanics of thick FGM beams with imperfection in the material 
composition. Composite Structures, 249, 112486. Points: 140 

22. Malikan, M. (2020). On the plastic buckling of curved carbon nanotubes. Theoretical and 
Applied Mechanics Letters, 10, 46–56. Points: 40 

23. Dastjerdi, S., & Malikan, M. (2020). Mechanical analysis of eccentric defected bilayer 
graphene sheets considering the van der Waals force. Proceedings of the Institution of Mechanical 
Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. 
https://doi.org/10.1177/2397791420926067. Points: 20 

24. Jena, S. K., Chakraverty, S., & Malikan, M. (2020). Vibration and buckling characteristics 
of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic 
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foundation using a new refined beam theory: an analytical approach. The European Physical 
Journal Plus, 135, 164. Points: 70 

25. Sedighi, H. M., & Malikan, M. (2020). Stress-driven nonlocal elasticity for nonlinear 
vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal 
environment. Physica Scripta, 95, 055218. Points: 40 

26. Sedighi, H. M., Malikan, M., Valipour, A., & Żur, K. K. (2020). Nonlocal vibration of 
carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of 
nonlinear finite element method. Journal of Computational Design and Engineering, 7, 591-602. 
Points: 70 

27. Jena, S. K., Chakraverty, S., Malikan, M., & Tornabene, F. (2020). Effects of surface energy 
and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of 
SWCNTs using refined beam theory. Mechanics Based Design of Structures and Machines, 
https://doi.org/10.1080/15397734.2020.1754239. Points: 70 

28. Jena, S. K., Chakraverty, S., Malikan, M., & Mohammad-Sedighi, H. (2020). Hygro-
Magnetic Vibration of the Single-Walled Carbon Nanotube with Nonlinear Temperature 
Distribution Based on a Modified Beam Theory and Nonlocal Strain Gradient Model. 
International Journal of Applied Mechanics, 12, 2050054. Points: 70 

29. Malikan, M., & Eremeyev, V. A. (2020). Post-critical buckling of truncated conical carbon 
nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the 
Rayleigh-Ritz method. Materials Research Express, 7, 025005. Points: 70 

30. Jena, S. K., Chakraverty, S., & Malikan, M. (2020). Implementation of non-probabilistic 
methods for stability analysis of nonlocal beam with structural uncertainties. Engineering with 
Computers, 37, 2957-2969. Points: 70 

31. Jena, S. K., Chakraverty, S., & Malikan, M. (2020). Stability analysis of nanobeams in 
hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model 
under nonlinear thermal field. Journal of Computational Design and Engineering, 7, 685-699. Points: 
70 

32. Malikan, M., Eremeyev, V. A., & Sedighi, H. M. (2020). Buckling analysis of a non-
concentric double-walled carbon nanotube. Acta Mechanica, 231, 5007-5020. Points: 100 

33. Golmakani, M. E., Ahmad Pour, M., & Malikan, M. (2021). Thermal buckling analysis of 
circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum 
mechanics. Journal of Applied and Computational Mechanics, 7, 1862-1877. Points: 20 

34. Jena, S. K., Chakraverty, S., & Malikan, M. (2019). Implementation of Haar wavelet, higher 
order Haar wavelet, and differential quadrature methods on buckling response of strain 
gradient nonlocal beam embedded in an elastic medium. Engineering with Computers, 37, 1251-
1264. Points: 70 

35. Jena, S. K., Chakraverty, S., Malikan, M., & Tornabene, F. (2019). Stability analysis of 
single-walled carbon nanotubes embedded in winkler foundation placed in a thermal 
environment considering the surface effect using a new refined beam theory. Mechanics Based 
Design of Structures and Machines, 49, 581–595. Points: 70 
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36. Dastjerdi, S., Akgöz, B., Civalek, Ö., Malikan, M., & Eremeyev, V. A. (2020). On the non-
linear dynamics of torus-shaped and cylindrical shell structures. International Journal of 
Engineering Science, 156, 103371. Points: 200 

37. Dastjerdi, S., Malikan, M., Eremeyev, V. A., Akgöz, B., & Civalek, Ö. (2020). Mechanical 
simulation of artificial gravity in torus-shaped and cylindrical spacecraft. Acta Astronautica, 179, 
330-344. Points: 100 

38. Dastjerdi, S., Malikan, Akgöz, B., & Civalek, Ö., M., Eremeyev, V. A., Wiczenbach, T. 
(2022). On the deformation and frequency analyses of SARS-CoV-2 at nanoscale. International 
Journal of Engineering Science, 170, 103604. Points: 200 

39. Abouelregal, A. E., Mohammad-Sedighi, H., Shirazi, A. H., Malikan, M., & Eremeyev, V. 
A. (2021). Computational analysis of an infinite magneto-thermoelastic solid periodically 
dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. 
Continuum Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-021-00998-1. 
Points: 100 

40. Abouelregal, A. E., Mohammad-Sedighi, H., Malikan, M., & Eremeyev, V. A. (2021). 
Nonlocalized thermal behavior of rotating micromachined beams under dynamic and 
thermodynamic loads. Mathematical Methods in the Applied Sciences. 
https://doi.org/10.1002/zamm.202100310. Points: 100 

41. Golmakani, M. E., Wiczenbach, T., Malikan, M., Mahoori, S. M., & Eremeyev, V. A. 
(2021). Experimental and Numerical Investigation of Tensile and Flexural Behavior of 
Nanoclay Wood-Plastic Composite. Materials, 14, 2773. Points: 140 

42. Golmakani, M. E., Wiczenbach, T., Malikan, M., Aliakbari, R., & Eremeyev, V. A. (2021). 
Investigation of Wood Flour Size, Aspect Ratios, and Injection Molding Temperature on 
Mechanical Properties of Wood Flour/Polyethylene Composites. Materials, 14, 3406. Points: 
140 

43. Alibakhshi, A., Dastjerdi, S., Malikan, M., Eremeyev, V. A. (2021) Nonlinear Free and 
Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening 
Effect. Nanomaterials, 11, 3066. Points: 70 

3 Outlook of the published papers 

Developing studies on the mechanical behavior of micro/nano-electro-mechanical 
systems (MEMS/NEMS) based on the nonlocal media models and thin-walled 
structural mechanics was the main objective of this dissertation. In addition, magneto-
elastic coupling was considered. This thesis, albeit theoretical, can help designers of 
micro/nanosensors and actuators produce a highly efficient and accurate tool. To do 
this, the sensors have been mathematically built based on the beam, plate, and shell 
geometries. The models of the intelligent structures have been established dependent 
on the thin and moderately thick beam/plate approaches. Furthermore, many 
conditions have been investigated to predict the sensors’ mechanical response. There 
are ten published papers in Part II consisting of the studies as mentioned earlier 
explained in the following. 
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1. Malikan, M., & Eremeyev, V. A. (2020). On the geometrically nonlinear vibration of a 

piezo‐flexomagnetic nanotube. Mathematical Methods in the Applied Sciences. 
https://doi.org/10.1002/mma.6758 

 
The first work examined the nonlinear natural frequencies of a nanosensor in the form 
of nanotubes. This investigation contained the Euler-Bernoulli hypothesis and 
accomplished the small-scale effects on the basis of nonlocal strain gradient theory. 
The obtained nonlinear partial differential relations were converted into algebraic ones 
concerning the Rayleigh-Ritz technique. Several boundary conditions were imposed, 
such as clamped, simple, and their combination. Finally, the results have been verified 
by using the literature regarding nonlinear vibrations of a macro/local beam.  
 
In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original 
draft. Victor A. Eremeyev: Investigation, Review & editing, Supervision, Funding 
acquisition. 
 
2. Malikan, M., & Eremeyev, V. A. (2020). On Nonlinear Bending Study of a Piezo-

Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution. Nanomaterials, 10, 
1762. https://doi.org/10.3390/nano10091762 

 
The second work is a well-considered paper by which the first time of investigating FM 
in a nonlinear bending analysis has been demonstrated. Both piezomagnetic and 
flexomagnetic effects have been taken into account together for a reduced scale thin 
beam. The geometrical nonlinearity which induces the large deformations was also 
assessed. Applying the variational formulation derived the favorable governing 
equations. The NSGT was inserted into the mathematical model to capture the 
consistent nanoscale effect. Transmuting the acquired relations based on the NSGT 
into the displacement relationship granted an eligible equation, which stood to compute 
large deflections. The translation and shifting of the nonlinear system of ordinary 
differential equations into the algebraic ones have been performed based on the 
Galerkin weighted residual method (GRWM). The GRWM concerning an analytical 
flow estimated clamped, simply-supported, and free end conditions. Afterward, the 
numerical solution regarding the Newton-Raphson technique (NRT) was investigated. 
 
In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original 
draft. Victor A. Eremeyev: Investigation, Review & editing, Supervision, Funding 
acquisition. 

3. Malikan, M., Uglov, N. S., & Eremeyev, V. A. (2020). On instabilities and post-buckling 
of piezomagnetic and flexomagnetic nanostructures. International Journal of Engineering 
Science, 157, 103395. https://doi.org/10.1016/j.ijengsci.2020.103395 

 
The third paper is a simultaneous study for buckling and post-buckling of magnetic 
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nanosensors. It was supposed that the sensor has been made of cobalt-ferrite 
structures. The results have been discussed while the magnetic nanoparticle 
accommodated flexomagneticity influence. The mathematical model has been 
established in regard to the Euler-Bernoulli beam, nonlinear Lagrangian-von Kármán 
strains, and nonlocal strain gradient theory. The stability and post-stability were 

analytically evaluated for variations in size-dependent parameters, slenderness ratio, the 
magnetic field in the absence and presence of the FM when the boundary conditions 
of the beam-like nanosensor were differed. 
 

In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original draft. N. 
S. Uglov: Original draft, Victor A. Eremeyev: Investigation, Review & editing, 
Supervision, Funding acquisition. 
 

4. Malikan, M., Eremeyev, V. A., & Żur, K. K. (2020). Effect of Axial Porosities on 
Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams. Symmetry, 
12, 1935. https://doi.org/10.3390/sym12121935 

 

The fourth study presented the stability capacity of a porous nanosensor beam 

involving piezomagnetic as well as flexomagnetic properties. To date, it is known that 

the mechanism of action of nanostructures is based on two principles of hardening and 

softening. This research applied these features to a piezo-flexomagnetic nanobeam. 

Substituting Lagrangian and nonlocal theory of strain gradient elasticity, the stability 

relation of the piezo-flexomagnetic nanobeam was obtained. Thereafter, the Navier 
method expanded numerical amounts of the in-plane static buckling of the nanosize 
sensor in the presence of imperfections. 
 

In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original draft. K. 
K. Ż: Funding acquisition, Victor A. Eremeyev: Investigation, Review & editing, 
Supervision. 
 

5. Malikan, M., Wiczenbach, T., & Eremeyev, V. A. (2021). On thermal stability of piezo-
flexomagnetic microbeams considering different temperature distributions. Continuum 
Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-021-00971-y 

 

The fifth paper is totally a different work as it expressed thermal effects on a 
microsensor exploring different distributions of the external temperature. Herein a 
distinct investigation has been reported on piezomagnetic-flexomagnetic micro-size 
beam-shaped sensors based on thin beam theory. Concerning the strain gradient 
theory, the microstructural effect was studied. The microbeam physical structure was 
defined based on magnetic microparticles. The constitutive equation, which is 
dominant on the problem, was obtained by linear Lagrangian strain, and the critical 
temperature was computed for clamped and simple boundary supports. The 
distribution of thermal loading in line with thickness was in linear, uniform, and 
parabolic states. 
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In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original draft. T. 
Wiczenbach: Original draft, Victor A. Eremeyev: Investigation, Review & editing, 
Supervision, Funding acquisition.  

6. Malikan, M., & Eremeyev, V. A. (2021). Flexomagnetic response of buckled piezomagnetic 
composite nanoplates. Composite Structures, 267, 113932. 
https://doi.org/10.1016/j.compstruct.2021.113932 

 
In the sixth work, a biaxial buckling analysis-based mathematical modeling has been 
depicted for converse flexomagnetic influence on a piezomagnetic nanoparticle 
composition of cobalt and ferrite. The equation of motion was obtained based on the 
classical plate theory and plane strain assumptions. Furthermore, after the analytical 
solution of the equation, the analytical relation was obtained for the first mode of the 

buckling load of this sheet based on the clamped and simply-supported edge 
conditions. Finally, a MATLAB code was written to calculate the flexomagneticity 
response in the two-dimensional domain. 
 
In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original 
draft. Victor A. Eremeyev: Investigation, Review & editing, Supervision, Funding 
acquisition. 
 
7. Malikan, M., & Eremeyev, V. A. (2021). Effect of surface on the flexomagnetic response 

of ferroic composite nanostructures; nonlinear bending analysis. Composite Structures, 271, 
114179. https://doi.org/10.1016/j.compstruct.2021.114179 

 

The seventh work reported the effects of the surface layer on the various significance 
items included in a ferromagnetic structure for providing the flexomagnetic response. 
On the basis of the available data of a flexo-ferroic material, an appropriate 
consideration was performed to predict the surface layer effect on the flexomagneticity. 
The Euler-Bernoulli beam assumption was used to find out large deflections of 
clamped–clamped and pinned–pinned nanoscale beams. When the nonlocal strain 
gradient model is applied, it can generate the stress nonlocality and large gradient of 
atoms in the nanoscale. When the magnetic field gradient is applied, one can observe 
the converse flexomagnetic effect, which was the studied case in this article. The 
contribution of the nonlinear von-Kármán strain aided us in modeling the problem 
mathematically. With the substitution of the differential quadrature method (DQM), 
which has been widely used and its precision has been entirely approved, the partial 
differential relations have been converted into algebraic equations. After that, the 

algebraic relations were solved vis-à-vis the Newton-Raphson technique to compute 
the large deflections. Further, investigations were warranted via a simple structure using 
a finite element commercial software before the results and discussion section. This 
study argued and demonstrated massive potential in affecting the flexomagnetic effect 
based on the surface layer. 
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In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original 
draft. Victor A. Eremeyev: Investigation, Review & editing, Supervision, Funding 
acquisition. 

 
8. Malikan, M., & Eremeyev, V. A. (2021). Flexomagneticity in buckled shear deformable 

hard-magnetic soft structures. Continuum Mechanics and Thermodynamics. 
https://doi.org/10.1007/s00161-021-01034-y 

The eighth work aimed to extend the shear deformation effect on the flexomagneticity 
response of a piezomagnetic ultrasmall scale elastic beam. The governing equations 
have been established by using the Timoshenko beam. The nonlocal mechanics of the 
nanobeam was concerned with the nonlocal strain gradient approach by which there 
was an ability to transfer the discretized atomic lattice into a continuum region. The 

solution of the obtained equations corresponds to a closed-form solution within which 
the numerical results were reported for simply-supported boundary conditions. In 
addition, some tabulated verifications have been organized to corroborate the 
numerical results. 
 

In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original 
draft. Victor A. Eremeyev: Investigation, Review & editing, Supervision, Funding 
acquisition. 
 

9. Malikan, M., Wiczenbach, T., & Eremeyev, V. A. (2021). Thermal buckling of functionally 
graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect. 
Continuum Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-021-01038-8 

 

Through ninth work, a more remarkable flexomagnetic response was looking by 
assuming functionality and grading compositions of the material in line with the 
thickness of the beam. Based on the Galerkin weighted residual method, the numerical 
results have been warranted in the framework of analytical solutions for fully fixed ends 
conditions. The beam's mechanical behavior was assumed to be dependent on the shear 
deformations; therefore, the Timoshenko beam was taken into the model. The 
examination in nanoscale was revealed by exerting both stress nonlocality and strain 
gradient in the media of the nonlocal strain gradient approach. The implementation of 
the material composition was presumed as exponential functionality concerning the 
rule of mixture. Inclusive of flexomagneticity was performed in terms of reverse field 
effect. Under the axially compressed conditions of the system, the critical buckling 
temperature was explored. Notwithstanding that the functionally graded materials 
(FGMs) can be correctly analyzed so that the mid-plane plays the role of the neutral 
surface, this research took into account the physical neutral plane that differs from the 
mid-surface.  
 

In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original draft. T. 
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Wiczenbach: Original draft, Victor A. Eremeyev: Investigation, Review & editing, 
Supervision, Funding acquisition.  
 

10. Malikan, M., Krasheninnikov, M., & Eremeyev, V. A. (2020). Torsional stability capacity 
of a nano-composite shell based on a nonlocal strain gradient shell model under a three-
dimensional magnetic field. International Journal of Engineering Science, 148, 103210. 
https://doi.org/10.1016/j.ijengsci.2019.103210 

Moreover, the tenth/last work performed a study on the torsional buckling of a 
piezomagnetic nano-composite shell under a three-dimensional magnetic field based 
on the first-order shear deformation shell approach in combining with the nonlocal 
theory of strain gradient. In order to take the numerical findings, an analytical process 
was used. After validation of numerical outcomes, the role of key parameters was 
investigated on the torsional behavior of the shell. The results focused on both buckling 
and wave propagation of the nanoscale shell. 
 

In this work, the authors' contributions are as follows:  
Mohammad Malikan: Conceptualization, Methodology, Investigation, Software, 
Visualization, Validation, Data curation, Resources, Formal analysis, Original draft. M. 
Krasheninnikov: Original draft, Victor A. Eremeyev: Investigation, Review & 
editing, Supervision, Funding acquisition. 

4 Presented conferences 

The results of the dissertation were discussed within two online conferences listed 
below.  

- The conference ICCS23 - 23rd International Conference on Composite Structures 
& MECHCOMP6 - 6th International Conference on Mechanics of Composites 
held 1-4 September 2020 on Faculty of Engineering, University of Porto, Portugal.  
Conference chairs were António J.M. Ferreira, (University of Porto, Portugal), 
Nicholas Fantuzzi, (University of Bologna, Italy), Michele Bacciocchi, (University 
of San Marino, San Marino). Two presentations were delivered. 

- The conference ICCS24 - 24rd International Conference on Composite Structures, 
14 - 18 June 2021, on Faculty of Engineering, University of Porto, Portugal.  
Conference chairs were António J.M. Ferreira, (University of Porto, Portugal), 
Nicholas Fantuzzi, (University of Bologna, Italy), Michele Bacciocchi, (University 
of San Marino, San Marino), Carlos Santiuste (Universidad Carlos III de Madrid, 
Spain) 

 

5 Scientific contributions of the thesis 

The thesis developed new models of thin-walled structures such as beams, plates, and 
shells using non-local models of continua and magneto-elastic coupling. In particular, 
we paid a significant attention to the flexomagneticity, which could be very important 
at small scales. Let us note that up to our knowledge, the flexomagneticity phenomenon 
is much less studied than piezoelectricity, piezomagneticity, and even flexoelectricity. 
To the analysis of this phenomenon with application to thin-walled structures is quite 
topical.  
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Part II Summary, Discussions, Conclusions, and Outlook 

More specifically, we found that: 

 Increasing the numerical value of the nonlocal parameter leads to a softening 
effect on the nanomaterial, and in contrast, increasing the numerical value of 
the strain gradient parameter leads to the appearance of stiffness in the 
nanomaterial. 

 The effect of nonlinear analysis is more extraordinary in large values of the 
nonlocal parameter and smaller values of strain gradient parameter.  

 The effect of nonlinear analysis on a nonlocal study is greater than a local one. 

 The effect of nonlinear analysis in the positive magnetic field decreases. 
However, the opposite is true in the case of a negative magnetic field. 

 The flexomagnetic effect leads to more material stiffness and thus reduces the 
numerical values of deflections in static analysis. 

 The less “flexible” the boundary condition, the higher the flexomagneticity 
effect. 

 The post-buckling and failure resulting from it would happen sooner for 
nanostructures whilst the strain gradient and the nonlocal parameters are 
respectively substantial and negligible. 

 In so-called lengthy micro/nanosensors, critical buckling and post-buckling 
loads can occur simultaneously. This means that the structure will fail exactly at 
the time of critical buckling. 

 The variations of thickness of the nanobeam affected the flexomagneticity, and 
this property is further noticeable for lower thicknesses of nanostructures. 

 The results showed that this imperfection could affect the flexomagnetic 
behavior of micro/nanomaterials in some porosity patterns. 

 The importance of piezomagnetic-flexomagnetic properties depends on the 
surrounding temperature distribution. 

 The uniaxial buckling makes the flexomagnetic response of the nanoplate more 
notable. 

 In the case of the uniaxial buckling of intelligent nanoplates, the magnetic field 
has further affected the critical buckling load. 

 In terms of the biaxial buckling of smart nanoplates, while β (Lx/Ly) < 1, the 
flexomagnetic response is more evident in contrast to β > 1. 
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 Under uniaxial loading, whenever the nanoplate is rectangular and β < 1, an 
increase of aspect ratio leads to softening, and this is vice versa for rectangular 
nanoplate with β > 1. 

 Suppose the end conditions are selected as less flexible, and values of nonlocal 
or SGLS parameters are big and small enough. In that case, the surface layer 
can affect and develop a further flexomagnetic response. 

 For the smart nanostructures, the flexomagneticity will affect the existence of 
shear deformations, and the effect is to increase its importance.  

 The most important magnetic effect can be the transverse effect in the three-
dimensional magnetic analysis of a nano-composite shell. 

 The flexomagneticity would be more visible in FGMs, while shear deformations 
exist. Thus, the piezomagnetic FGMs nanosensors provide and offer new 
principal aspects that improve the designing of small-scale actuators/sensors. 

 It was observed that flexomagneticity could be even more vital in a ferroic 
functionally graded material based on the exponential material composition. 

The provided results could be useful for the design and further manufacturing of some 
devices such as sensors, actuators, energy harvesters, and some others 

6 New problems and future steps 

There would also be numerous new challenges and extensive opportunities to design 
MEMS/NEMS sensors and actuators. Therefore, upcoming scientific efforts could be 
focused on the following topics: 

 How would be the efficiency of a micro/nanosensor if it is made of laminated 
structures incorporating an FGM layer and a piezomagnetic layer with FM 
effect. 

 What is the mechanical response of a piezomagnetic FGM micro/nanosensor 
based on the functionality in line with the length instead of thickness. 

 Within this thesis, the differential form of nonlocality has been scrutinized, 
which is a weak nonlocality versus the integral form. On the other hand, the 
integral form of nonlocal models gives a strong nonlocality. Therefore, the 
difference between these two schemas of nonlocal domains when considering 
micro/nanosensors is a new topic that can extend studies done in this thesis. In 
fact, based on the integral form of nonlocal strain gradient theory, there is the 
possibility to continue current studies. 

 In a thermoelastic problem, different kinds of heat sources can affect the 
mechanical response of a micro/nanosensor. Thus, this topic can be considered 
and discussed. 
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 What would be the response of flexomagneticity through a three-dimensional 
study. 

 Penta-graphene as a newly discovered nanostructure can be considered for any 
possible piezomagnetic-flexomagnetic effects. 

 What is the impact of rotary inertia in a shear deformable micro/nanostructure, 
including FM effect subject to vibrational modes. 

 What would be the amount of FM response if the micro/nanosensor is 
implemented into a resonance zone of nonlinear forced vibrations.
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Abstract 

In order to describe the behavior of thin elements used in MEMS and NEMS, it is essential to 

study a nonlinear free vibration of nanotubes under complicated external fields such as magnetic 

environment. In this regard, the magnetic force applied to the conductive nanotube with piezo-

flexomagnetic elastic wall is considered. By the inclusion of Euler-Bernoulli beam and using 

Hamilton’s principle, the equations governing the system are extracted. More importantly, a 

principal effect existed in a nonlinear behavior such as axial inertia is thoroughly analyzed which 

is not commonly investigated. We then consider the effects of nanoscale size using the nonlocal 

theory of strain gradient (NSGT). Hereafter, the frequencies are solved as semi-analytical 

solutions on the basis of Rayleigh-Ritz method. The piezo-flexomagnetic nanotube (PF-NT) is 

calculated with different boundary conditions. In order to validate, the results attained from the 

present solution have been compared with those available in the open literature. We realized that 

the nonlinear frequency analysis is so significant when a nanotube has fewer degrees of freedom 

at both ends, and its length is long. 

Keywords: Nonlinear vibration; Piezo-flexomagnetic nanotubes; Axial inertia; NSGT; Rayleigh-

Ritz method 

1. Introduction 
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Nano-electro-mechanical systems (NEMS) are the technology of very small nanometer-

sized machines. NEMS is a step ahead of micro-electro-mechanical systems (MEMS) and 

usually encompasses a combination of transistors (electric), sensors and motors 

(mechanical). Due to its very small size, NEMS is expected to have a major impact on 

large sections of science and technology and eventually replace MEMS [1].  

Contemporarily, a discovered and explored phenomenon known in the elements 

of electro-mechanical coupling with taking magnetic effect is flexomagneticity. Uniform 

strain makes magnetic polarization, and the response is reflected by piezomagneticity. 

This occurrence exists only in dielectrics with non-centrosymmetric structures. A lot of 

studies showed that a non-zero magnetic field can be induced by the inclusion of non-

uniform strains. Flexomagnetic (FM) effect defines this type of coupling of an induced 

magnetic field and distribution of the non-uniform strain [2-4]. Flexomagneticity in 

comparison with piezomagneticity, demonstrates the coupling features of induced 

magnetic polarization and strain gradient. Flexomagneticity becomes a remarkable and 

overcoming influence when the material size is scaled down to nanoscale, although this 

effect is meager and negligibly small on macro scale. Therefore, a further conceptual 

understanding of the FM on NEMS is necessary. 

In a general understanding through FM, during polarization in the material, strain 

gradient induces magnetic field and magnetic field gradient induces the strain. The former 

is named as the direct impact and the later one as the converse effect. The FM already is 

on the novel threshold of its research.  

To predict the mechanical response of NEMS, a great deal can be observed done 

on piezomagneticity during the contemporary decade [5-20], though the literature on FM 

is much less developed, see, e.g., [21-23]. The analysis of nanomaterials containing FM 

was commenced by Sidhardh and Ray [21] by surveying a cantilever nanoscale size 

piezomagnetic Euler-Bernoulli beam subjected to transverse static loading. The surface 

elasticity was developed on the model. Moreover, both converse and direct magnetic 

effects were discussed. Zhang et al. [22] extended FM studies to asses bending analysis 

of a small scale piezomagnetic Euler-Bernoulli beam under several conditions of 

boundaries. They investigated both reverse and direct FM. Malikan and Eremeyev [23] 

modeled the linear dynamic conditions for a nanotube involving FM and evaluated scale 
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effect on the basis of stress-driven nonlocal elasticity. The size-dependency behavior of 

FM was corroborated by their findings as well. 

As far as very limited studies are found on FM, one can acquisition many 

opportunities to account for such the effect. This research intends to expand the FM on a 

nanosize Euler-Bernoulli beam. More importantly, the vibration problem is described 

with respect to nonlinear strains of Lagrangian based von Kármán assumptions [24-33]. 

It is worth to mention that the effect of axial inertia may become important in parts of 

vibrating machines. So, this effect is estimated as well. Plus, size-dependence is modeled 

with exerting nonlocal strain gradient theory (NSGT). In view of nonlinear partial 

differential equations, the analytical solution methods are unable to give a solution. By 

virtue of this, numerical solution techniques should come in hand, such as differential 

quadrature method (DQM) [34, 35], finite difference method (FDM) [36], finite element 

method (FEM) [37, 38], mesh free method [39], dynamic relaxation method (DRM) [40], 

Homotopy method [41], etc. These techniques take a long time to give the numerical 

results due to their massive computations. Amidst solution approaches, semi-analytical 

techniques require lower time to grant the numerical outcomes. The Rayleigh-Ritz 

technique is a one that based on a few convergence rate solves the equations with shorter 

formulation. On the basis of very general assumptions, the Rayleigh-Ritz shows its 

advantage. In terms of the approximation features, this method produces optimal 

solutions. Thus, the solution process is here accomplished by means of Rayleigh-Ritz 

technique. Thereby, a validation section is provided to render the correctness of the 

formulation. Thereupon, numerical results are reported by creating different pictorial 

figures for momentous parameters. 

2. Mathematical model 

Let us consider a typical nanotube of length L, of thickness h and of diameter d. Figure 1 

shows a schematic image of the considered structure [42]. 

In what follows we consider the Euler-Bernoulli beam model for the considered 

nanotube. Moreover, we restrict ourselves to in-plane deformations. So, the middle 

neutral beam line coincides with the x-axis whereas z-axes relates to the transverse 

direction. The corresponding Cartesian displacements are denoted as u1 and u3, 
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respectively, see [43-46] for detail. The axial and transverse displacements of the middle 

neutral line are denoted by u and w, respectively. So, the kinematical relations are given 

by  

( ) ( )
( )

1

,
, , ,

t
u x  z t t

w x
u x z

x


= −


                                                                                    (1) 

( ) ( )3 , ,,u tz tx w x=                                                                                                        (2) 

Based on the von Kármán nonlinear strains, in the Lagrangian strain formula, the 

nonlinear term related to u is adequately small and can be ignorable. Accordingly, the 

nonlinear components of the axial strain and its gradient are calculated as   

22

2

1

2
xx

u w w
z

x x x


   
= − +  
   

                                                                                          (3) 

2

2

xx
xxz

w

z x




 
= = −

 
                                                                                                       (4) 

where 
xxz  means gradient of the elastic strain. Following [21, 22] the one-dimensional 

stress-strain magneto-mechanical relations are prepared as  

11 31xx xx zC q H = −                                                                                                      (5) 

31 31xxz xxz zg f H = −                                                                                                   (6) 

33 31 31z z xx xxzB a H q f = + +                                                                                        (7) 

where xx  and xxz  are the stress and hyper stress,  zB  and zH  are  the magnetic  flux 

and the magnetic field, respectively, and material parameters are introduced. In particular, 

11 1111C C=  is the elastic modulus, 31 3311f f=  denotes the component of the fourth-order 

flexomagnetic coefficients tensor, 33a  represents the component of the second-order 

magnetic permeability tensor, 31 311q q=  depicts the component of the third-order 

piezomagnetic tensor, and 31 311311g g=  is the component the sixth-order gradient 

elasticity tensor. 

In order to precisely extract the particularized equation of piezo-flexomagnetic 

type nanotubes (PF-NTs), the variational formulation can be expanded adequately on the 

base of Hamilton’s principle as 
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( )
2

1

0

t

t

K U W dt  − + =                                                                                               (8) 

in which δ denotes the symbol of variation. In (8), the first variation of the total internal 

of the beam is equal to zero, and the other factors are the kinetic and strain energies (K 

and U) and the created work by outer forces ( W). 

The first variation of the strain energy can be written in an integral form according 

to magneto-mechanical coupling as  

( )xx xx xxz xxz z z

V

U B H dV     = + −                                                                    (9) 

Using assumed 1D kinematics and integrating by parts, we can transform (9) in to a sum  

1 21 2

Mag MagMech Mech
U UU U

U    =  +  +  +   

where 

1

2 2

2 2
0

L
Mech x x xxz
U x

N M Tw
u w N w w dx

x x xx x
    

     
 = − + + +        

                     (10a) 

1

2

0 2

hL
Mag z
U

h

B
dzdx

z
 

−


 = − 

                                                                                      (10b) 

2

0

L

Mech x xxz
U x x xxz x

M Tw w w
N u M T N w w w

x x x x x

 
    

    
 = − − + + +       

       (11a) 

( )
2

/2

0 /2

h
L

Mag
zU

h

B dx 

−

 =                                                                                           (11b) 

and we also have introduced normal axial force, moment and hyperstress as follows 

/2

/2

h

x xx

h

N dz
−

=                                                                                                            (12) 

/2

/2

h

x xx

h

M zdz
−

=                                                                                                          (13) 

/2

/2

h

xxz xxz

h

T dz
−

=                                                                                                           (14) 

In our case the work of external forces has the functional   
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2
0

0

1

2

L

x

w
W N dx

x

 
= −  

 
                                                                                               (15) 

which first variation has the form 

0

0

L

x

w w
W N dx

x x




  
= −  

  
                                                                                         (16) 

where 0
xN  presents the initial in-plane axial force. 

In addition in (11b) we introduced the magnetic potential  . The relationship 

between magnetic potential and magnetic field component can be given by 

0zH
z


+ =


                                                                                                             (17) 

By accounting a reverse flexomagnetic state for a closed circuit, one can attribute the 

following conditions 

, 0
2 2

h h
 

   
 + =  − =   
   

                                                                                    (18a-b) 

in which the potential on the top surface as a result of the magnetic field is symbolized 

by  . The change of the magnetic potential along the thickness of the nanotube and then 

the component of the magnetic field can be feasible by the use of Eqs. (7), (10b), (11b), 

(17), and (18) [21, 22] 

2 2
231

2
332 4 2

    
 = − − + +        

q h w h
z z

a hx
                                                                      (19) 

2
31

2
33

z

q w
H z

a hx


= −


                                                                                                  (20) 

Thereafter, Eqs. (5)-(7) on the basis of Eqs. (19) and (20) can be expanded as 

2 2
33

31 31 2

1

2
z

au w w
B q f

x x hx

    
= + − −  

     

                                                               (21) 

2
31 31 31

31 2
33

xxz

q f z fw
g

a hx




  
= − + + 

 

                                                                         (22) 

2 2 2
31 31

11 11 2
33

1

2
xx

q qu w w
C z C

x x a hx




      
= + − + +             

                                            (23) 
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which are magnetic induction, the component of higher-order moment stress tensor and 

the component of stress field, respectively. 

Therefore, magneto-mechanical stress resultants (Eqs. (12)-(14)) can be re-written 

as 

2

11 31

1

2


   
= + +  

    
x

u w
N C A q

x x
                                                                             (24) 

2 2

31
11 2

33

x z

q w
M I C

a x

  
= − + 

 
                                                                                          (25) 

2

31 312xxz

w
T g h f

x



= − +


                                                                                               (26) 

where 2

z
A

I z dA=   is dedicated for area moment of inertia.  

According to Eq. (24), axial stress resultant involves mechanical and magnetic 

parts. Thus, the magnetic axial stress resultant can be presented as 

31

MagN q =                                                                                                                (27) 

where we suppose the above value as axial magnetic force acted on both ends of the 

nanotube (due to longitudinal magnetic field), hence 

0 M
x

agN N=                                                                                                                  (28) 

The kinetic energy can be associated with the nanotube as follows 

( )
22

311

2 A

uu
K z dAdz

t t


    
= +    

      
                                                                   (29) 

or with (1) and (2) as  

( )

2 221

2 A

u w w
K z z dAdz

t x t t


      = − +           
                                                       (30) 

Finally, the first variational schema of kinetic energy would be 

2 3 3 4 2

0 1 1 2 02 2 2 2 2 2A

u w u w w
K I u I u I w I w I w dA

t x t x t x t t
     

     
= − + − + − 

        
  (31) 

where ( ) ( ) 2 2
0 1 2 2
, , 1, ,

h

h
I I I z z z dz

−
=   is depicted for the mass moments of inertia. 
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The corresponding magneto-mechanical governing equations can be derived by imposing 

Eq. (8) as 

2 3

0 12 2

xN u w
I I

x t x t

  
= −

   
                                                                                           (32) 

2 2 2 3 4

0 1 22 2 2 2 2 2

x xxz
x

M T w w u w
N I I I

x x x x t x t x t

       
+ + = + − 

         
                                  (33) 

Due to their premier chemical, electrical and mechanical properties, nanostructured elements 

such as nanobeams, nanotubes, nanoshells, and nanosheets are customarily used as 

components in nano-electro-mechanical devices. Therefore, accurate prediction of the 

vibrational characteristics of nanostructures is essential for engineering and production 

design. On the other hand, classical mechanic theory cannot predict the size-effect at the 

nanoscale. At the nanoscale, size-effects became important and even dominated. Both the 

experimental results and the results of the molecular dynamics simulation show that the size-

effect on the mechanical properties of materials is extraordinary and meaningful when the 

dimensions of these structures are scaled down. To tackle this problem, there can be found 

three methods proposed for analyzing nanostructures, namely atomic mechanics [47, 48], 

atomic-continuum mechanics (multiscale methods) [49, 50] and continuum mechanics [51]. 

However, the third method has a lower computational cost than the previous two methods. 

In this research, the theory of non-classical continuum mechanics is utilized. It should be 

noted that this theory itself is divided into several sub-theories. Some researchers have used 

couple stress theories to examine the effect of scale [52-57], others have employed Eringen’s 

nonlocal theory [58-64], some have utilized the theory of first and second strain gradient 

elasticity [65-68], and some other researchers have exerted a combination of these theories. 

They have merged and incorporated more up-to-date theories, such as the nonlocal theory 

of strain gradient [69], or the stress-driven nonlocal elasticity theory [70, 71]. Some also 

have developed Eringen’s nonlocal theory [72, 73]. In this study, the nonlocal theory of 

strain gradient is used, which may simulate more accurate the mechanical behavior of 

nanostructures in continuous models. The nature of this theory is based on two principles: 

first, stress at any point is a function of strain at the same point and also in all parts of the 

body, which is known as the nonlocal section; and second, strain gradients in a material 

particle are substantial which this part is well-known as gradient section. Researchers in the 
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field of nanomechanics of continuous models have significantly moved toward this theory 

in recent years and have benefited from it [74-82]. 

In this section, the nonlocal elasticity model of strain gradient for the PF-NT is 

expanded in a general form as follows [69, 83-85]: 

2 22 2 2
2 31 31

11 112 2 2

33

1
1 1

2

NonLocal

xx

q qu w w
l C z C

x x x x a x h


 

             
− = − + − + +        

              

 (34) 

where ( )l nm  is the gradient parameter and 0l   establishes non-zero strain gradient into 

the model; and ( )2nm  allocates nonlocality. Noted that ( ) ( )
2 2

0nm e a =  in which 
0e  

and a  are two small scale factors that determine the nonlocal parameter. It is germane to 

note that both factors are dependent on the nature of the model and physical conditions 

and cannot be material constants [86, 87]. This means they are not a constant value for 

each material something like elasticity modulus. 

The effect of small scale on the stress resultants can be implemented by plugging 

Eq. (34) to Eqs. (24)-(26) as 

22 2
2

11 312 2

1
1

2

x
x

N u w
N = l C A q

x x x x
 

        
− − + +     

         

                                        (35) 

2 22 2
2 31

112 2 2

33

1x
x z

M q w
M = l I C

x x a x


      
− − − +   

       

                                                   (36) 

2 2 2
2

31 312 2 2
1 
    

− = − − +  
    

xxz
xxz

T w
T l g h f

x x x
                                                      (37) 

Note that due to lack of a third additional equation, the small scale effects for Eq. (37) are 

omitted. Eqs. (35) and (36) with respect to Eqs. (32) and (33) can be simplified as  

3 4

0 12 2 2

2 3 2 2 3
2

11 313 2 2 3

1

2

x

u w
N = I I

x t x t

u w u w w w w
C A l q

x x x x x x x





  
− 

    

         
+ + − + + +   

          

                                  (38) 

2 2 2 3 4
0

0 1 22 2 2 2 2 2

2 2 4
231

11 2 4

33

xxz
x x

z

T w w u w
M = N I I I

x x t x t x t

q w w
I C l

a x x


     

− − − − + 
       

   
− + −  

   

                                        (39) 
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In this paper, we discuss PF-NT with reference to homogeneity in the material; 

therefore, 1I  will disappear. 

In the case of a nonlinear conservative system, we can consider nonlinear 

oscillations as follows. First, let us note that in this case we have non-harmonic 

oscillations, that is ( ) ( ) ( )1, cosu x t v x t , and ( ) ( ) ( )2, cosw x t v x t  in general. 

Nevertheless, for conservative systems we have periodic solutions as 

( ) ( ) ( )1 1, , ,u x t v x t v x t T= = +                                                                                    (40) 

( ) ( ) ( )2 2, , ,w x t v x t v x t T= = +                                                                                  (41) 

where T is a minimal period. We replace T using the relation 2T  =  in which   is 

frequency. Moreover, 1v  and 2v  are the vibration amplitudes.  

The following change of variable t →  can be made. In this case, we get 

1 1v v

t




 
=

 
                                                                                                                (42) 

2 2v v

t




 
=

 
                                                                                                               (43) 

Thus, strain and kinetic energies can be written in the framework of below 

22

1 2 2

2

0

1 1

2 2

L

xx

v v v
U z dx

x x x

      

= − +   
       

                                                                (44) 

22 2 2
2 21 2 2

0 2

0

1

2

L
v v v

K I I dx
x

 
  

          
= + +                    
                                             (45) 

2
0 2

0

1

2

L

x

v
W N dx

x

 
= −  

 
                                                                                              (46) 

As approximate solutions we can use  

( ) ( )1 1, cosv x V x =                                                                                                 (47) 

( ) ( )2 2, cosv x V x =                                                                                                (48) 

Then integrating by time from the obtained equation over (0, 2π) will exclude the 

time from the equations. 
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Note that in the following the real part of frequency is considered only. Finally, 

putting Eqs. (37)-(39) into Eqs. (44)-(46), then connecting Eqs. (44)-(46) together (

0K U W+ + = ) and imposing Hamiltonian gives the characteristic equation of frequency 

of the PF-NT which can be shortened and simplified as below 

( )     2

1 2 0M K X X K X + + =                                                                            (49) 

in which 1 2K , K ,and M  are coefficients related to stiffness and mass, respectively, and 

1

2

V
X

V

 
=  
 

. 

3. Rayleigh-Ritz approach 

To catch a general solution for the aforesaid nonlinear equation (Eq. (49)), the analytical 

solutions are mostly incapable and restricted to get a solution. Moreover, numerical 

methods consume a large time to present a solution [88, 89]. On the other side, semi-

analytical techniques, e.g., the Rayleigh-Ritz method presented its simplicity and speed 

of solving to compute the eigenvalue problems that existed in engineering problems [90-

94]. This method in what follows will be indicated. 

( ) ( )1

1

N

j j

j

V x a x
=

=                                                                                                     (50a) 

( ) ( )2

1

N

j j

j

V x b x
=

=                                                                                                    (50b) 

in which N denotes a number of considered base elements and will determine the 

convergence to the exact solution, ja  and jb  are the unknown variables to be determined 

and, j  and j  denote the basic mode shapes demonstrated as below 

( ) ( ) =j jx f T x                                                                                                        (51a) 

( ) ( )j jx f T x =                                                                                                       (51b) 

where 

1
x x

f
L L

 



   
=  −   
   

                                                                                                 (52) 
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in which   and   associates an exponent to convey various boundary conditions (BCs) 

as seen in Table 1. Here SS, CS, CC denote the simply supported – simply supported, 

clamped-simply supported, and clamped–clamped BCs, respectively. Other polynomial 

base function is defined as 

1j

jT x −=                                                                                                                      (53) 

The dedicated kinematic and nonlocal strain gradient constitutive boundary 

conditions can be expressed by Table 2 [95-98] 

Herein, by means of the simple solution of the quadratic polynomial equation (Eq. 

(49)), the results of nonlinear frequency can be determined. The positive values are 

considered only. 

4. Numerical results 

4.1. Results’ accreditation 

In this subsection in order to validate the model and the proposed technique, Eq. (49) will 

be reduced to a simple case to receive the validation. To achieve the simple case, we avoid 

the strain gradient effect, piezomagnetic and FM properties of the problem; however, we 

take the nonlocality into account. To do this, on the basis of Rayleigh-Ritz formulation, 

the simple case can be converted into two subcases, namely nonlinear and linear parts as 

shown by Eq. (54) and (55). In addition to these, we also investigate the results of the 

Navier solution technique for this simple case as illustrated by Eq. (56). Furthermore, in 

order to identify the accuracy of the present Rayleigh-Ritz formulation, a reference is 

dedicated as [99] and the numerical comparison is tabulated by Table 3. It is to be noted 

that here N=5 as [93, 100]. 

• Rayleigh quotient based on the nonlinear strains and simple case: 

22 22

2 1 2
11 112

0 02

22 2 2
2 2 2 2

0 2 2 0 2 22 2

0

1

2

L L

z

NL
L

V V V
C I dx C A dx

x x x

V V V
I V I I V I dx

x x x





     
+ +    

       =
      
  + − −            

 



                                     (54) 

• Rayleigh quotient based on the linear strains and simple case: 
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



 
 
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  + − −            





                                      (55) 

• Navier-type solution with linear strains and simple case: 

4

11
2

2 4 2

0 2 0 2




  



 
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      
+ + +      

       

zI C
L

I I I I
L L L

                                                          (56) 

The tabular validation is regarding the growth of slenderness ratio (L/h), and 

nonlocal parameter (μ). Also, the following elasticity property; E=1TPa is used, and the 

thickness is considered as h=1nm. Moreover, the frequencies are dimensionless using 

2 
 =

A
L

EI
.   

Clearly, the comparative results between outputs of Navier-type solution in the 

present paper and those attained by the literature present a completely acceptable 

correlation. On the other side, there cannot be observed any difference among the outputs 

of linear Rayleigh-Ritz method compared with the Navier cases even for higher values of 

nonlocal parameter as well as of slenderness ratio.  

Elseway, the nonlinear frequencies are indicated by Table 4 by [101-103] and the 

ratio between nonlinear and linear instances are calculated. To indicate an approvement 

for the values of nonlinear frequency computed and obtained in this work, we consider 

SS edge conditions. Based on the demonstrated and tabulated results, the outcomes of 

present nonlinear analysis can be confirmed. 

4.2. Discussion of the problem 

Obviously, no one can find a frequency analysis of a PF-NT while geometrically 

nonlinearity is taken into account. To estimate the present problem, the existence 

quantities in Table 5 are employed [21, 22]. Note that all the eigenfrequencies extracted 

in the section are respecting the first mode only. 
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To consider a NSGT case, both nonlocal and strain gradient parameters perform 

outstanding roles. In point of fact, the values of both factors determine the value of 

frequency. As far as it was mentioned before about depending of these factor’s values on 

many situations, Thus, exploring among the literature to pick up a logical limit for both 

parameters can be a time-effective choice. For nonlocal parameter the 0.5 nm<e0a<0.8 

nm [90], and 0<e0a≤2 nm [104, 105], were found and then can be applied. However, 

there was no reference for strain gradient parameter values. Therefore, a lower bound 

limit is chosen for the values. 

4.2.1 The effect of nonlocal parameter 

Figure 2 carries out the influence of the nonlocal parameter versus both linear and 

nonlinear analyses of eigenfrequency. It is visible that the nonlinear case demonstrates 

greater results. This may be due to the fact that physically the geometrically nonlinear 

analysis gives the material axial forces because of presence of tension in mid-surface. So, 

the frequency capability of material will be higher which will lead to higher frequencies. 

Moreover, the nonlinear analysis eliminates the strain as a result of rigid displacements 

in a large deflection study (Note that in our work the mean of rigid displacement is any 

movement without deformation). Thus, e.g., in a nonlinear bending analysis the 

deflections will be lesser compared to the linear case. In a nonlinear vibration problem, 

the mode shapes will be bigger and the material because of large deformations, can 

capture higher frequencies. 

As seen by the figure, any incremental change in the amount of nonlocal parameter 

leads to a decrease in dimensionless frequency values. This effect and the decreasing trend 

are more apparent when the less flexible end condition is considered. In fact, the slope is 

steeper. The most obvious result of the figure is the lesser effect of nonlinear analysis 

against the linear one for simple supported–simple supported end conditions. Physically, 

it can be interpreted that when the type of boundary condition is more flexible, the 

displacements and deflections are further rigid. Therefore, the difference between results 

of nonlinear and linear states is smaller in such the boundaries. This means that the beam 

has little stability and the material of the beam does not show significant resistance to 

large displacement, and therefore we do not see a substantial difference between nonlinear 
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and linear frequencies in these cases. When the boundary condition has fewer degrees of 

freedom, the stretching effect more appears in the layers of thickness and large 

deformations are established more, which results in a noticeable difference in the results 

of nonlinear frequency versus linear in such the boundary conditions. Finally, as a last 

case in the figure, it can be said that the greatest frequencies are related to the boundary 

condition with the lowest degrees of freedom. 

4.2.2 The effect of strain gradient parameter 

One of the most important results of comparing nonlinear to linear frequency analysis in 

Figure 3 has been shown by changing the numerical values of the strain gradient 

parameter. In the figure, the range of the value of the strain gradient parameter is 

considered from zero to 2 nm for different boundary conditions. Returning to the figure, 

it is visible that increase of the values of the strain gradient parameter leads to augmenting 

the distance between nonlinear and linear frequency results. It may be how interpreted 

that when the numerical value of the strain gradient parameter increments, the hardening 

effect of the material enhances and the frequencies naturally become more pronounced. 

Thus, it enlarges the effect of nonlinear analysis, and the results of linear and nonlinear 

analysis move away from each other. Purely, the higher the fundamental natural 

frequencies of the system, the further visible the nonlinear frequencies. More valuable 

point that can be extracted from this figure is that the effect of rising in value of the strain 

gradient parameter is greater on the boundary condition with lower degrees of freedom. 

According to the figure, the clamped-clamped boundary condition is affected largely by 

growing the value of the strain gradient parameter and the incremental trend occurs more 

rapidly in this less flexible boundary condition. 

4.2.3 The effect of magnetic field 

Figure 4 provides the effect of the magnetic field on the linear and nonlinear frequencies 

and a comparison between these two frequency modes by changing the amount of 

magnetic potential. Based on the data in the figure, it can be realized that increasing the 

values of the magnetic potential will lead to a rise in the eigenfrequency of the system in 

both linear and nonlinear states. In addition, the slope of the increment in the values of 

the frequencies in the nonlinear case is steeper than the linear one. Physically, it can be 
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deduced that since the positive magnetic potential, in general, the positive magnetic field 

has a tightening effect on materials due to the contraction, the large amounts of positive 

magnetic potential can make greater natural frequencies and provide clearly the nonlinear 

frequency impact. Hence, the results of linear and nonlinear frequencies move away from 

each other. To conclude the discussion on the effect of magnetic potential, the boundary 

conditions can be considered through which several boundary conditions are studied. As 

can be observed from the figure, the incremental slope of the nonlinear frequency values 

resulting from the increase in the magnetic potential at all boundary conditions will be 

steeper. Therefore, it can be concluded that in high values of magnetic potential and in 

general in strong magnetic fields, the difference between the nonlinear frequencies and 

the linear ones is further notable. 

4.2.4 The effect of slenderness ratio 

Figure 5 displays a consideration of the effect of length-to-diameter ratio (slenderness 

ratio) for the problem. It is worthy to note that the difference between nonlinear and linear 

cases increments by enlarging the length of the beam. It can be said that when the beam’s 

length is long, the effect of nonlinear analysis is considerable. This can display the role 

of nonlinear analysis in vibrating behavior and emphasize on using this model of study. 

4.2.5 The effect of axial inertia 

In this work, we implemented the axial inertia effect in the formulation of 

eigenfrequencies contrarily to what has been usually accomplished. To demonstrate this 

effect, Figure 6 is plotted. This effect has been ignored in many studies performed on 

nonlinear vibrations of small or macro scale structures. As seen by Figure 6, while the 

effect is included, the nonlinear frequencies decrease. One can see the more pronounced 

discrepancy for lower values of slenderness ratio where the axial inertia causes 

appreciable reductions into the frequencies. This conclusion corresponds to the foregoing 

numerical data [106]. 

To make the effect of axial inertia rather obvious, some tabular results are 

presented by Table 6 in which assorted boundary conditions are inspected. As seen by the 

table, the presence of axial inertia is more prominent for tubes with fully fixed ends. All 
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in all, how we can terminate this discussion is that the axial inertia can be an effective 

factor in nonlinear vibration studies of macro/nano-structures. 

5. Conclusions 

This study analyzed nonlinear frequencies for a nanotube concerning the Euler-Bernoulli 

motion field. To accomplish the nanoscale size effect, the motion equations were shifted 

into NSGT relations. The relations governing the problem which are the nonlinear partial 

differential equations, were obtained by which the nonlinear vibrational equations of the 

PF-NT were computed. It was then converted to nonlinear algebraic equations by the 

Rayleigh-Ritz method. Free vibrations have been investigated in two cases, linear and 

nonlinear, for some kinds of boundary conditions: simply supported –simply supported, 

clamped–clamped, and clamped–simply supported. The results were compared with those 

of Navier’s solution and the parametric analysis of the results was presented. The most 

superior shortened points harvested by our work can be implied as follows which can aid 

the designers in the MEMS/NEMS industries: 

* Whenever the fundamental natural frequencies of a nanotube are enough big, the 

nonlinear frequencies will be more vital. In this category, the less flexible boundary 

conditions, the higher values of strain gradient, the longer nanotube, and a stronger 

positive magnetic field bring about greater fundamental natural frequencies. 

* The shorter the length of the nanotube, the larger the effect of axial inertia. 
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Table 1. Conditions at both ends based on notations 

Conditions ( )0x =  ( )x L =  

SS 1 1 

CS 2 1 

CC 2 2 

Table 2. Constitutive boundary conditions 

Conditions 
Nonlocal strain gradient conditions at  

(0, L) 

Local conditions  

( 0l = = ) at  

(0, L) 

S 

w=0 
2

2

2
1 0cl cl

d d dw
M l M N

dx dx dx


   
= − + + =   

  
 

0cl
h

dM
M

dx
= =  

2

31 312
0= − + =xxz

d w
T g h f

dx
 

w=0 

0clM =  

0xxzT =  

C 

w=0  

w'=0 

0M   

0hM   

0xxzT =  

w=0 

w'=0 

0clM   

0xxzT =  

* Sub-indexes (h and cl) are nonlocal and local phases, respectively. 

Table 3. Nondimensional natural frequencies of a square nanobeam (First mode, L=10 nm, h=1 

nm,  =0.3, E=1TPa,  =2.7kg/dm3) 

L/h μ L  
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EBT, 

Navier 

[99] 

EBT, 

Navier 

[Present] 

EBT, 

Rayleigh-

Ritz, 

[Present] 

5 

0 9.7112 9.7112 9.7112 

1 9.2647 9.2647 9.2647 

2 8.8747 8.8747 8.8747 

3 8.5301 8.5301 8.5301 

4 8.2228 8.2228 8.2228 

10 

0 9.8293 9.8293 9.8293 

1 9.3774 9.3774 9.3774 

2 8.9826 8.9826 8.9826 

3 8.6338 8.6338 8.6338 

4 8.3228 8.3228 8.3228 

20 

0 9.8595 9.8595 9.8595 

1 9.4062 9.4062 9.4062 

2 9.0102 9.0102 9.0102 

3 8.6604 8.6604 8.6604 

4 8.3483 8.3483 8.3483 

Table 4. Ratio of nonlinear to linear cases of frequency for a square macro beam (First mode). 

NL L   

Present [101] [102] [103] 

1.0874  1.0897  1.0892  1.0892  

Table 5. Magneto-mechanical properties of an assumed piezo-flexomagnetic nanotube (PF-NT) 

CoFe2O4 

C11=286e9 N/m2 

f31=10-10 N/Ampere 

q31=580.3 N/Ampere.m 

a33=1.57×10-4 N/Ampere2 

L=10d, d=1 nm, h=0.34 nm 

Table 6. Slenderness ratio vs. axial inertia effect in the nonlinear study of the PF-NT based on 

several boundary conditions (Ψ=1 mA, l=1 nm, e0a=0.5 nm) 

Axial 

inertia 
L/d CC CS SS 

Presence 
5 41.4830 28.1964 16.8231 

10 34.3034 27.5697 18.4081 
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20 35.4480 31.4843 22.9379 

30 40.6439 37.1471 28.3744 

40 47.3009 43.7931 34.4555 

Absence 

5 45.2122 31.0591 18.0210 

10 35.1884 28.3695 18.7697 

20 35.6849 31.7207 23.0533 

30 40.7655 37.2719 28.4381 

40 47.3806 43.8760 34.4992 

 

Figure 1. A CoFe2O4 nanotube 

 

Figure 2. Nonlocal parameter vs. different end conditions for the PF-NT (Ψ=1 mA, l=1 nm) 
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Figure 3. Strain gradient parameter vs. different end conditions for the PF-NT (Ψ=1 mA, e0a=1 

nm) 

 

Figure 4. Magnetic potential parameter vs. different end conditions for the PF-NT (l=1 nm, 

e0a=0.5 nm) 
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Figure 5. Slenderness ratio vs. linear and nonlinear analyses (Ψ=1 mA, l=1 nm, e0a=0.5 nm, SS) 

 

Figure 6. Slenderness ratio vs. the axial inertia effect in the nonlinear case of the PF-NT (Ψ=1 

mA, l=1 nm, e0a=0.5 nm, SS) 
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Abstract: Among various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined
as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain
and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the
magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect
is significant and could be even dominant. In this article, we develop a model of a simultaneously
coupled piezomagnetic–flexomagnetic nanosized Euler–Bernoulli beam and solve the corresponding
problems. In order to evaluate the FM on the nanoscale, the well-known nonlocal model of strain
gradient (NSGT) is implemented, by which the nanosize beam can be transferred into a continuum
framework. To access the equations of nonlinear bending, we use the variational formulation.
Converting the nonlinear system of differential equations into algebraic ones makes the solution
simpler. This is performed by the Galerkin weighted residual method (GWRM) for three conditions
of ends, that is to say clamp, free, and pinned (simply supported). Then, the system of nonlinear
algebraic equations is solved on the basis of the Newton–Raphson iteration technique (NRT) which
brings about numerical values of nonlinear deflections. We discovered that the FM effect causes the
reduction in deflections in the piezo-flexomagnetic nanobeam.

Keywords: flexomagnetic; nanobeam; large deflection; NSGT; Galerkin method; Newton–Raphson
method

1. Introduction

To study the flexomagnetic (FM) effect and to better identify it, one can use the family close to it,
that is, the piezomagnetic effect. In piezomagnetic, simply by compressing or stretching materials, an
internal magnetic field is created in them. The piezomagnetic effect and its application can be seen
in many materials and structures. However, in addition to these very useful applications, there is
an important drawback that this effect can only exist in about 20 crystal structures with a specific
symmetrical classification. However, there is no such limit to the FM effect, and materials with wider
classes of symmetry can cause such a phenomenon. The flexomagnetic effect can be very strong and
effective, so that it may one day be used in nanosensors or nanometer actuators. As a brief explanation
of the FM effect, it can be noted that by bending an ionic crystal, the atomic layers are drawn inside
it, and it is clear that the outermost layer will have the most tension. This difference in traction in
different layers can cause ions to transfer to the crystal so much that they eventually create a magnetic
field. In other words, bending some materials creates a magnetic field, a corresponding phenomenon
called flexomagnetic effect. The effect of strain gradients shows that the importance of the FM effect
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in micro and nano systems is comparable to that of piezomagnetic and even beyond. Additionally,
flexomagnetic, unlike piezomagnetic, can be found in a wider class of materials. This means that
compared to piezomagnetic, which is invalid and inefficient in materials with central symmetry, there
is an FM effect in all biological materials and systems. These traits have led to a growing interest in
and research into the flexomagnetic effect in recent years [1,2]. Currently, the role of the flexomagnetic
effect in the physics of dielectrics has been investigated in some studies and has shown promising
practical applications [3–7]. On the other hand, the difference between theoretical and experimental
results shows a limited understanding in this field. This study examines current knowledge of FM
in engineering.

The flexomagnetic effect exists in many solid dielectrics, soft membranes, and biological filaments.
The flexomagnetic effect is introduced as the effect of size-dependent electromagnetic coupling due to
the presence of strain gradients and magnetic fields, and promises many applications in nano-electronic
devices (with strong strain gradients). Just as the piezomagnetic effect is expected to have important
applications in nano-engines and particles [8–12], so the FM effect can play this role as well. Different
fields of science are used to study nanodielectrics by considering the FM effect. These significant parts
can be examined from a chemistry and physics point of view, or they can be put under a magnifier in
the engineering and industrial aspects. In the engineering aspects, the study of external factors on
dielectrics and their mechanical and physical behavioral responses will naturally be the criterion for
evaluation. The purpose of this study is to evaluate this aspect in static large deflection analysis of a
nano actuator beam. A close look at the history of the study of the mechanical behavior of dielectrics
by including the FM effect does not show many studies [13–15]. These studies have generally looked
at small deformations (linear strains), which, while important, cannot be the criterion for designing
dielectric nanobeams. Definitely, the deformations should be considered as large as possible to obtain a
reasonable and reliable safety factor for optimizing these significant nano-electro-magneto-mechanical
systems’ components.

The present work accounts for the large deflections by adding the nonlinear terms of Lagrangian
strain using the von Kármán approach. The constitutive equations are expanded in line with the
classical beam theory. It is worth mentioning that the small scale is fulfilled conforming to the second
stress and strain gradients. These extra terms should result in two conflict responses, that is softening
and hardening in the nanoscale structure based on the literature. We perform the solution of acquired
equations, which govern the nonlinear bending of the nanobeam, on the basis of two step solution
techniques. The first one is the Galerkin weighted residual method (GWRM) which converts the
equations into nonlinear algebraic ones, then the Newton–Raphson technique (NRT), which solves
the nonlinear system of algebraic equations and gives the numerical values of displacements into x
and z directions. At last, pictorial results are evaluated to show the disagreements and dissimilarities
betwixt linear deflection and nonlinear one for the piezo-flexomagnetic nanosize beam.

2. Mathematical Model

Let us consider a piezomagnetic-flexomagnetic nanobeam (PF-NB) with squared cross section
of length and thickness L and h; see Figure 1. A uniform vertical static loading acts above the beam.
A magnetic potential is joint to the beam to simulate and act as a magnetic field. Moreover, the z-axis is
related to the transverse direction, whereas the neutral plane of the beam is coincident with the x-axis.
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Figure 1. A square (b = h) PF-NB clamped at both ends and exposed to a lateral uniform static loading 
beside an external magnetic potential. 

Follow up, the kinematic displacement for each node of the beam is utilized with the aid of the 
Euler–Bernoulli hypothesis [16,17]. Furthermore, the model is restricted with in-plane deformations. 
The rectangular displacements correspond with u1 and u3, respectively, for axial and transverse 
directions. However, such displacements for neutral plane are, respectively, regarded with u and w. 
Thus, one can give accordingly 
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Figure 1. A square (b = h) PF-NB clamped at both ends and exposed to a lateral uniform static loading
beside an external magnetic potential.

Follow up, the kinematic displacement for each node of the beam is utilized with the aid of the
Euler–Bernoulli hypothesis [16,17]. Furthermore, the model is restricted with in-plane deformations.
The rectangular displacements correspond with u1 and u3, respectively, for axial and transverse
directions. However, such displacements for neutral plane are, respectively, regarded with u and w.
Thus, one can give accordingly

u1(x , z) = u(x) − z
dw(x)

dx
(1)

u3(x, z) = w(x) (2)

The Von Kármán assumption tells us that the nonlinear terms related to the u can be excluded
from the Lagrangian strain formula because these terms are sufficiently small compared to the other
terms [18–24]. The general Lagrangian strain can be mentioned as

εi j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi
+
∂uk
∂xi

∂uk
∂x j

)
(3)

In regard to this approach, the nonzero nonlinear strain-displacement components can be derived
as follows

εxx =
du
dx
− z

d2w
dx2 +

1
2

(
dw
dx

)2

(4)

ηxxz =
dεxx

dz
= −

d2w
dx2 (5)

where Equations (4) and (5) calculate, respectively, the longitudinal strain and its gradient.
The stress-strain magneto-mechanical coupling relations in the one-dimensional framework can

be given owing to [13,14].
σxx = C11εxx − q31Hz (6)

ξxxz = g31ηxxz − f31Hz (7)

Bz = a33Hz + q31εxx + f31ηxxz (8)

where σxx is the static stress field component, Hz is the magnetic field component, Bz is the magnetic
flux (induction) component, C11 is the elastic modulus, f31 is the component of the fourth-order
flexomagnetic coefficients tensor, a33 is the component of the second-order magnetic permeability
tensor, q31 is the component of the third-order piezomagnetic tensor, g31 is the component of the
sixth-order gradient elasticity tensor, and ξxxz is the component of higher-order moment stress tensor.

The variational formulation accurately develops the characteristics relation of PF-NB, thusly

δU − δW = 0 (9)
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where δ is the symbol of variation, U is the strain energies, and W is created works by outer objects. In
such a way, the entire inner energy of the specimen is in the first variation which is equal to zero as
well. The strain energy respecting magneto-mechanical composition can be variated just like this (the
first variation)

δU =

∫
V

(σxxδεxx + ξxxzδηxxz − BzδHz)dV (10)

Equation (10) can be transformed with integration by parts on the basis of the one-dimensional
displacement field previously assumed as follows

δU = δΠMech
U1

+ δΠMag
U1

+ δΠMech
U2

+ δΠMag
U2

(11)

where

δΠMech
U1

= −

L∫
0

{
dNx
dx

δu +

[
d2Mx

dx2 +
d

dx

(
Nx

dw
dx

)
+

d2Txxz

dx2

]
δw

}
dx (12)

δΠMag
U1

= −

L∫
0

h/2∫
−h/2

dBz

dz
δΨdzdx (13)

δΠMech
U2

=

{
Nxδu− [Mx + Txxz]

dδw
dx

+

[
Nx

dw
dx

+
dMx
dx

+
dTxxz

dx

]
δw

}∣∣∣∣∣∣L
0

(14)

δΠMag
U2

=

L∫
0

(BzδΨ)

∣∣∣∣∣∣∣∣
h/2

−h/2

dx (15)

where Ψ is the variable of magnetic potential. The resultants of the stress field can be introduced along
the following lines

Nx =

h/2∫
−h/2

σxxdz (16)

Mx =

h/2∫
−h/2

σxxzdz (17)

Txxz =

h/2∫
−h/2

ξxxzdz (18)

In addition, the magnetic potential was introduced through the relation

dΨ
dz

= −Hz (19)

External forces (axial force as a result of the longitudinal magnetic field and the lateral loading)
create work thermodynamically in the particles so that the mathematical relation in the first variation
becomes [25].

δW =

L∫
0

[
N0

x

(
dδw
dx

dw
dx

)
+ p(x)δw

]
dx (20)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2020, 10, 1762 5 of 22

in which N0
x is the in-plane longitudinal axial force, and p is the lateral load per unit length. Taking into

account the closed circuit in conjunction with the inverse piezo case, the electrical boundary conditions
can be attributed as below

Ψ
(
+

h
2

)
= ψ (21)

Ψ
(
−

h
2

)
= 0 (22)

in which ψ is the external magnetic potential on the upper surface. Making in hand Equations (8), (13),
(15), (21) and (22) practicably expresses the magnetic field component and thereupon the magnetic
potential function in line with thickness as follows [13,14]

Ψ = −
q31

2a33

(
z2
−

h2

4

)
d2w
dx2 +

ψ

h

(
z +

h
2

)
(23)

Hz = z
q31

a33

d2w
dx2 −

ψ

h
(24)

On the basis of Equations (23) and (24), Equations (6)–(8) can be developed as

σxx = C11

du
dx

+
1
2

(
dw
dx

)2− z

C11 +
q2

31

a33

d2w
dx2 +

q31ψ

h
(25)

ξxxz = −

(
g31 +

q31 f31z
a33

)
d2w
dx2 +

f31ψ

h
(26)

Bz = q31

du
dx

+
1
2

(
dw
dx

)2− f31
d2w
dx2 −

a33ψ

h
(27)

Subsequently, Equations (16)–(18) can be rewritten in detail as

Nx = C11A

du
dx

+
1
2

(
dw
dx

)2+ q31ψ (28)

Mx = −Iz

C11 +
q2

31

a33

d2w
dx2 (29)

Txxz = −g31h
d2w
dx2 + f31ψ (30)

in which Nx, Mx, Txxz show the axial, moment, and hyper stress resultants, and Iz =
∫

A z2dA is the
area moment of inertia.

The resultant magnetic axial stress, which is achieved due to the longitudinal magnetic field,
based on Equation (28) can be determined as

NMag = q31ψ (31)

This force is supposed to act at both ends of the beam, thus

N0
x = NMag (32)

Eventually, imposing Equation (9), one can write the governing equations in a combination of
mechanical and magnetic conditions as

dNx
dx

= 0 (33)
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d2Mx

dx2 +
d2Txxz

dx2 +
(
N0

x + Nx

)d2w
dx2 +

dNx
dx

dw
dx
− p = 0 (34)

Due to being the nanobeam a size-dependent particle, the scale-dependent property should
be substituted in Equations (33) and (34). In [26], the second strain gradient of Mindlin merged
successfully with the nonlocal theory of Eringen. This model (NSGT) was incorporated in a lot of
research performed on the nanoparticles in recent years—see e.g., [27–38] and many others—and can
be a proper item at the nanoscale.

The model proposed by [26] can be compatible in our case as(
1− µ

d2

dx2

)
σNonLocal

xx =

(
1− l2

d2

dx2

)
σLocal

xx

or as (
1− µ

d2

dx2

)
σNonLocal

xx =

(
1− l2

d2

dx2

)C11

du
dx

+
1
2

(
dw
dx

)2− z

C11 +
q2

31

a33

d2w
dx2 +

q31ψ

h

 (35)

in which µ
(
nm2

)
is the nonlocal parameter, and l(nm) is the strain gradient parameter. Thus, l > 0

establishes a nonzero strain gradient into the model, and µ = (e0a)2 is the parameter defining
nonlocality. It is germane to note that both scale parameters are dependent on the physics of the
model and cannot be material constants [39,40]. This means the parameters are not constant values,
something like an elasticity modulus for each material.

To implement the influence of size effects into the equations, Equation (35) is plugged to Equations
(28)–(30) as

Nx − µ
d2Nx

dx2 =

(
1− l2

d2

dx2

)C11A

du
dx

+
1
2

(
dw
dx

)2
 (36)

Mx − µ
d2Mx

dx2 =

(
1− l2

d2

dx2

)−Iz

C11 +
q2

31

a33

d2w
dx2

 (37)

Txxz − µ
d2Txxz

dx2 =

(
1− l2

d2

dx2

){
−g31h

d2w
dx2 + f31ψ

}
(38)

Equations (33) and (34) by means of Equations (36)–(38) can be derived in the framework of
displacements, respectively, as series of models.

1.1. Piezo-flexomagnetic nanobeam (PF-NB)—Nonlinear case:

C11A
[

d2u
dx2 +

d2w
dx2

dw
dx
− l2

(
d4u
dx4

+
d4w
dx4

dw
dx

+ 3
d3w
dx3

d2w
dx2

)]
= 0 (39)

−g31h d4w
dx4 + q31ψ

d2w
dx2 − p− µ

(
−g31h d6w

dx6 + q31ψ
d4w
dx4 −

d2p
dx2

)
−µC11A

[
du
dx + 1

2

(
dw
dx

)2
]

d4w
dx4 + C11Aµl2

[
d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d4w
dx4

−µC11A
(

d2u
dx2 + dw

dx
d2w
dx2

)
d3w
dx3 + C11Aµl2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
d3w
dx3

−µC11A
(

d4u
dx4 + dw

dx
d4w
dx4 + 3 d3w

dx3
d2w
dx2

)
dw
dx + C11A

[
du
dx + 1

2

(
dw
dx

)2
]

d2w
dx2

+C11Aµl2
(

d6u
dx6 + dw

dx
d6w
dx6 + 5 d5w

dx5
d2w
dx2 + 10 d4w

dx4
d3w
dx3

)
dw
dx

−C11Al2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d2w
dx2 + C11A

(
d2u
dx2 + dw

dx
d2w
dx2

)
dw
dx

−Iz

(
C11 +

q2
31

a33

)(
d4w
dx4 − l2 d6w

dx6

)
−C11Al2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
dw
dx = 0

(40)
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1.2. Piezo-flexomagnetic nanobeam (PF-NB)—Linear case:

−g31h d4w
dx4 + q31ψ

d2w
dx2 − p− µ

(
−g31h d6w

dx6 + q31ψ
d4w
dx4 −

d2p
dx2

)
−Iz

(
C11 +

q2
31

a33

)(
d4w
dx4 − l2 d6w

dx6

)
= 0

(41)

2.1. Piezomagnetic nanobeam (P-NB)—Nonlinear case:

C11A
[

d2u
dx2 +

d2w
dx2

dw
dx
− l2

(
d4u
dx4

+
d4w
dx4

dw
dx

+ 3
d3w
dx3

d2w
dx2

)]
= 0 (42)

q31ψ
d2w
dx2 − p− µ

(
q31ψ

d4w
dx4 −

d2p
dx2

)
− µC11A

[
du
dx + 1

2

(
dw
dx

)2
]

d4w
dx4

+C11Aµl2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d4w
dx4

−µC11A
(

d2u
dx2 + dw

dx
d2w
dx2

)
d3w
dx3 + C11Aµl2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
d3w
dx3

−µC11A
(

d4u
dx4 + dw

dx
d4w
dx4 + 3 d3w

dx3
d2w
dx2

)
dw
dx + C11A

[
du
dx + 1

2

(
dw
dx

)2
]

d2w
dx2

+C11Aµl2
(

d6u
dx6 + dw

dx
d6w
dx6 + 5 d5w

dx5
d2w
dx2 + 10 d4w

dx4
d3w
dx3

)
dw
dx

−C11Al2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d2w
dx2 + C11A

(
d2u
dx2 + dw

dx
d2w
dx2

)
dw
dx

−Iz

(
C11 +

q2
31

a33

)(
d4w
dx4 − l2 d6w

dx6

)
−C11Al2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
dw
dx = 0

(43)

2.2. Piezomagnetic nanobeam (P-NB)—Linear case:

q31ψ
d2w
dx2 − p− µ

(
q31ψ

d4w
dx4
−

d2p
dx2

)
− Iz

C11 +
q2

31

a33

(d4w
dx4
− l2

d6w
dx6

)
= 0 (44)

3.1. Nanobeam (NB)—Nonlinear case:

C11A
[

d2u
dx2 +

d2w
dx2

dw
dx
− l2

(
d4u
dx4

+
d4w
dx4

dw
dx

+ 3
d3w
dx3

d2w
dx2

)]
= 0 (45)

−p + µ
d2p
dx2 − µC11A

[
du
dx + 1

2

(
dw
dx

)2
]

d4w
dx4

+C11Aµl2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d4w
dx4

−µC11A
(

d2u
dx2 + dw

dx
d2w
dx2

)
d3w
dx3

+C11Aµl2
(

d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
d3w
dx3

−µC11A
(

d4u
dx4 + dw

dx
d4w
dx4 + 3 d3w

dx3
d2w
dx2

)
dw
dx + C11A

[
du
dx + 1

2

(
dw
dx

)2
]

d2w
dx2

+C11Aµl2
(

d6u
dx6 + dw

dx
d6w
dx6 + 5 d5w

dx5
d2w
dx2 + 10 d4w

dx4
d3w
dx3

)
dw
dx

−C11Al2
[

d3u
dx3 + d3w

dx3
dw
dx +

(
d2w
dx2

)2] d2w
dx2 + C11A

(
d2u
dx2 + dw

dx
d2w
dx2

)
dw
dx

−IzC11
(

d4w
dx4 − l2 d6w

dx6

)
−C11Al2

(
d4u
dx4 + 3 d3w

dx3
d2w
dx2 + dw

dx
d4w
dx4

)
dw
dx = 0

(46)

3.2. Nanobeam (NB)—Linear case:

− p + µ
d2p
dx2 −C11Iz

(
d4w
dx4
− l2

d6w
dx6

)
= 0 (47)

4.1. Classic beam—Nonlinear case:

C11A
(

d2u
dx2 +

d2w
dx2

dw
dx

)
= 0 (48)
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− p + C11A

du
dx

+
1
2

(
dw
dx

)2d2w
dx2 + C11A

(
d2u
dx2 +

dw
dx

d2w
dx2

)
dw
dx
−C11Iz

d4w
dx4

= 0 (49)

4.2. Classic beam—Linear case:

−C11Iz
d4w
dx4

= p (50)

In what follows, we consider these cases in more details.

3. Solution Approach

The solution process here has two steps. The first step comes with the Galerkin weighted residual
method (GWRM) on the basis of the admissible shape functions which satisfy boundary conditions. The
second step is imposing the Newton–Raphson technique (NRT) in order to solve the system of nonlinear
algebraic equations originated from GWRM. The following displacements were employed [41].

u(x) =
∞∑

m=1

Um
dXm(x)

dx
(51)

w(x) =
∞∑

m=1

WmXm(x) (52)

where Um and Wm are unknown variables that determine displacements through two axes and should
be computed, whereas Xm(x) are shape functions, m is the axial half-wave number, and becomes
m = 1, 2, . . .∞. The allowable shape functions given below satisfy end conditions as [41].

S− S : Xm(x) = sin
(mπ

L
x
)

(53)

C−C : Xm(x) = sin2
(mπ

L
x
)

(54)

C− F : Xm(x) = sin
(mπ

4L
x
)

cos
(mπ

4L
x
)

(55)

in which S, C, and F mark one by one the simply-supported, clamped, and free end conditions. Here,
e.g., C-F means a side of the beam is inserted in a clamping fixture and the opposite side is free
and hanging.

Based on the Fourier sine series, the transverse load can uniformly behave on the nanobeam as
the following form [42,43].

p(x) =
∞∑

m=1

4p0

mπ
sin

(mπ
L

x
)

(56)

in which p0 is density of the lateral load. Inserting Equations (51), (52), and (56) into Equations (39)–(50),
and integrating over the axial domain based on the GWRM approach, one can obtain

L∫
0

[η(x)Ym]dx = 0 (57)

L∫
0

[ξ(x)Zm]dx = 0 (58)

in which η and ξ are the first and second equations, respectively, and Ym and Zm show the residuals.
Then, with ordering and arranging the aforesaid equations, one can receive the nonlinear algebraic
system of two equations and two unknown variables (when considering m = 1). To solve such a system,
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there are several methods. As long as the NRT converged the results very quickly and accurately, this
technique was employed here. A primary guess (U0 and W0) was required for results in this approach.
We can express the first iteration as [44].

U1 = U0 − J−1
×A0 (59)

W1 = W0 − J−1
×A0 (60)

where J denotes the Jacobian matrix 2 × 2 and A is a vector 2 × 1.

J =
∂A0

∂x
, (61)

A0 = e
(

U0

W0

)
(62)

where e is the governing equations with placing the first guesses. As a matter of fact, Equations (59)
and (60) are iterative equations that are

Un+1 = Un+1 − J−1
×An+1, (63)

Wn+1 = Wn+1 − J−1
×An+1 (64)

where n is the number of iterations to receive the convergence. A few iterations are enough to obtain
the desired accuracy. It is worth mentioning that the convergence and the expected accuracy were
completely dependent on the value of the primary guesses. Consequently, the solution led to numerical
values of displacements along axial and transverse axes. To plot the results for large deflections, we
needed to obtain the vertical displacement only, and the other will not be drawn.

4. Numerical Results and Discussion

4.1. Results’ Validity

Based on performing some comparative studies, the credit of the present results can be checked.
In so doing, in Table 1 a pinned–pinned nanobeam under a distributed uniform force is compared
with the linear schema. The maximum deflection which occurred at the center of the beam was in
a nondimensional state as proposed by [21,45]. A good harmony among the deflections’ values is
obviously seen from the Table. It is noteworthy that the classical dimensionless deflection is indicated
by e0a/L = 0. From the Table, it is found that the nondimensional maximum deflection increased as the
value of the nonlocal parameter increased.

Table 1. Dimensionless maximum deflection for a simply-supported nanobeam exposed to transverse
uniform loading.

L/h e0a/L EBT, Linear [21] EBT, Linear [45] EBT, Linear [Present]

10

0 0.013021 0.013021 0.013021
0.05 0.013333 0.013333 0.013333
0.1 0.014271 0.014271 0.014271

0.15 0.015833 0.015833 0.015833

For an explicit understanding, another comparison is tabulated by Table 2, for which a typical
macroscale beam was utilized under both fixed ends. The present results are validated with those of
the finite element method (FEM). Both the current and FEM approach are on the basis of linear analysis.
As FEM benefits from shear deformations, it gives higher deflections. It is notable in the Table that
enlarging the volume of the load resulted in the discrepancy of deflections. The FEM outcomes can be
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changeable due to many conditions in its process such as the number of elements, the kind of element,
the number of nodes, and the algorithm of meshing, etc.

Table 2. Maximum deflection (mm) for a clamped–clamped macro beam exposed to transverse uniform
loading (E = 210 GPa, h = 5 mm).

L/h p (kN/mm) EBT, Linear [Present] FEM, Linear [ABAQUS]

10

0.01 0.0792 0.0824
0.02 0.1585 0.1648
0.03 0.2377 0.2472
0.04 0.3170 0.3297

4.2. Discussion of the Problem

Here, just employing n = 4 gave the convergence in numerical results of the Newton–Raphson
solving technique. To the best of the authors’ knowledge, no paper exists that has studied large
deflections of a piezomagnetic nanosize beam with apparent flexomagneticity, unless otherwise stated.
Estimations hereon take the necessary properties for a piezomagnetic nanoparticle accorded by Table 3
as [13,14].

Table 3. Engineering necessary features of a piezomagnetic nanobeam with apparent flexomagneticity.

CoFe2O4

C11 = 286 GPa
q31 = 580.3 N/Ampere.m

a33 = 1.57 × 10−4 N/Ampere2

L = 10 h

In light of the lack of sufficient study on FM, we took f 31 = 10−9 N/Ampere, f 31 = 10−10 N/Ampere
as [13,14]. These two values were also theoretically obtained based on some simple assumptions and
cannot be the exact numeric values of the flexomagnetic parameter of the aforesaid material presented
in Table 3.

An NSGT case was chosen to consider nanoscale impacts. In this model, as can be observed
by Equation (31), there were two small scale factors. In point of fact, to determine the results of the
bending of the nanoparticle, the amounts of these two parameters are vital. Thus, by exploring within
the literature, one can find the 0.5 nm < e0a < 0.8 nm [46], and 0 < e0a ≤ 2 nm [47,48], unless otherwise
stated. The amount of strain gradient parameter was obtained in a similar size to the lattice parameter
of the crystalline structure [49]. This factor for the aforementioned material in Table 3 was obtained
in an experiment to change between 0.8 and 0.9 nanometers at a set temperature [50]. Hence, the
averaged value of the strain gradient parameter is selected as l = 1 nm.

4.2.1. Effect of Nonlinearity

To probe the numerical results, we first show the difference between the results of the linear and
nonlinear analyses. Figure 2 is provided for the fixed support, Figure 3 is produced for the hinge
support, and lastly, Figure 4 is presented for the cantilever nanobeam. It should be noted that all figures
in the results section were plotted in both linear and nonlinear modes for the piezomagnetic nanobeam
(P-NB), piezomagnetic-flexomagnetic nanobeam (PF-NB), and common nanobeam (NB). Let us come
back to Figures 2–4. First, a comparison of the figures shows a much smaller deflection which resulted
from the boundary condition of the fix versus the other ones. For this reason, a larger load amplitude
was selected to evaluate the results of the fixed–fixed support to better distinguish between linear and
nonlinear analyses. In the first figure, as can be seen, the results of the linear analysis were valid as
long as the deflection value did not reach 15% of the thickness, i.e., w < 0.15 h. Of course, it is important
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to note that according to the second figure and in the boundary condition of the hinge, this value was
w ≤ 0.1 h for NB and w ≤ 0.08 h for PF-NB. This means that if the deflections exceed these values, the
linear analysis is no longer valid, and we must use nonlinear analysis to examine the nanobeam’s
deflections. Considering Figure 4 for a more flexible beam with clamped-free end conditions represents
that the allowable value for NB was about w ≤ 0.2 h and for PF-NB, about w ≤ 0.1 h. It is relevant
to state that due to the C-F case, a very small lateral load was chosen because of the high deflection
capacity of the nanobeam in free conditions. Comparing the three figures, it is interesting to note that
the difference between the results of the linear and nonlinear analyses was greater in, respectively, C-F
> S-S > C-C boundary conditions, and the C-F boundary condition was more sensitive. It may be
concluded that nanobeams with end conditions with higher degrees of freedom require a more urgent
nonlinear analysis. Another result of these diagrams is that the deflections of magnetic nanobeam in
both linear and nonlinear analyses were smaller than that of the conventional nanobeam. In addition,
the difference between the results of the linear analysis was greater than that of the nonlinear analysis.
These results strongly suggest that nonlinear strains must be used for static deflection analysis in
materials, unless the loads are selected so that the deflections are within the range obtained for linear
analysis. By carefully examining the results in [14], which is based on linear analysis and a thickness
of 10 nm, it can be seen that the deflections in some diagrams of this reference (see Figure 3 of the
reference) were within the range, and in some others exceeded the obtained range (see Figure 4 of the
reference). Therefore, the linear analysis cannot always be valid, and certainly, nonlinear analysis is a
matter of need.
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4.2.2. Effect of Small Scale

In this section, the effect of small-scale parameters is examined, i.e., nonlocal and strain gradient
parameters. Figures 5 and 6 show the effect of variations in the value of the nonlocal parameter,
respectively, for S-S and C-F, and Figures 7 and 8 exhibit the effect of changes in the value of the
strain gradient parameter, respectively, for C-C and S-S. The first and second figure show that as the
nonlocal parameters increased, the deflections increased in all four cases examined. As a result, it can
be stated that the increase in the nonlocal parameter had a softening effect on the nanobeam material.
On the other hand, it is worth noting that as the numerical value of the nonlocal parameter increased,
this caused the difference between the linear and nonlinear analyses results. In fact, in the nonlocal
analysis of nanobeams, the effect of nonlinear analysis will be greater, and this requires that nonlinear
analysis be used to investigate nonlocal deflections. It is important to note that the effect of the nonlocal
parameter on the results of magnetic nanobeam was greater than that of the conventional nanobeam.
This result is due to the steeper slope of the results of this nanobeam with the increasing nonlocal
parameter. It is also interesting to say that the difference between the results of nonlinear and linear
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analyses in NB was much more than in PF-NB. From the third and fourth figures, which show the
effect of changes in the strain gradient parameter in two different boundary conditions, it is clear that
increasing this parameter led to a decrease in deflections of all cases and means that the increase in the
strain gradient parameter is a tightening effect inside the material. However, it is important to bear in
mind that this tightening effect will be greater in the case of a boundary with lower degrees of freedom.
As can be observed, in a nanobeam with a double-sided fixed boundary condition, the slope of the
reduction in the deflection’s results was much faster than in the case of the boundary conditions of the
double-sided hinged. It is also interesting to note that increasing the numerical value of the strain
gradient parameter will reduce the difference between the results of linear and nonlinear analyses, and
in very large values of this parameter, it can be explicitly stated that nonlinear analysis can be ignored
provided that small loads are applied.Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 22 
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4.2.3. Effect of Magnetic Field

The effect of the external magnetic field was dominant in the mechanical analysis of materials with
flexomagnetic capability, while the magnetic effect was inverse. For this purpose, based on Figures 9
and 10, the effect of increasing the magnetic potential in the positive magnetic field is presented in
two boundary condition states. Naturally, since the ordinary nanobeam does not have piezomagnetic
properties, increasing the magnetic potential will have no effect on this material model. For this reason,
the deflections of NB in different values of the external magnetic potential are constant. However, in
piezo-flexo nanobeams, with increasing external magnetic potential, the deflections decreased in both
linear and nonlinear states in both boundary conditions. Perhaps it can be interpreted that the effect of
the magnetic field shrinks the material, and eventually, the material became stiffer and in the case of
contraction, most of the deflections became smaller. As can be seen, in the linear analysis case, the
difference in results of the conventional and magnetic nanobeams was more visible. In fact, linear
analysis showed external effects with a slight exaggeration. Another interesting point is that increasing
the potential of external magnetic led to convergence of the results of linear and nonlinear analyses in
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the piezo-flexomagnetic nanobeam, but this convergence occurred faster in the boundary condition of
the hinge, so much so that in small amounts of external magnetic potential, the results of the linear
and nonlinear analyses were perfectly matched to each other. Figure 11 is also displayed to show
the impact of a negative magnetic field. The general conclusion that can be drawn from these three
figures is that in a positive magnetic field the effect of nonlinear analysis decreases and in contrast in a
negative magnetic field the influence of nonlinear analysis will be very prominent.Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 22 
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4.2.4. Effect of Slenderness Ratio

Figures 12 and 13 are drawn by defining the ratio of length to thickness as a slenderness coefficient
in the nanobeam. The first figure is reported for the boundary condition of the two heads of fix and the
second figure is plotted for the two heads of the hinge. As can be easily seen, increasing the slenderness
ratio led to an increase in static deflections in both linear and nonlinear states. Additionally, with
increasing this coefficient of the nanobeam, the difference between the results of linear and nonlinear
analyses increased significantly. In fact, this suggests that in large quantities of length, the linear
analysis presented completely erroneous results. On the other hand, in large quantities of slenderness
coefficient, the difference between the results of the magnetic nanobeam and common nanobeam in
linear mode were greater than in the nonlinear one, which proves that in large values of length, the
linear results showed, with magnification, the mechanical behavior of the magnetic nanobeam versus
the conventional nanobeam, and it cannot be true. It should be emphasized that this difference was
much greater in the results of the hinge boundary condition even with smaller loads, than in the results
of the clamp boundary condition.
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4.2.5. Effect of FM

In this subsection, the aim is to compare the difference in results when the substance has only a
piezomagnetic effect when the flexomagnetic effect is added to it. Figure 14 shows the results of the
nanobeam with two side clamps; in Figure 15, the nanobeam with two ends of the hinge is presented;
finally, Figure 16 shows the cantilever nanobeam. First, as can be seen, the nonlinear analysis reduced
the flexomagnetic effect. This result was obtained from the difference between the results of the P-NB
and PF-NB in both nonlinear and linear analyses of the figures. On the other hand, as is clear, the results
associated with the PF-NB were smaller than those of the P-NB. This finding can be interpreted in such
a way that the flexomagnetic effect will lead to more material stiffness, and as a result, the deflections
will be smaller while considering this effect. It has to be noted that the slight difference in the results
of P-NB versus those of the PF-NB was directly related to the values of the flexomagnetic modulus.
According to the references, the value of the parameter was almost based on the assumptions, and due
to the novelty, of the discovery of the flexomagnetic effect; the exact values of this parameter have not
yet been calculated. For this reason, it is not possible to say why the difference in results between P-NB
and PF-NB was high or low. Nevertheless, such a difference was also adequately large on a nanoscale.
It should be pointed out that the FM was more remarkable in C-C end conditions. This means that the
lower degree of freedom boundary condition increased the impact of FM.

In this study, we end the discussion with Figure 17, in which different values of the flexomagnetic
parameter were investigated. To carry out this, the w * was introduced which was the deflections of the
PF-NB divided by the deflections of the P-NB. As seen, there was no appreciable change in deflections
originated from FM in lower amounts of the FM parameter. The effect of FM on the P-NB became
outstanding for large values of FM, and the assumed value f 31 = 10−10 N/Ampere can affect to some
extent the behavior of the PF-NB.
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Figure 14. Transverse load vs. deflection for different cases of nanobeams (Ψ = 1 mA, l = 1 nm, e0a =

0.5 nm, C-C).
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5. Conclusions

Due to the FM influence being new and interesting, we took into account both piezomagnetic
and flexomagnetic effects together for a reduced scale thin beam. The geometrical nonlinearity which
induces the large deformations was also assessed. Applying the variational formulation derived the
favourable governing equations. To capture the consistent nanoscale effect, the NSGT was inserted into
the mathematical model. Transmuting the acquired relations based on the NSGT into the displacement
relationship gives an eligible equation, which stands to compute large deflections. The translation
and shifting of the nonlinear system of ordinary differential equations into the algebraic ones were
performed based on the GRWM. The GRWM concerning an analytical flow estimated clamped,
simply-supported, and free end conditions. Afterward, the numerical solution regarding NRT was
investigated. From the obtained results, one can briefly write

• In hinged–hinged nanobeams, linear deflections for a NB can be used in the range w ≤ 0.1 h, and
for a PF-NB, about w ≤ 0.08 h. This value in a double-fixed NB and PF-NB is in the range w <

0.15 h. However, for a cantilever case in NB, it is w ≤ 0.2 h and in PF-NB, it is w ≤ 0.1 h.
• The difference between the nonlinear analysis and the linear one will be more pronounced in the

boundary condition with higher degrees of freedom.
• Increasing the numerical value of the nonlocal parameter leads to a softening effect on the material,

and in contrast, increasing the numerical value of the strain gradient parameter leads to the
appearance of stiffness in the material.

• The effect of nonlinear analysis is greater in large values of nonlocal parameters and small values
of strain gradient parameters.

• The effect of nonlinear analysis on a nonlocal study is greater than a local one.
• The effect of nonlinear analysis in the positive magnetic field decreases. However, the opposite is

true in the case of a negative magnetic field.
• For nanobeams with very large lengths, linear analysis gives entirely erroneous results even if the

values of lateral loads are not large.
• The flexomagnetic effect leads to more material stiffness, and thus reduces the numerical values of

deflections in static analysis.
• The less flexible the boundary condition, the higher the flexomagneticity effect.
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Abstract 

We focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during 

post-buckling. An effective flexomagnetic property is also taken into account. The modelled 

sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms 

result in a mathematical model based on the nonlocal strain gradient elasticity approach 

(NSGT). Due to possible large deformations within a post-buckling phenomenon, the 

resultant equations are essentially nonlinear. We establish the results using an analytical 

approach, including a variety of boundary conditions. We visualize the effective response of 

the designed sensor for several key components. It was obtained that the flexomagnetic effect 

is meaningful for less flexible boundary conditions. Besides, it was found that the failure 

originated from post-buckling occurs sooner if the numerical amounts of nonlocal parameter 

and the strain gradient one are respectively so small and exceedingly large. 
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        Symbols 

zH      Magnetic field component 

xxz    Gradient of the elastic strain 

xx    Stress component 

 xx     Strain component 

xxz    Hyper stress 

zB          Magnetic flux component 

11C         Elasticity modulus 

xM         Moment stress resultant 

xxzT     Hyper stress resultant 

U           Strain energy 

            Symbol of variations 

xN         Axial stress resultant 

            Magnetic potential 

zI           Area moment of inertia 

       Nonlocal parameter (nm2) 

l                        Strain gradient parameter (nm) 

Y      Residue in the solution method 

1C     A constant 

2C     Integration constant 

W      Works done by external objects 

1u               Cartesian displacements along x axis 

3u               Cartesian displacements along z axis 

L                  Length of the beam 

h                  Thickness of the beam 

u                  Axial displacement of the midplane 

w               Transverse displacement of the midplane 

z                  Thickness coordinate 

31q    Component of the third-order piezomagnetic 

tensor 

31g         Component the sixth-order gradient elasticity 

tensor 

31f     Fourth order flexomagnetic component 

33a     Component of the second-order magnetic 

permeability tensor 
0
xN        Initial total in-plane axial force 

              Initial magnetic potential 

A               Area of cross-section of the beam 
pN    Post-buckling load 

1    Introduction 

Post-buckling and collapsing behavior are critical to the design of thin structures (Timoshenko 

& Gere, 1989, Falzon & Aliabadi, 2008, Amabili, 2008, Stevens et al., 1995, Eltaher et al., 

2019). Sensitive and certain industrial parts should sustain maximum loads and should be 

such as to prevent instability and unwanted buckling to avoid large deformations and 

collapsing. Post-buckling means the deformation of the structure after the start of buckling 

(bifurcation point), which helps to better understand the failure resistance of the structure after 
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the amount of unauthorized and unallowable in-plane loading. The behavior of post-buckling 

is a nonlinear one that occurs in a very short time. Also, self-contact may occur during post-

buckling due to the high deformation amount. The initial onset of buckling is related to the 

modes obtained from the modal frequency analysis of the structure. After bifurcation point, 

the structure has become to confront with a new pattern of deformation, that is a large 

deformation which buckling load at this time refers to failure of structure. Basically, 

bifurcation buckling cannot imply collapsing in the structure. 

Recently the interest grows to electro- and magnetorheological materials including such 

coupling higher-order phenomena as flexoelectricity and flexomagneticity, see, e.g. 

(Basutskar, 2019, Ghayesh and Farajpour, 2019, Ghayesh and Farokhi, 2020, Eremeyev et al., 

2020, Espinosa-Almeyda et al., 2020, Mawassy et al., 2020) and the references therein.  In 

particular, magnetic nanoparticles (MNPs) have attracted the attention of many researchers 

due to their exclusive features (Freitas et al., 2007, Justino et al., 2010, Reddy et al., 2012, Xu 

and Wang, 2012, Agrawal et al., 2014). Numerous applications are expected for MNPs based 

on fabricating and developing biosensors. Some of these applications can be stated as biology, 

clinics, foods, and environments sensors. MNPs can be involved in any substances that are 

excited by an outer magnetic potential, for example transducers. MNPs are classified into two 

main categories, paramagnetic and ferromagnetic. Their distinguishing feature appears after 

the removal of the external magnetic field. Thus, there is no magnetic property in 

paramagnetic particles after removing the outer magnetic field, while the magnetic property 

is preserved in ferromagnetic materials.  

In the group of MNPs and spinel ferrites, cobalt-ferrite magnetic nanostructures 

(CFMNs) with chemical symbol CoFe4O2 have highlighted the significant studies and 

technological applications. The number of published papers on cobalt-ferrite magnetic 
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nanostructures have been unprecedented during last two decades (Arvand & Hassannezhad, 

2014, Theres Baby & Ramaprabhu, 2010; Xin et al., 2013). Of applications of this kind of 

MNPs are in using electronic devices, optical and magnetic storage in light of its extraordinary 

features, such as high electromagnetic performance, mechanical hardness, chemical stability, 

coercivity and high saturation magnetization (Eliseev et al., 2009, Fahrner, 2005, Ju et al., 

2008). It should be borne in mind that the CFMNs structure is in the group of ferromagnetic 

materials. Electromagnetic coupling may influence on the instabilities of such rheological 

materials, see, e.g., (Broderick et al., 2020, Jalaei and Civalek, 2019, Malikan et al., 2020).  

Compared to piezomagneticity (PM), flexomagneticity (FM) is a pervasive property 

with less restrictive structural symmetry and therefore expands the choice of materials that 

can be used for sensors and electromechanical actuators (Eliseev et al., 2019, Kabychenkov 

& Lisovskii, 2019, Lukashev & Sabirianov, 2010, Moosavi et al., 2017, Pereira et al., 2012, 

Zhang et al., 2012, Zhou et al., 2014). Reduced dimensions would result in larger gradients. 

This means that the strain difference at a small distance leads to a larger strain gradient. In 

MNPs technology, the small length scale is discussed, and therefore this type of material will 

increase the effect of FM, which may even be competitive with PM. This issue is growing 

rapidly due to the new developments and progresses that have taken place in recent years, 

especially at the nanoscale. 

First, a brief introduction to the first theoretical research on the mechanical response of 

FM nanostructures is given. Theoretical research performed in the field of FM to elementary 

papers by Sidhardh & Ray, (2018) and Zhang, Zhang & Chen, (2019). These two early works 

studied FM in CFMNs within the analysis of static bending deformation. Both research works 

utilized small deformations and the corresponding domain was assumed as Euler-Bernoulli 

beam. In these papers, the results were demonstrated on the basis of both direct and converse 
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magnetization effects. The acting static load imposed on the vertical alignment of the domain 

was uniformly applied. The superiority of the second research against the former one can be 

presenting several boundary conditions in the study. However, both research studies didn’t 

show perfectly size-dependent influences. Although the surface effect was examined, the 

nonlocality as a prominent and well-known impact in nanoscale was not evaluated. Recently, 

Malikan & Eremeyev, (2020a) explored linear frequency behavior of CFMNs on the basis of 

Euler-Bernoulli type beam. The stress-driven nonlocal elasticity was substituted in the 

mathematics formulation in order to survey the size-dependent impacts. Their numerical 

outcomes affirm the behavior of FM is size-dependent. In a nonlinear investigation, Malikan 

& Eremeyev, (2020b) inspected nonlinear frequency response of CFMNs containing FM 

effect. To survey the size-dependent influences, they implemented the well-worked nonlocal 

strain gradient elasticity theory in the mathematical modeling process. Continuing the 

reported research performed on CFMNs involving FM, we have tried to analyze the post-

stability state of the CFMNs in what follows with FM impact. In accordance with the large 

deformation which occurs in post-buckling conditions, the nonlinear strains of Lagrangian are 

mixed with Euler-Bernoulli kinematic field which leads to a local constitutive equation. This 

equation is changed into a nonlocal post-buckling relationship based on the characteristic 

equation of the nonlocal strain gradient model. Theoretically, four boundary conditions have 

been estimated, that is, the beam-like sensor with pivot-pivot, fully fixed, pivot-fixed, and 

fixed-free ends. The assessment is associated with two cases of the sensor, the first one is 

considered having only PM property and the second one consists of FM with apparent PM. 

Besides, two states of buckling are investigated, the bifurcation point and its post-time. Later, 

by variations in fundamental parameters which are vital factors in designing sensors, we 

measure their influences on the basis of sketched graphical figures.  
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The paper is organized as follows; by means of Section 2 we present the mathematical 

modelling process of the analysis. Thereafter, Section 3 is associated with the solution 

methodology. Afterwards, Section 4 of the article considers a preliminary validation by 

reducing the model into a simple one. Later, Section 5 comes to exhibit a parametric study in 

order to investigate different factors applicable to affect mechanical behavior of the smart 

sensor. Finally, by assistance of the conclusion section, we briefly survey the present paper.   

2    Mathematical statement 

2.1 Basic formulation of structures involving PM and FM 

In continue with (Kabychenkov & Lisovskii, 2019, Eliseev et al., 2009, Lukashev & 

Sabirianov, 2010), the elasticity relations which govern the PM-FM structures would be 

introduced in what follows. The deformations are restricted to the infinitesimal ones on the 

basis of early isothermal. Thus, vector-values variables can be magnetic field H and 

displacements u as follows (H is a first-order tensor) 

( ) ( )u = u x , H = H x                                                                                                                     (1) 

in which x  denotes a position vector. The free energy density U based on the PM-FM can be 

written in the below form 

( )
1 1 1

:
2 2 2

:

U U= = −   + + +

−  − 

ε, η,H H a H ε :C :ε η g η ε r η

H q ε H f η

                                                  (2) 

in which the strain tensor is defined by ε . Moreover, the gradient of the strain tensor can be 

presented as below 

( )1
,

2

T  =  + =ε u u η ε                                                                                                       (3) 

  interprets the 3D nabla-operator. Different tensors are introduced by Eq. (2) for material 
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characterisitcs. Among the mentioned tensors; f is the fourth-order flexomagnetic tensor, C is 

the fourth-order elasticity coefficient tensor, the strain and strain-gradient tensors are coupled 

by r that itself is a fifth-order tensor, g is the sixth-order gradient elasticity tensor, a is the 

second-order magnetic permeability tensor, q is the third-order piezomagnetic tensor, and in 

addition, “∙”, “:”, and “⋮” define scalar (inner) products in spaces of vectors, second-order and 

third-order tensors, respectively. 

We will now present the relation between H through the magnetic potential  , 

= −H                                                                                                                                   (4) 

Static model of flexomagneticity is derived on the basis of principle of virtual work as 

A  =                                                                                                                                    (5) 

where 
V
UdV =  , and V is the volume of the domain occupying the flexomagnetic structure 

and A  expresses the work done by outer loads.  

To make the process simpler, a simple form is assumed as below 

V V

A ds  



=  +  F u t u                                                                                                                              (6) 

in which t and F illustrate surface traction and external forces. 

On the basis of the standard form of calculus of variations and regarding Eq. (5), one 

can get 

( ) −  + =σ ξ F 0                                                                                                                               (7a) 

0 =B                                                                                                                                   (7b) 

where B denotes the vector of magnetic induction.  

Hence, we introduce the following constitutive equations 

:
U

=  + − 


σ C ε r η H q
ε

                                                                                                                 (8a) 
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: :
U

=  + − 


ξ g η ε r H f
η

                                                                                                     (8b) 

:
U

= − =  + +


B a H q ε f η
H

                                                                                                             (8c) 

In what follows we consuider one-dimensional counterparts of these constitutive relations.  

2.2 The PM-FM beam-like sensor model 

The presented figures determine the physical conditions of the problem in mathematical 

definitions. Respectively, Figures 1, 2, and 3, display a fully fixed, fully pivot and cantilever 

beam-like smart sensor with both ends clamped-clamped, guided-guided and clamped-free. A 

magnetic field is perpendicularly applied which ensues an extra axial force. An axial 

mechanical load works on the beam to convey the post-buckling state. Boundary conditions 

are mathematically conducted on the figures. All the boundary objects are rigid. And the beam 

is configured in a square shape. 

 

Figure 1. A square beam-like nano sensor containing PM and FM embedded in fully fixed 

ends 
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Figure 2. A square beam-like nano sensor containing PM and FM embedded in pivot ends 

 

Figure 3. A cantilever square beam-like nano sensor containing PM and FM 

It is assumed that the magnetic sensor behaves like a beam structure. Thus, a thin beam 

approach is carried out as (Hamed et al., 2020, Reddy, 2010, Song & Li, 2007) 

( ) ( )
( )

1 ,
dw x

x z u x z
x

u
d

= −                                                                                                         (9) 

( ) ( )3 ,u x z w x=                                                                                                                         (10) 

As mentioned before, after buckling and bifurcation point, there would appear the large 

deformations. Hence, the formulation employs the nonlinear Lagrangian strains as 

22

2

1

2
xx

du d w dw
z

dx dx dx


 
= − +  

 
                                                                                                      (11) 
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2

2

xx
xxz

d d w

dz dx


 = = −                                                                                                                    (12) 

To expand the components of stress, hyper stress, and magnetic induction, one can write 

(Sidhardh & Ray, 2018, Zhang, Zhang & Chen, 2019). 

11 31xx xx zC q H = −                                                                                                                 (13) 

31 31xxz xxz zg f H = −                                                                                                                (14) 

33 31 31z z xx xxzB a H q f = + +                                                                                                     (15) 

To derive the characteristics equation, the following variational energy formula based on the 

Lagrange functional is defined 

( ) 0U W − =                                                                                                                               (16) 

The entire strain energy of the system is established as 

( )xx xx xxz xxz z z

V

U B H dV     = + −                                                                                (17) 

By computing the above equation, one can obtain the magnetic and mechanical parts of the 

strain energy as 

1 21 2

Mag MagMech Mech
U UU U

U    =  +  +  +                                                                                 (18) 

where 

1

2 2

2 2
0

L
Mech x x xxz
U x

dN d M d Td dw
u w N w w dx

dx dx dxdx dx
    

  
 = − + + +     

                                  (19) 

1

2

0 2

hL
Mag z
U

h

dB
dzdx

dz
 

−

 = −                                                                                                     (20) 

2

0

L

Mech x xxz
U x x xxz x

dM dTd w d w dw
N u M T N w w w

dx dx dx dx dx

 
    

 
 = − − + + +  

 
                     (21) 
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( )
2

/2

0 /2

h
L

Mag
zU

h

B dx 

−

 =                                                                                                         (22) 

Here we introduced the parameters as follows  

/2

/2

h

x xx

h

N dz
−

=                                                                                                                          (23) 

/2

/2

h

x xx

h

M zdz
−

=                                                                                                                        (24) 

/2

/2

h

xxz xxz

h

T dz
−

=                                                                                                                         (25) 

which specify the resultants of stresses on any element of the beam. The external factors, such 

as magnetic field and mechanical in-plane force, create the work on the system as (Malikan & 

Eremeyev, 2020c, d) 

2
0

0

1

2

L

x

dw
W N dx

dx

 
= −  

 
                                                                                                             (26) 

0

0

L

x

d w dw
W N dx

dx dx




 
= −  

 
                                                                                                       (27) 

There is a relation between the component of the magnetic field and the magnetic potential as 

z

d
H

dz


= −                                                                                                                               (28) 

Assuming the magnetic potential changes along the thickness of the beam and on the 

basis of converse effect description and closed circuit of the magnetic field, one can present 

the electrical boundary conditions as 

,  0
2 2

h h


   
 + =  − =   
   

                                                                                                      (29) 

Substituting and combining Eqs. (15), (20), (22), (28) and (29) and simplyfying rigorously, one 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


can achieve the magnetic potential and the relevance component as (Sidhardh & Ray, 2018, 

Zhang, Zhang & Chen, 2019) 

2 2
231

2
332 4 2

q h d w h
z z

a hdx

   
 = − − + +       

                                                                                   (30) 

2
31

2
33

z

q d w
H z

a hdx


= −                                                                                                                  (31) 

Consequently, by the help of Eqs. (11), (12), (30), and (31), one can re-write Eqs. (13)-(15) as 

2 2 2
31 31

11 11 2
33

1

2
xx

q qdu dw d w
C z C

dx dx a hdx




    
= + − + +           

                                                         (32) 

2
31 31 31

31 2
33

xxz

q f z fd w
g

a hdx




 
= − + + 

 

                                                                                       (33) 

2 2
33

31 31 2

1

2
z

adu dw d w
B q f

dx dx hdx

  
= + − −  

   

                                                                           (34) 

Let us write the local resultants of stresses as 

2

11 31

1

2
x

du dw
N C A q

dx dx


  
= + +  

   

                                                                                         (35) 

2 2

31
11 2

33

x z

q d w
M I C

a dx

 
= − + 

 
                                                                                                      (36) 

2

31 312xxz

d w
T g h f

dx
= − +                                                                                                            (37) 

Eq. (35) plays the role of axial stress resultant which consisted of both mechanical and magnetic 

terms. Therefore, the magnetic part can be provided as 

31

MagN q =                                                                                                                               (38) 

Then, the total axial loading can be noted as below 

0 p Mag
xN N N= +                                                                                                                               (39) 
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Ultimately the bond of all formulation will lead to local nonlinear equilibrium equations as 

follows 

0xdN

dx
=                                                                                                                                  (40) 

2 2 2
0

2 2 2
0x xxz

x x

d M d T d dw d w
N N

dx dx dx dx dx

 
+ + + = 

 
                                                                                           (41) 

Size-dependent properties should be established into the mathematical model in order 

to address nanoscale influences. The size-dependent model is not here restricted to the nonlocal 

interactions  of atoms, but it also considers the higher strain gradients in a constitutive postulate 

as follows (Lim, Zhang & Reddy, 2015) 

2 2
2

2 2
1 1NonLocal Local

xx xx

d d
l

dx dx
  

   
− = −   

   

                                                                                  (42) 

where ( )
2

0e a = . For applications of nonlocal approach to beam models we refer also to 

(Barretta and de Sciarra, 2019, Barreta et al., 2020).  

By developing Eq. (42) for the axial stress of present problem (Eq. (42)), one can see 

2 22 2 2
2 31 31

11 112 2 2

33

1
1 1

2

NonLocal

xx

q qd d du dw d w
l C z C

dx dx dx dx a dx h


 

         
− = − + − + +        

          

          (43) 

By integrating rigorously from both parts of Eq. (43) based on the dz and using Eqs. (23-25), 

one can express 

22 2
2

11 312 2

1
1

2

x
x

d N d du dw
N C A l q

dx dx dx dx
 

     
− = − + +     

      

                                                               (44) 

2 2 2 2
231

112 2 2

33

= 1x
x z

d M q d d w
M I C l

dx a dx dx


   
− − + −    

   

                                                               (45) 

2 2 2
2

31 312 2 2
1xxz

xxz

d T d d w
T l g h f

dx dx dx
 

  
− = − − +  

  

                                                                  (46) 

By re-writing Eq. (41) based on the first term and plugging it in Eq. (45), one can have (Karami 
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& Janghorban, 2019, Karami et al., 2020, Karami & Janghorban, 2020, Eyvazian et al., 2020, 

Li & Hu, 2017, Malikan et al., 2019, Malikan et al., 2020, Malikan et al., 2018, Sahmani & 

Safaei, 2019, Ebrahimi et al., 2019) 

2 22 2 4
0 231

112 2 2 4

33

= xxz
x x x z

d T qd dw d w d w d w
M N N I C l

dx dx dx dx a dx dx


     
− + + − + −     

      

                       (47) 

Since there are two unknown variables (u and w) in the equations, it would result in 

difficulties to solve the equations as far as there is a third unknown, which is post-critical 

buckling load (Np). Therefore, let us write the u based on the w as 

2

11 1

1

2
x

du dw
N C A C

dx dx

  
= + =  

   

                                                                                                        (48) 

Writing Eq. (48) based on the u and integrating gives 

2

1
2

110

1

2

L
Cdw

u dx x C
dx C A

 
= − + + 

 
                                                                                                         (49) 

Imposing the initial conditions as u(0)=u(L)=0, one can obtain 

2

11

0

=
2

L

x

C A dw
N dx

L dx

 
 
 
                                                                                                              (50) 

Thereafter, based on the Eqs. (39), (41), (47), and (50), the model of the problem can be 

formulated mathematically as a single integro-differential equation 

( ) ( )
4 2 6 4

31 31 31 314 2 6 4

2 24 3

11 11

4 3

0 0

22 2 3

11 11

2 2 3

0

2 2

2 2

p p

L L

L

d w d w d w d w
g h N q g h N q

dx dx dx dx

C A C Adw d w d dw d w
dx dx

L dx dx dx L dx dx

C A C Ad dw d w d dw
dx

dx L dx dx dx L dx

  

 

 

 
− + + − − + + 

 

      
− −      

         

   
− −   

    

 


2

0

2 22

11 11

2

0 0

2 4 6
231

11 4 6

33

2 2

0

L

L L

z

dw
dx

dx

C A C Adw d w d dw dw
dx dx

L dx dx dx L dx dx

q d w d w
I C l

a dx dx

 
 

  

      
+ +      

         

  
− + − =  

  



 
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3   Solution approach 

In this section, the aim is to solve the appropriate boundary conditions along with the nonlinear 

governing equation (Eq. (51)). Some admissible shape functions are described by which several 

end conditions are satisfied. The procedure is entirely analytical. However, as far as the 

boundary conditions seem to be homogeneous, the present analytical solution sounds like an 

exact solving method (Malikan & Eremeyev, 2020e). 

( ) ( )w x W X x=   (52) 

where the deflection resulted from post-buckling conditions is dedicated symbolically by W. 

The permissible shape functions appeared in the following can satisfy quite different end 

conditions (Malikan & Eremeyev, 2020e, Gunda, 2014). The notations are respectively 

allocated for guided or pivot (S), fixed or clamped (C) and free (F) border conditions (BCs) as 

follows 

SS: ( ) sinX x x
L

 
=  

 
 (53) 

CC: ( ) 2sinX x x
L

 
=  

 
 (54) 

CS: 
( ) ( ) ( ) ( )( )( )1 1 1 1 1

1 1

sin k 1

           0.1709382933,  k 1.4318

X x k x Lcos k x k L x L

L



 

= − + −

= =

 (55) 

CF: ( ) sin cos
4 4

X x x x
L L

    
=    

   
 (56) 

where for example CF accounts a side with free and another one with fully fixture conditions. 

Incorporating Eq. (51) with Eq. (52) and integrating over the length of the beam, one attains 

( ) 0p

L NL GK K N K X+ − =  (57) 
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After some algebra, one obtains the nonlinear algebraic equation that by computing the 

Np, that presents post-buckling loads for the magnetic beam-like sensor considering FM. The 

coefficients in Eq. (57) can be expanded as below 

( )1

0

L

LK x Y dx=     (58) 

( )2

0

L

NLK x Y dx=      (59) 

( )3

0

L

GK x Y dx=     (60) 

in which Y illustrates a residue, 1  to 3  are as follows: 

( )
4 2 6 4

1 31 31 31 314 2 6 4

2 4 6
231

11 4 6

33

z

d w d w d w d w
x g h q g h q

dx dx dx dx

q d w d w
I C l

a dx dx

   
 

= − + − − + 
 

  
− + −  

  

                                                   (61) 

( )
2 24 3

11 11
2 4 3

0 0

2 22 2 3

11 11

2 2 3

0 0

2 2

11

0

2 2

2 2

2

L L

L L

L

C A C Adw d w d dw d w
x dx dx

L dx dx dx L dx dx

C A C Ad dw d w d dw dw
dx dx

dx L dx dx dx L dx dx

C A dw d
dx

L dx

  

 

      
= − −      

         

      
− −      

         

  
+   

   

 

 


2

11

2

0

0
2

L
C Aw d dw dw

dx
dx dx L dx dx

  
+ =  

   


                                     (62) 

( )
2 4

3 2 4

d w d w
x

dx dx
 = −                                                                                                                (63) 

If we assume 0NLK = , the bifurcation buckling will result. 
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4    Validity 

To begin the discussion and results of the present study, a results comparison is required to 

verify the analytical solution’s efficiency and accuracy. This is performed regarding Tables 1 

to 4 (Wang et al., 2006, Pradhan & Reddy, 2011). In the existing data, bifurcation buckling of 

a common squared section nanoscale beam was investigated on the basis of the following 

elasticity properties; E=1TPa, υ= 0.19, the exact solution method (Wang et al., 2006) and 

differential transformed solution method (DTM) (Pradhan & Reddy, 2011). Both references 

benefited from the Euler-Bernoulli beam. All the boundary conditions examined in the present 

paper are validated. A reasonable agreement is observed between the present solution and those 

reported in (Wang et al., 2006, Pradhan & Reddy, 2011). 

Table 1. For a SS beam.  

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=4 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 4.8447 4.8447 4.84473 4.4095 4.4095 4.40953 3.4735 3.4735 3.47346 

12 3.3644 3.3644 3.36439 3.1486 3.1486 3.14859 2.6405 2.6405 2.64049 

14 2.4718 2.4718 2.47180 2.3533 2.3533 2.35330 2.0574 2.0574 2.05739 

16 1.8925 1.8925 1.89247 1.8222 1.8222 1.82222 1.6396 1.6396 1.63962 

18 1.4953 1.4953 1.49529 1.4511 1.4511 1.45109 1.3329 1.3329 1.33288 

20 1.2112 1.2112 1.21118 1.182 1.182 1.18201 1.1024 1.1024 1.10238 
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Table 2. For a CS beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 9.887 9.887 9.91111 8.2295 8.2295 8.24614 7.048 7.048 7.06015 

12 6.886 6.886 6.88271 6.0235 6.0235 6.03631 5.3651 5.3651 5.37530 

14 5.044 5.044 5.05668 4.5744 4.5744 4.58441 4.1844 4.1844 4.19285 

16 3.8621 3.8621 3.87152 3.5804 3.5804 3.58849 3.337 3.337 3.34403 

18 3.0516 3.0516 3.05898 2.873 2.873 2.87954 2.7141 2.7141 2.71998 

20 2.4718 2.4718 2.47777 2.3533 2.3533 2.35871 2.2456 2.2456 2.25057 

 

Table 3. For a CC beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 19.379 19.379 19.37895 13.8939 13.8939 13.89386 10.828 10.828 10.8288 

12 13.458 13.458 13.45760 10.652 10.652 10.56197 8.6917 8.6917 8.69178 

14 9.877 9.877 9.88721 8.2296 8.2296 8.22960 7.0479 7.0479 7.04799 

16 7.4699 7.4699 7.56990 6.5585 6.5585 6.55849 5.7854 5.7854 5.78550 

18 5.9811 5.9811 5.98115 5.3375 5.3375 5.33153 4.8091 4.8091 4.80918 

20 4.8447 4.8447 4.84473 4.4095 4.4095 4.40953 4.046 4.046 4.04607 
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Table 4. For a CF beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

(Wang 

et al., 

2006) 

(Pradhan 

& 

Reddy, 

2011) 

Present 

10 1.2112 1.2112 1.21118 1.1820 1.1820 1.18201 1.1542 1.1542 1.15422 

12 0.8411 0.8411 0.84109 0.8269 0.8269 0.82693 0.8132 0.8132 0.81323 

14 0.6179 0.6179 0.61795 0.6103 0.6103 0.61026 0.6027 0.6027 0.60277 

16 0.4731 0.4731 0.47311 0.4686 0.4686 0.46860 0.4641 0.4641 0.46417 

18 0.3738 0.3738 0.37382 0.3710 0.3710 0.37099 0.3682 0.3682 0.36821 

20 0.3028 0.3028 0.30279 0.3009 0.3009 0.30094 0.2991 0.2991 0.29910 

5    Discussion and results 

After the preliminary comparison, the nonlinear buckling and post-buckling behaviors of a 

CFMN comprising FM in a parametric study based on some examples are calculated. It is well-

established that a CFMN structure gives perceptibly FM effect in a nanosize (Sidhardh & Ray, 

2018, Zhang, Zhang & Chen, 2019, Malikan & Eremeyev, 2020a, b). Accordingly, the 

properties of CFMNs in the framework of magnetic and mechanics are available as (Pan et al. 

2003, Pan et al., 2005, Senthil et al., 2018) 

Table 5. Magneto-mechanical properties for CFMN beam-like nanosize sensors. 

CoFe2O4 

C11=286e9 N/m2 

f31=10-9 N/Ampere 

q31=580.3 N/Ampere.m 

a33=1.57×10-4 N/Ampere2 
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5.1    Size-dependent effects 

Due to the existence of two variable parameters in NSGT, their exact amounts are momentous. 

However, with regard to the literature (Ansari et al., 2010, Akbarzadeh Khorshidi, 2018), their 

values are dependent on several cases and there cannot be a constant value for each one in 

association with every nanomaterial.  

Figures 4 and 5 focus on the effect of size-dependent parameters on the buckling and 

post-buckling behaviors of the nanobeam. In the first figure, by assuming the nonlocal 

parameter to be constant, we evaluate the changes in the strain gradient parameter. All four 

cases of boundary conditions mentioned before are presented in these figures. It is important 

to note that the buckling’s results obtained linearly are represented by the index (L) and the 

post-buckling results obtained by nonlinear analysis are displayed by the index (NL). This is 

true for all diagrams. Moreover, CBL in all diagrams means critical load whether from buckling 

or post-buckling. The first point that we get to a superficial look at Figure 4 is that the strain 

gradient parameter has the greatest impact on the beam with the boundary condition of the two 

sides completely clamped. Interestingly, this effect decreases with an increase in the degree of 

freedom of border conditions. If we pay attention to Figure 4, this result is quite clear in the 

behavior of the curves. Thus, the changes in the strain gradient parameter, for example, have 

completely differentiated the slope of the beam’s results with the fully fixed boundary 

conditions. Another important point that can be obtained by looking more closely at this figure 

is that by increasing the values of the strain gradient parameter, the buckling and post-buckling 

results of each boundary condition are converging. This theorem can be interpreted as meaning 

that at very large values of the strain gradient parameter, the distance between the occurrence 

of buckling and the failure of the material will be smaller. Therefore, large values of this 

parameter indicate faster failure of the material. On the other hand, with a brief overview of 
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Figure 5, other points can be extracted. In this figure, in contrast to Figure 4, we assume the 

strain gradient parameter is constant and examine the changes in the nonlocal parameter. It is 

quite clear from Figure 5 that increasing the values of the nonlocal parameter decreases the 

results. However, this decreasing trend in the results of buckling analysis is more regular and 

with a certain harmony. Also, the severity in the decrease of the results, which is as a result of 

increasing the nonlocal parameter, in the buckling results is more than the post-buckling ones. 

In a point of fact, it can be said that the effect of the nonlocal parameter decreases after 

buckling. Another interesting result is that with increasing the nonlocal parameter, the distance 

between the curves related to the buckling and post-buckling results increases. Therefore, it 

can be stated that if the value of the nonlocal parameter is large, it indicates that the material 

fails later after buckling. As a final point obtained from Figures 4 and 5, it can be stated that 

the cantilever beam behind the buckle will be extremely weak compared to the other cases. 

This result can be understood by comparing the difference between the curves of the cantilever 

beam in the two states of buckling and post-buckling with other boundary conditions. 

 

Fig. 4. Size-dependent parameters vs. CBL for different cases of BCs (Ψ=1 mA, e0a=0.5 nm, 

L=10h) 
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Fig. 5. Size-dependent parameters vs. CBL for different cases of BCs (Ψ=1 mA, l=0.5 nm, 

L=10h) 

5.2    Magnetic field effect 

Assuming that a magnetic field surrounds the sensor, changes, and increases or even decreases 

the magnitude of the magnetic potential can be very important and have a significant impact 

on the mechanical behavior of the sensor. Hence, we would like to examine this effect with the 

help of Figure 6. The magnitude of the magnetic potential is considered from negative 2 to 

positive 2 to include both positive and negative external fields. First, it is interesting to know 

that increasing the numerical value of the external potential leads to an increase in the stiffness 

of the material and ultimately its greater stability. As can be seen from the curves, the increasing 

slope of the results is linear. In addition, the distances between the post-buckling results’ curves 

are longer than the buckling-related curves. This means that the boundary condition becomes 

more important in the post-buckling mode. On the other hand, the cantilever beam goes into 

buckling and post-buckling in negative values of external potential with a tensile axial force, 
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which of course other cases will experience, but later than the cantilever beam with a larger 

negative potential. 

 

Fig. 6. Magnetic potential vs. CBL for different cases of BCs (l=1 nm, e0a=0.5 nm, L=10h) 

5.3    Slenderness ratio effect 

The amount of narrowing of structures in buckling has always been a vital issue in their design. 

The ratio of length to thickness (slenderness ratio) in the design of beams and plates is a serious 

parameter for their stability. We will evaluate this for the nanosensor under study using Figures 

7 and 8. Figure 7 is plotted for the two boundary conditions CC and SS and Figure 8 is drawn 

for the two boundary conditions CS and CF. As can be seen from both figures, with increasing 

the slenderness coefficient of the beam, the results of buckling and post-buckling tend to each 

other. This means that in beams with long lengths and small thicknesses, the post-buckling 

state and failure occur in a very short time after buckling. It can even be said that in very long 

beams, buckling and post-buckling occur together. But if the slenderness coefficient of the 

beam is low, and it is better to say that if the length of the beam is not long, the material will 

fail after bifurcation buckling after a certain time, and this is better for the structure. Therefore, 
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in beam-like sensors with long lengths, designers should think of measures to prevent material 

failure with the occurrence of buckling. 

 

Fig. 7. Slenderness ratio vs. CBL for different BCs (Ψ=1 mA, e0a=0.5 nm, l=1 nm) 

 

Fig. 8. Slenderness ratio vs. CBL for different BCs (Ψ=1 mA, e0a=0.5 nm, l=1 nm) 

5.4    Flexomagneticity (FM) effect 
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The study of the effect of FM in post-buckling conditions is the main goal of this research. For 

this purpose, Figures 9 to 12 are drawn. In Figure 9 and the horizontal axis of the diagram, we 

examine the changes in the nonlocal parameter while the beam is embedded in the two 

boundary conditions CC and SS. The beam is modeled in two modes without FM effect (PM 

sensor) and considering this effect (PFM sensor). The same factors, however, are presented for 

the two boundary conditions CF and CS in Figure 10. Figures 11 and 12 are similar to Figures 

9 and 10, but with the difference that the horizontal axis of the diagrams shows the changes in 

magnetic potential. At the first glance, it can be seen that the flexomagnetic effect is noticeable 

when the boundary conditions are fully fixed in at least one of the two ends of the beam. It can 

be seen from the figures that in the CC and CS boundary conditions, the greatest effect can be 

obtained from the FM influence. On the other hand, the results of buckling and post-buckling 

load in PFM mode are larger, which indicates that the FM effect in the positive magnetic field 

leads to greater stability of the material. 

 

Fig. 9. Nonlocal parameter vs. CBL for different cases of BCs (Ψ=1 mA, l=0.5 nm, L=10h) 
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Fig. 10. Nonlocal parameter vs. CBL for different cases of BCs (Ψ=1 mA, l=0.5 nm, L=10h) 

 

Fig. 11. Magnetic potential vs. CBL for different cases of BCs (l=1 nm, e0a=0.5 nm, L=10h) 
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Fig. 12. Magnetic potential vs. CBL for different cases of BCs (l=1 nm, e0a=0.5 nm, L=10h) 

6    Conclusions 

Both bifurcation buckling and post-buckling phenomena for cobalt-ferrite magnetic 

nanostructures (CFMNs) were discussed in this paper while the magnetic nanoparticle (MNP) 

accommodated flexomagneticity (FM) influence. The mathematical model was derived 

according to the Euler-Bernoulli beam, nonlinear Lagrangian-von Kármán strains and nonlocal 

approach of strain gradient elasticity (NSGT). The buckling and post-buckling were 

analytically studied for changes in size-dependent parameters, slenderness ratio, magnetic field 

in the presence and absence of the FM when the ends conditions of the beam-like nanosensor 

were differed. This research work concluded that: 

• The post-buckling and failure resulted from it, would happen sooner for nanostructures 

whilst the values of strain gradient and the nonlocal parameters are respectively very 

large and negligible. 
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• In post-buckling, both small scale parameters affect remarkably results of boundary 

conditions with lower degrees of freedom. 

• In so-called lengthy sensors, critical buckling and post-buckling loads can occur 

simultaneously. This means, exactly at the time of critical buckling the structure will 

fail. 

• The boundary condition with lower degrees of freedom makes the flexomagnetic effect 

more pronounced. 
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Abstract: We  investigated  the  stability  of  an  axially  loaded  Euler–Bernoulli  porous  nanobeam 

considering  the  flexomagnetic  material  properties.  The  flexomagneticity  relates  to  the 

magnetization  with  strain  gradients.  Here  we  assume  both  piezomagnetic  and  flexomagnetic 

phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar 

to flexoelectricity, the flexomagneticity  is a size‐dependent property. Therefore,  its effect  is more 

pronounced at small scales. We merge the stability equation with a nonlocal model of the strain 

gradient elasticity. The Navier  sinusoidal  transverse deflection  is employed  to attain  the critical 

buckling  load.  Furthermore,  different  types  of  axial  symmetric  and  asymmetric  porosity 

distributions are studied. It was revealed that regardless of the high magnetic field, one can realize 

the flexomagnetic effect at a small scale. We demonstrate as well that for the larger thicknesses a 

difference between responses of piezomagnetic and piezo‐flexomagnetic nanobeams would not be 

significant. 

Keywords: flexomagneticity; stability analysis; Euler–Bernoulli beam; porous nanobeam 

 

1. Introduction 

Flexomagneticity arises through elastic strain gradient or magnetic field gradient during electric 

magnetization in the magneto‐elastic coupling in smart structures and actuators [1–3]. Such an effect 

should  be  significant  in  nano  electro‐mechanical  systems  (NEMS)  and  other  smart  sensors  and 

actuators. Similar to this influence, viz. flexoelectricity for centrosymmetric and non‐centrosymmetric 

structures  has  been  estimated widely  [4–19]. However,  the  flexomagneticity  effect  has  been  less 

known. Although the structure and physics of a flexomagneticity phenomenon are very complicated, 

it  has  economic  implications.  Physically,  it  may  be  difficult  to  interpret,  but  the  basic  idea 

satisfactorily shows the importance of flexomagneticity. 

In discussing a mechanical response of nanomaterials with magneto‐mechanical coupling, the 

importance of piezomagneticity has been profoundly  evaluated by  scholars  in  the  contemporary 

decade  [20–39]. However,  fewer  studies  are  available  regarding  flexomagneticity  [40–45].  In  the 

available  literature,  Sidhardh  and Ray  [40] worked on  the bending  response of  a  thin  cantilever 

nanobeam with flexomagnetic property. They discussed both direct and reverse impacts of magneto‐

elastic coupling with the presence of the surface elasticity. Zhang et al. [41] conducted the importance 
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of flexomagneticity for a nanoscale size‐dependent Euler‐Bernoulli beam exposed to transverse static 

loading. To present the size‐dependent mechanical behavior of the structure, they utilized the surface 

elasticity. Both direct and converse flexomagnetic influences were investigated when the nano‐sized 

beam  was  kept  in  ends with  fixed,  pivot,  and  free  edge  conditions.  One  of  their momentous 

achievements  was  the  conclusion  that  the  flexomagneticity  is  a  scale‐dependent  property  of 

materials. Recently, Malikan and Eremeyev  [42]  investigated vibrating nanobeams by  taking  into 

account  the piezomagnetic, particularly  flexomagnetic, properties. The  free vibration  frequencies 

were evaluated by linear assumptions of strain and the impact of size‐dependency was inspected on 

the basis of a new nonlocal elasticity theory. The size‐dependent behavior of the flexomagnetic effect 

was  affirmed  by  their  results.  In  another  effort,  Malikan  and  Eremeyev  [43]  explored  the 

flexomagnetic  response of a smart nanobeam  in a vibrational condition based on  large  frequency 

modes. The small scale response of the nanoscale beam was searched by imposing a nonlocal strain 

gradient elasticity approach  into the constitutive equations. Besides these, Malikan and Eremeyev 

[44] performed research on non‐linear static bending of smart nanoscale beams while the material 

included a remarkable flexomagnetic response. The computational model was solved by coupling 

between  an  analytical  and  numerical  solution method.  The  new  finding  demonstrated  that  the 

presence of the flexomagnetic feature leads to diminishing the deflections. More recently, Malikan et 

al.  [45]  examined  post‐buckling  stability  of  a  nanoparticle  in  which  both  flexomagnetic  and 

piezomagnetic properties were included. The calculations extracted new findings that are helpful for 

magnetic nanosensors applications. 

To  the  best  of  our  knowledge,  the  flexomagnetic  studies  on  the  mechanical  response  of 

nanostructures referred to above represent the majority of cases in the literature, unless otherwise 

stated.  In  these  references,  the models  are  restricted  to  piezomagnetic  nanobeams  under  some 

mechanical analyses. The present research attempts to demonstrate the flexomagnetic property for 

the stability problem of a nano‐sized beam, while it includes a material imperfection with intentional 

nonlocality and size‐dependent characteristics according to the nonlocal strain gradient constitutive 

equation. The structural and material imperfection is estimated in the framework of different types 

of  porosities.  The  nonlocal  influences  that  can  affect  the  flexomagnetic  response  of  the  Euler–

Bernoulli nanoscale beam are addressed in this paper. A sinusoidal transverse deflection is assumed 

when applying  the Navier approach to beam flexure. Terminally,  the nanobeam  is considered  for 

variations  of  key  parameters  based  on  the  three  cases,  i.e.,  a  simple  nanobeam,  piezomagnetic 

nanobeam, and piezo‐flexomagnetic nanobeam. 

2. Formulation of the Problem 

2.1. Constitutive Relations for Piezo‐Flexomagnetic Solids 

Pursuing  [1–3], we briefly  introduce  constitutive  relations  for  flexomagnetic material.  In  the 

following,  we  assume  infinitesimal  deformations  under  isothermal  conditions.  Therefore,  the 

variables are the displacements u and the magnetic field is H as below 

   ,u u x  H=H x .  (1)

where x is a position vector, and H  is a  tensor of  first‐order. Within  the  flexomagneticity,  the  free 

energy density function U has the form 

 U U H H a H C g r

H q H f

1 1 1
, , : : :

2 2 2
:

       

 

       

   

  


.  (2)

where     is the strain tensor and its gradient is 

 Tu u  
1

,
2

       .  (3)

where    is the 3D nabla‐operator in a general case. We introduced to Equation (2) several tensors 

of material parameters. q  is  the  third‐order piezomagnetic  tensor, a  is  the  second‐order magnetic 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Symmetry 2020, 12, 1935  3  of  16 

 

permeability  tensor, g  is  the  sixth‐order gradient  elasticity  tensor, C  is  the  fourth‐order  elasticity 

coefficient tensor, f is the fourth‐order flexomagnetic tensor, and the strain and strain‐gradient tensors 

are coupled by r, which itself is a fifth‐order tensor. Moreover, “∙”, “:”, and “⋮” stand for scalar (inner) 
products in spaces of vectors, second‐order and third‐order tensors, respectively. 

In the following, we express H through the magnetic potential ψ [40,41], 

H   .  (4)

The governing equations of the static flexomagneticity can be derived using the virtual work 

principle as 

A  .  (5)

in which 
V
UdV   , where V is the volume of domain that occupies the flexomagnetic solid and 

A   is the work of external loads. 

For simplicity, we assume the simple form of 

V V

A F u t uds  


     .  (6)

where F and t are external mass forces and surface traction. 

Using the standard calculus of variations from Equation (5) we get 

  F 0     ,  (7a)

B 0  .  (7b)

in which  B  is the magnetic induction vector. The following constitutive equations are introduced 

U
C r H q:  




    


 ,  (8a)

U
g r H f: :  




    


,  (8b)

U
B a H q f

H
:  

     


 .  (8c)

2.2. The Piezo‐Flexomagnetic Beam Model 

The piezo‐flexomagnetic nanobeam studied in this research is exhibited in Figure 1. In the figure, 

length and height of the beam are denoted by L and h, respectively. 

 

Figure 1. Geometry and description of a continuum nanobeam as a square actuator installed on simple 

end conditions. 
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The  constitutive  equations  (Equation  (8))  can  be  re‐written  for  a  beam  incorporating  the 

flexomagnetic property as [40,41] 

p
xx xx zC q H11 31   ,  (9)

xxz xxz zg f H31 31   ,  (10)

z z xx xxzB a H q f33 31 31    .  (11)

in which 
xxz   and   xx   are the gradient of the axial elastic strain and the strain itself,  11 1111C C  

is the elastic modulus,  xx   is the axial stress,  31 3311f f   denotes the component of the fourth‐order 

flexomagnetic  coefficients  tensor, 
33a   represents  the  component  of  the  second‐order magnetic 

permeability tensor, 
31 311q q   depicts the component of the third‐order piezomagnetic tensor, 

xxz  

is the component of the higher‐order hyper stress tensor and is an induction of coverse flexomagnetic 

effect, 
zB   and  zH   exhibit the magnetic flux and the component of magnetic field, respectively, and 

31 311311g g   illustrates  the  influence  of  the  sixth‐order  gradient  elasticity  tensor.  It  is  worth 

mentioning that the piezomagnetic tensor would be non‐zero for non‐centrosymmetric ferroics only, 

but the flexomagnetic tensor would be non‐zero for both centrosymmetric and non‐centrosymmetric 

materials. 

The displacement field with respect to the Euler–Bernoulli beam is available as [46–48] 

     
 1 ,

dw x
x z u x zu

dx
, 

   3 ,u x z w x . 

(12) 

where ui (i = 1,3) represent the points’ displacements in direction of x and z, u and w are the axial and 

transverse  displacements  of  the  mid‐plan,  respectively,  see  Figure  1.  To  show  the  thickness 

coordinate, the z parameter is used. 

Due to the linear problem studied in this research, the linear Lagrangian strain can be employed 

as 

1

2

ji
ij

j i

uu

x x


 
  
   

.  (13)

The components of the transverse strain and the strain gradient can be presented on the basis of 

substituting Equation (12) into Equation (13) as below 
2

2xx

du d w
z

dx dx
   , 

2

2

xx
xxz

d d w

dz dx


    , 

3

3

xx
xxx

d d w
z

dx dx


    . 

(14) 

As the  xxx
   is small compared  to  the  xxz

 ,  it can be  ignored. With respect  to the Lagrange’s 

principle, we have 

  0W U    .  (15)

in which W   and  U   depict  the  performed work  by  outer  loads,  and  the  total  internal  strain 

energy (magnetic potential energy and mechanical strain energy). The total strain energy by means 

of Equation (14) can be demonstrated as 

 U xx xx xxz xxz z zV
B H dV         .  (16)

One can obtain the governing equation and non‐classical boundary conditions as below 
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1

2 2

2 2
0

L
Mech x x xxz
U

dN d M d T
u w w dx

dx dx dx
   

 
     
 
 
 ,  (17a)

2

2

0 2

hL
Mag z
U

h

dB
dzdx

dz
 



     ,  (17b)

1

0

L

Mech x xxz
U x x xxz

dM dTd w d w
N u M T w w

dx dx dx dx

    
 
      
 
 

,  (18a)

 
2

/2

/2
0

L
hMag

zU h
B dx 


   .  (18b)

in which 

/2

/2

h

x xx

h

N dz


  ,  (19)

/2

/2

h

x xx

h

M zdz


  ,  (20)

/2

/2

h

xxz xxz

h

T dz


  .  (21)

The performed work by external factors can be expressed as below [49,50] 

2
0

0

1

2

L

W x

dw
N dx

dx

 
   

 
 .  (22)

Its first variational form is 

0

0

L

W x

d w dw
N dx

dx dx

  
   

 
   (23)

in which  0
xN   shows the axial membrane load. 

Hereafter, the magnetic field’s transverse component can be expressed as 

0z

d
H

dz


  .  (24)

Assuming the condition of a closed circuit as well as the inverse piezomagnetic effect, one gives 

the magnetic boundary conditions as 

2

h  
   
 

,  (25a)

0
2

h 
   
 

.  (25b)

where    determines the external magnetic potential applied to the upper surface of the beam. With 

mixing Equations  (11),  (17b),  (18b),  (24)  and  (25),  one  can derive  the magnetic  polarization  and 

magnetic field as [40,41] 

2 2
231

2
332 4 2

q h d w h
z z

a hdx

   
            

,  (26)

2
31

2
33

z

q d w
H z

a hdx


  .  (27)
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The  nanoscale  atomic  interactions  can  be  projected  in  a  continuum  space  by means  of  the 

nonlocal strain gradient elasticity theory (NSGT) given as [51] 

2 2
2

2 2
1 1NL L

xx xx

d d
l

dx dx
  

   
        

   
.  (28)

In  order  to  allocate  the  influence  of  nonlocality,  namely  stiffness‐softening,  the  nonlocal 

parameter μ  (unit: square nanometers =  2nm )  is employed. Note  that     2 2

0nm e a  ,  in which 

0e   and  a   are two small scale factors that determine the nonlocal parameter. Furthermore, in order 

to  set  the  effect of  the  size deduction, namely  stiffness‐hardening,  the   l nm   parameter  is used, 

which is named as the strain gradient length scale parameter. It is to be noted that [52,53] confirmed 

the  fact  that  the  aforesaid  small  scale  factors  are  not material  constants  and  can  be  varied  by 

respecting  a  variety  of  conditions. Additionally,  the NL  and  L  indexes  respectively  express  the 

nonlocal and the local components of stress. 

Thus,  inserting Equations  (26)–(28)  into Equations  (9)–(11),  it  is possible  to present  the stress 

field  component,  the  higher‐order  moment  stress  tensor  component,  and  magnetic  induction 

component in the NSGT form as 

22 2 2
2 31 31

11 112 2 2
33

1 1
p p

xx

q qd d du d w
l C z C

dx a hdx dx dx


 

     
                      

,  (29)

2 2 2
2 31 31 31

312 2 2
33

1 1xxz

q f z fd d d w
l g

a hdx dx dx


 

      
                       

,  (30)

2 2 2
2 33

312 2 2
1 1z

ad d d w
B l f

hdx dx dx




     
              

     
.  (31)

Hence, on the basis of Equations (29)–(31), Equations (19)–(21) can be expanded as [54–61] 

2 2
2

11 312 2
1 1 p

x

d d du
N l C h q

dxdx dx
 

     
                

,  (32)

22 2 2
2 31

112 2 2
33

1 1 p
x z

qd d d w
M l I C

adx dx dx


     
                     

,  (33)

2 2 2
2

31 312 2 2
1 1xxz

d d d w
T l g h f

dx dx dx
 

     
              

     
.  (34)

in which 
2

z
A

I z dA   is the moment of inertia. 

Due to inevitable variations in the manufacturing processes, the presence of some porosity in 

nanobeams  is  unavoidable.  Inclusion  of  this  imperfection  into  mechanical  analysis  of  the 

piezomagnetic‐flexomagnetic nano‐sized beam is performed as [62] 

  2.3

11 11

1.21

1.21

p x
C C

 
   

 
  (35)

where α denotes the porosity coefficient. Axial porosities are defined mathematically and analytically 

in Table 1 [62]. 
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Table 1. Axial porosity distribution patterns. 

Porosity Type   x   Ranges of    

“O” type distribution 
2
1 sin x

L

  
 
 

  0 0.344   

“O ” type distribution 
2
2 1 sin x

L


  
  

  
  0 0.112   

“X” type distribution  1 2 sin x
L

   
 
 

  0 0.197   

“X ” type distribution  1 2 1 sin x
L

 
  
  

  
  0 0.197   

Uniform type distribution  1  0 0.85   

1 2

  , 2 2







  

On the basis of Equations (17a) and (23), and replacing into Equation (15), one can derive the 

local governing relations as below 

 0xdN

dx
,  (36)

  
2 2 2

0

2 2 2
0x xxz

x

d M d T d w
N

dx dx dx
.  (37)

Equations  (36) and  (37) are decoupled and  thus, Equation  (37) gives  the stability equation  in 

order to have values of critical buckling loads.

 Thus, we should transfer the local stability equation (Equation (37)) to a size‐dependent relation. 

In so doing, inserting Equation (37) into Equation (33), one gets 

2 22 2 2
0 231

112 2 2 2
33

= 1pxxz
x x z

d T qd w d d w
M N I C l

adx dx dx dx

     
                 

.  (38)

Then, Equation (37) can be re‐derived by mixing Equation (38) and Equation (34) as follows 

2 4 2 2 4
0 2

2 4 2 2 4
1 1 0x

d d w d w d d w
B N D l

dx dx dx dx dx


     
              

     
.  (39)

in which 
31B g h  , and 

2
31

11
33

p
z

q
D I C

a

 
   
 
 

. 

Here, it is required to define the pre‐buckling compression as membrane loads as 

0 MagMec
x

hN N N .  (40)

where 
MechN   and 

MagN   are  the  axial membrane magnetic  and mechanical  loads  assumed  as 

follows: 

Mech
crN P  ,  (41a)

31
MagN q   .  (41b)
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3. Solution of the Problem 

Regarding  the  analytical  closed‐form  solution, we  apply  the  following  transverse deflection 

equation 

   
1

m
m

w x X x




 
. 

(42)

in  which  m
X   is  an  allowable  function  satisfying  the  boundary  conditions  of  simply‐simply 

supported (S‐S) for two ends. 

The dedicated kinematic and nonlocal strain gradient constitutive boundary conditions for the 

S‐S nanobeam are expressed by Table 2 [63–66] 

Table 2. Constitutive boundary conditions for S‐S. 

Nonlocal Strain Gradient Conditions at   

(0, L) 

Local Conditions   

( 0l   ) at (0, L) 

w = 0 
22 2

2 0

2 2 2
1 0xxz

nl l x

d Td d d w
M l M N

dxdx dx dx


  
           

* 

2

312
0xxz

d w
T B f

dx
    

w = 0 
2

2
0

l

d w
M D

dx
   * 

2

312
0xxz

d w
T B f

dx
    

* Sub‐indexes (nl and l) are nonlocal and local phases, respectively. 

The pointed conditions in Table 2 may be satisfied by the admissible function given below [57] 

   sin
m m
X x x .  (43)

in which 
m

m

L

 
. 

Substituting Equation (42) into Equation (39), the closed‐form size‐dependent buckling relation 

for the piezo‐flexomagnetic nanobeam becomes 

       

 

     



2 6 4 2

31 31

4 2
0

L
m m m

cr m

m m

B l D B q D q
P Y dx .  (44)

in which  m
Y   is a residue. It is important to bear in mind that all of the results of the present work 

are given for m = 1. 

4. Numerical Results 

4.1. Validation of Results 

The  literature  survey  clearly  and obviously  showed  that  the  static bifurcation buckling of  a 

piezo‐flexomagnetic nanobeam has not been studied thus far. Therefore, the only path to validate 

correctness  of  the  formulation  is  neglecting  piezomagneticity,  flexomagneticity,  and  the  strain 

gradient model  to compare  the  results with a nano‐sized circular beam  [67,68]. Both parts of  the 

literature  employed  a  classical  beam,  however,  ref.  [67]  used  the differential  transform  solution 

method and ref. [68] used an explicit solution method. As can be shown from Table 3, our results are 

entirely matched with the literature. 
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Table 3. Critical loads’ validation with literature (E = 1 TPa, ν = 0.19, d = 1 nm). 

PCr (nN) 

L (nm) 
μ = 0 nm2 μ = 1 nm2  μ = 4 nm2 

[67]  [68]  Present  [67]  [68]  Present  [67]  [68]  Present 

10  4.8447  4.8447  4.8447  4.4095 4.4095 4.4095 3.4735  3.4735  3.4735 

12  3.3644  3.3644  3.3644  3.1486  3.1486  3.1486  2.6405  2.6405  2.6405 

14  2.4718  2.4718  2.4718  2.3533  2.3533  2.3533  2.0574  2.0574  2.0574 

16  1.8925  1.8925  1.8925  1.8222  1.8222  1.8222  1.6396  1.6396  1.6396 

18  1.4953  1.4953  1.4953  1.4511  1.4511  1.4511  1.3329  1.3329  1.3329 

20  1.2112  1.2112  1.2112  1.182  1.182  1.182  1.1024  1.1024  1.1024 

4.2. Stability Analysis 

Investigating the flexomagneticity effect on the stability of a nanostructure is the main goal of 

this work. Table 4 presents applied material properties  [40,41]. To  take a  rational amount  for  the 

nonlocal parameter, 0.5 nm < e0a < 0.8 nm [69], and 0 < e0a ≤ 2 nm [70,71], are utilized. 

Table 4. Material parameters of the piezo‐flexomagnetic nanobeam. 

CoFe2O4 

C11 = 286 GPa 

q31 = 580.3 N/A.m 

a33 = 1.57 × 10−4 N/A2 

(A = Ampere) 

Given Figure 2a, the nonlocal coefficient variations are plotted for four nanobeam states. That is, 

first, we have just the usual nanobeam by eliminating magnetic effects; the latter is a state where we 

merely have the piezomagnetic effect and finally the third and fourth states are when we have both 

the piezo‐ and flexomagnetic effects but with two different values of flexomagnetic property. As is 

clear from the figure, increasing the numerical value of the nonlocal parameter reduces the critical 

loads in all four states. Thereby, one of the important results of this graph is that when we consider 

a  positive magnetic  field  and  we  have  the  piezomagnetic  as  well  as  flexomagnetic  effect,  the 

nanobeam has greater stability against the axial membrane forces. Furthermore, while purely having 

the  piezomagnetic  effect,  the  least  stability  is  observed  for  the magneto‐mechanical  nanobeams. 

Further investigation is needed and is shown by the next figures. On the other hand, Figure 2b shows 

a  comparison  of  both  piezomagnetic  and  piezo‐flexomagnetic  nanoscale  beams while  the  strain 

gradient parameter is the changeable factor of the horizontal axis of the figure. As it is clarified by 

Figure 2b, it is noteworthy to say that increasing the strain gradient parameter results in a decrease 

in  difference  between  the  results  of  the  piezo‐flexomagnetic  nanobeam with  the  piezomagnetic 

nanobeam.  It  is worth underlining  that  this proximity pertains  to  the  flexomagnetic  feature. This 

means that the increase of the value of the length scale parameter leads to a stiffening effect; therefore, 

by increasing the values of this parameter, the critical load’s results tend to each other in magnetic 

beams. It can be argued that the length scale parameter makes the flexomagnetic effect ineffective. 

Eventually,  if  the  length  scale  parameter  is  a  large  numerical  value,  it  can  be  stated  that  the 

flexomagnetic effect is nothing and all the magnetic nanobeams will respond similarly. 
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(a) 

 

(b) 

Figure 2. (a) Nonlocal parameter vs. four cases of non‐porous nanobeams (l = 0.5 nm, L = 10 h, ψ = 1 

mA). (b) The length scale strain gradient parameter vs. different cases of non‐porous nanobeams (e0a 

= 0.5 nm, L = 10 h, ψ = 1 mA). 

In Figure 3, we investigate the effects of given patterns of the porosities for two cases of the nano‐

sized magnetic beam, the first one with the flexomagnetic property (PFM) and the later one ignoring 

this physical feature. We observed in the previous figure that in attending the positive magnetic field, 

if the piezomagnetic nanobeam has a  flexomagnetic property (piezo‐flexomagnetic),  it  is  the most 

stable case in terms of magneto‐mechanical nanobeams. It can now be seen from this figure that for 

all PFM cases, the further in‐plane resistance can be observed. Hence, one can prove that this effect 

makes material  stiffer. Furthermore,  increase of  the value of  the porosity parameter  (α)  leads  to 

reduction of material stability in all cases. However, this decline is more noticeable for  X   and  O  

porosities  and  insignificant  for O  and X  samples.  It  is  also  notable  that  in  terms  of  X   and  O  
porosity types, an increase of value of the porosity parameter leads to more gaps between PFM and 

PM. This means that these kinds of porosities make the flexomagnetic property more important. 
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Figure 3. Types of porosity vs. two cases of nanobeams (e0a = 0.5 nm, l = 1 nm, L = 20 h, ψ = 1 mA). 

Figure  4  is  presented  correspondingly  to  reveal  the  incremental  variations  of  the  external 

magnetic potential. In this figure, as in the previous ones, the nanobeam is investigated in different 

cases. As can be seen, the increased magnetization potential leads to greater stability of the magnetic 

nanobeams. Of importance in the diagram is the magnetic nanobeams containing lesser critical loads 

than the conventional nanobeam. As a matter of fact, the in‐plane static stability for such beams in 

negative  amounts of magnetic potential  is  smaller  than  that of  the  conventional nanobeam. This 

downward/upward trend is linear in the form of a steep slope, indicating that in very strong positive 

magnetic fields, the piezomagnetic effects and, especially the flexomagnetic ones, will be more and 

more pronounced. However,  these effects are also significant and undeniable  in a weak magnetic 

environment. 

 

Figure 4. Magnetic potential vs. two cases of non‐porous nanobeams (e0a = 0.5 nm, l = 1 nm, L = 10 h). 

Figure  5  displays  the  aforementioned  states  of  nanobeams  concerning  changes  in  their 

thicknesses.  It  can  be  inferred  from  the  figure  that  at  very  small  thicknesses,  and  also  positive 

magnetic  potential,  the  flexomagnetic  property  plays  a  vital  role  in  in‐plane  stability. With  the 

thickening of  the nanobeams,  the difference between  the  results of  the piezomagnetic and piezo‐
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flexomagnetic  nanobeams  decreases.  Thereupon,  for  larger  thicknesses,  the  flexomagnetic  effect 

seems to be unimportant. 

 

Figure 5. Thickness vs. two cases of non‐porous nanobeams (e0a = 0.5 nm, l = 1 nm, ψ = 1 mA, L = 20 

h). 

5. Conclusions 

This study presented the stability capacity of a porous nanobeam involving piezomagnetic as 

well as flexomagnetic impacts. To date, it is known that the mechanism of action of nanostructures is 

based on two principles of hardening and softening. This research applied these actions to a piezo‐

flexomagnetic nanobeam. Substituting Lagrangian, and nonlocal theory of strain gradient elasticity, 

the stability relation of the piezo‐flexomagnetic nanobeam was gained. Thereafter, the Navier method 

gave a closed‐form solution to reach numerical amounts of the in‐plane static stability. 

The  flexomagnetic  effect  as  a  complex  physical  phenomenon  into  the magneto‐mechanical 

coupling  is  known  as  a  size‐dependent  property  that  was  also  here  affected  by  small‐scale 

parameters. Furthermore, the variations of thickness of the nanobeam affected the flexomagneticity, 

and this property is further noticeable for lower thicknesses of nanobeams. Moreover, comparing a 

piezomagnetic nanobeam with a piezo‐flexomagnetic one showed  that  this  feature presents more 

stable material. In addition, based on our observations, it was proved that despite the flexomagnetic 

effect  being  important  in  the  lowest  positive  external  magnetic  potentials,  if  the  potential  is 

sufficiently large, the capacity of static stability for piezo‐flexomagnetic nanobeams will be enhanced 

markedly. Another significant point obtained in this research work was the influence of porosity on 

the flexomagnetic response of the piezomagnetic nano‐sized beam. The results showed that in some 

patterns of porosity, this imperfection can affect the flexomagnetic behavior of the material. 
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Abstract 

By relying on the Euler-Bernoulli beam model and energy variational formula, we indicate 

critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The 

corresponding size-dependent approach is underlying as a second strain gradient theory. 

Small deformations of elastic solids are assessed and the mathematical discussion is linear. 

With regardless of the pyromagnetic effects, the thermal loading of the thermal environment 

is varied in three states along with the thickness, which is linear, uniform, and nonlinear 
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forms. We then establish the results by developing consistent shape functions which 

independently evaluate boundary conditions. Next, we analytically develop and explore the 

effective properties of the studied beam with regard to vital factors. It was achieved that 

piezomagnetic-flexomagnetic microbeams are more affected by the thermal environment 

while the thermal loading is nonlinearly distributed across the thickness, particularly when 

the boundaries involve simple supports. 

Keywords: Piezo-flexomagnetic microbeam; Critical temperature; Strain gradient theory; Analytical 

solution 

        Symbols 

zH     Magnetic field component 

xxz    Gradient of the elastic strain 

 xx    Stress component 

 xx     Strain component 

xxz   Hyper stress 

zB         Magnetic flux component 

11C          Elasticity modulus 

xM         Moment stress resultant 

xxzT     Hyper stress resultant 

U           Strain energy 

            Symbol of variations 

xN         Axial stress resultant 

            Magnetic potential 

zI          Area moment of inertia 

l                     Microscale parameter 

      Thermal expansion coefficient 

T    Temperature variations 

0T      Environment temperature 

fT     Critical temperature 

W      Works done by external objects 

1u               Cartesian displacements along x axis 

3u               Cartesian displacements along z axis 

L                  Length of the beam 

h                  Thickness of the beam 

u                  Axial displacement of the midplane 

w               Transverse displacement of the midplane 

z                 Thickness coordinate 

31q    Component of the third-order piezomagnetic 

tensor 

31g         Component the sixth-order gradient elasticity 

tensor 

31f    Component of fourth-order flexomagnetic  

33a    Component of the second-order magnetic 

permeability tensor 
0
xN      Initial total in-plane axial force 

              Initial Magnetic potential 

A             Area of cross-section of the beam 

Y       Residue in the solution method 

m      Mode number 

1    Introduction 
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Many mechanical structures are used in environments with high-temperature differences. It 

causes significant temperature changes, stresses, and deformations. Applying heat load in 

some structures is inevitable, and in others it is accidental. Some structures are subjected to 

thermal loads frequently during the working period. The effect of heat on the structure and 

performance of structures such as spacecraft, nuclear reactors, and heat exchangers are 

examples of this type of heat loading. On the other hand, a thermal load may be accidentally 

applied to a structure. An example of this is the fire in urban and industrial buildings and 

facilities. Regardless of the effects of heat load, the design of a structure will not be a complete 

and safe design. An important group of structures among the applicable structures is the beam, 

which in many cases form a large part of the structure of a composite structure. In cases where 

the mechanical structure is composed of lean elements, e.g. beams, one of the major problems 

caused by rising temperature is the occurrence of thermal buckling [1].  

As solid phase support, magnetic microparticles (MMP) promise a lot of significant 

advances in experimental works. New technology emerged by which magnetic separation can 

occur during magnetism. Different molecules can be isolated or absorbed by these particles 

in many applications such as magnetic cell separation, ribonucleic acid (RNA) purification, 

etc. [2-4]. One of the biotic and useful applications of MMPs is targeting cancer cell qua these 

particles can separate cells from human blood. But timeless usages are waiting to be found.  

Today, due to the widespread advances in engineering sciences, the need for optimizations 

resulting from small scale technology is felt more and more. Micro-sensors are highly 

improved, high-performance materials that are just one example of applications in the micro-

industry. Devices display properties such as temperature, pressure, traction, or current output 

the desired parameter. Magnetic micro-sensors, on the other hand, detect changes or 

disturbances in the magnetic field and then, based on that, extract the required information 
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such as direction, presence, rotation angle, or potential [5-10].  

Apart from the piezomagneticity, magnetic micro-sensors and generally magnetic 

particles can have another physical property, which is flexomagneticity. The difference is that 

flexomagnetic is a pervasive effect on all materials with any symmetry, the discovery of which 

dates back to the current decade. Flexomagneticity is the coupling between the polarization 

and the strain gradient, but piezomagneticity is the coupling between the polarization and the 

strain itself [11-18]. The small scale theme is the main debate in MMPs technology, which 

shows the more effective role of flexomagneticity. In light of the new progress and 

developments which emerge these years, particularly at a small scale, the flexomagneticity 

debate is increasing quickly. 

Based on the research background performed on the mechanics of piezomagnetic-

flexomagnetic structures, theoretical research can be found. These studies were preliminarily 

begun by Sidhardh and Ray [19] and Zhang et al. [20]. In these introductory works, they 

showed studies on piezomagnetic-flexomagnetic nanostructures by investigating bending 

properties. The deformations were assumed as the small and linear analysis was taken into 

consideration. Both published research employed Euler-Bernoulli displacement kinematic 

field to model the structure as a thin beam. Magnetization influences were regarding both 

reverse and direct impacts. The acted static loading was vertically and uniformly imposed 

throughout the length of the beam. The first research examined cantilever beams, however the 

second one demonstrated premier study by evaluating several end conditions. The 

shortcoming of both works is a lack of considering size-dependent effects. Though they 

simply inspected only surface effect and nonlocal or microstructural influences were not 

figured out. Newly, Malikan and Eremeyev [21] carried out piezomagnetic-flexomagnetic 

Euler-Bernoulli small scale beams exposed in a vibrational mode. The linear frequency 
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analysis was done whilst the size-dependent impacts were explored according to the stress-

driven nonlocal elasticity approach. Based on their results, it was affirmed that the 

flexomagnetic feature is size-dependent. Another research on piezomagnetic-flexomagnetic 

small size structures has been performed by Malikan and Eremeyev [22] in which they studied 

nonlinear frequencies of the structure. They fulfilled size-dependent influences on the basis 

of the nonlocal strain gradient elasticity model. In addition to these, Malikan and Eremeyev 

[23] studied large deflections of piezo-flexomagnetic nano size beams using two step 

analytical-numerical solution techniques. They discovered that analysis of nonlinear bending 

properties of a piezo-flexomagnetic nanobeam is seriously required to design nano-electro-

mechanical systems (NEMS) based piezomagnetic-flexomagnetic properties. They 

demonstrated many new results of which we can refer to reducing the deflections as a result 

of flexomagnetic effect. Malikan et al. [24] continued the studies on magnetic nanoparticles 

involving both piezomagnetic and flexomagnetic features. The new study investigated post-

buckling response of the structures which led to some new results and achievements in the 

field of smart nanosensors. 

To extend the accomplished works on piezomagnetic-flexomagnetic structures, this 

research attempts to estimate temperature impacts on these structures. In doing so, this article 

investigates a microscale piezomagnetic-flexomagnetic beam-shaped sensor and peruses the 

size-dependent influences pursuant to a strain gradient model. The elastic strains are supposed 

to be linear and the kinematic displacement components are due to Euler-Bernoulli thin beam. 

Two boundary conditions are mathematically represented, namely clamped and simple 

supports. Then, the assessments are continued with changes in associated factors which are 

effective in designing the magnetic sensor and the results are exhibited graphically by several 

figures. 
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2    Theoretical Modeling 

Let us discuss the applied model in more details. In Figures 1 and 2, the microscale beams are 

shown which are installed into clamped-clamped and simple-simple supported, respectively. 

The cross-section of the beams is geometrically square. The beam is placed in a magnetic 

field which acts vertically. Thermal environment is also taken into account and affects the 

beam in direction with the thickness only.  

 

Figure 1. A square microbeam containing PM and FM embedded in fully fixed ends 

 

Figure 2. A square microbeam containing PM and FM embedded in pivot ends 

To carry out the problem, the beam is considered to act as the Euler-Bernoulli beam 

hypothesis as [25, 26] 
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   
 

1 ,  
dw x

x z u x zu
dx

                                                                                                         (1) 

   3 , u x z w x                                                                                                                          (2) 

where we introduced axial displacement  u x  and deflection  w x  as functions of x

coordinate, see Figures. 1 and 2.  

The compatible components of strain-displacement relations have the following form 

2

2xx

du d w
z

dx dx
                                                                                                                            (3) 

2

2
  xx

xxz

d d w

dz dx


                                                                                                                    (4) 

The nonzero stress xx  and hyper stress xxz  components alongside magnetic induction 

can be expanded as [19, 20] 

11 11 31xx xx zC C T q H                                                                                                                       (5) 

31 31 xxz xxz zg f H                                                                                                                 (6) 

33 31 31  z z xx xxzB a H q f                                                                                                     (7) 

where 11C  is an elastic modulus,   is a coefficient of thermal expansion, T  is the temperature 

change across the cross-section of  the beam, zH  is the vertical component of the magnetic 

field, 31q is a piezomagnetic modulus, 31g  is a higher order elastic modulus, 31f  is a 

flexomagnetic modulus responsible for coupling between magnetic flux zB  and strain gradient 

xxz , and 33a  is a magnetic permeability.  

The characteristics equation can be derived on the basis of a virtual displacement in the 

system according to first variation in total energy relationship as below 

0U W                                                                                                                                 (8) 
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where U  is the first variation of the energy functional and W is the work of external actions.  

To establish the strain energy in the global form, one can write 

 xx xx xxz xxz z z

V

U B H dV                                                                                        (9) 

Thus, based on Eqs. (5-7), Eq. (9) can be calculated by integrating part by part as follows 

1 21 2

       Mag MagMech Mech
U UU U

U                                                                                    (10) 

where 

1

2 2

2 2
0

L
Mech x x xxz
U

dN d M d T
u w dx

dx dx dx
  

  
       

   
                                                                   (11) 

1

2

0 2

    
hL

Mag z
U

h

dB
dzdx

dz
                                                                                                    (12) 

2

0

L

Mech x xxz
U x x xxz

dM dTd w d w
N u M T w w

dx dx dx dx

 
   

 
       

 
                                                   (13) 

 
2

/2

0 /2

  

h
L

Mag
zU

h

B dx                                                                                                        (14) 

where the associated parameters would be 

/2

/2

 
h

x xx

h

N dz                                                                                                                        (15) 

/2

/2

 
h

x xx

h

M zdz                                                                                                                      (16) 

/2

/2

 
h

xxz xxz

h

T dz                                                                                                                       (17) 

which are axial, moment and hyper stress resultants on beam elements.  

The virtual work as results of axial magnetic field and thermal environment can be 
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expressed as [27, 28] 

2
0

0

1

2

 
   

 

L

x

dw
W N dx

dx
                                                                                                           (18) 

0

0

 
   

 

L

x

d w dw
W N dx

dx dx


                                                                                                      (19) 

We are allowed to write the relationship between magnetic potential and the magnetic 

component as  


 z

d
H

dz
                                                                                                                              (20) 

Let us assume the magnetic field varies linearly in direction with thickness, hence 

,  0
2 2

   
        
   

h h
                                                                                                       (21) 

where the closed circuit beside reverse effect of the field is investigated. Plugging Eqs. (7), 

(12), (20) and (21) and some simplifications gives [19, 20] 

2 2
231

2
332 4 2

   
            

q h d w h
z z

a hdx


                                                                                   (22) 

2
31

2
33

 z

q d w
H z

a hdx


                                                                                                                 (23) 

To apear Eqs. (5-7) in detail, we can take the help of Eqs. (3), (4), (22) and (23), thus 

2 2
31 31

11 2
33

T
xx

q qd w
z C

a hdx


 

 
      

 

                                                                                           (24) 

2
31 31 31

31 2
33

 
    

 
xxz

q f z fd w
g

a hdx


                                                                                        (25) 

2
33

31 2
  z

ad w
B f

hdx


                                                                                                               (26) 

We now express the stress and hyper stress resultants as 
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11  Mag T

x

du
N C A N N

dx
                                                                                                          (27) 

2 2

31
11 2

33

T

x z

q d w
M I C M

a dx

 
    

 
                                                                                                      (28) 

2

31 312
  xxz

d w
T g h f

dx
                                                                                                            (29) 

To attach the microstructural property into the model of problem, the second strain 

gradient of Mindlin will be implemented [29, 30]. It is crucial to note that the couple stress 

models [31-37] are unable to be embedded into the energy formulation while the problem is 

flexoelectric or flexomagnetic ones. This is due to this fact that both magnetic and couple stress 

terms in the energy formulation mathematically act similar to each other and the couple stress 

term would be pointless. Therefore, the second strain gradient is employed which is not directly 

placed in the energy formulation. The second strain gradient relationship can be expressed as 

below 

2
2

2
1ij ijkl kl

d
C l

dx
 

 
   

 
                                                                                                      (30) 

The model showed by Eq. (30) can be utilized into two parts, a model with negative 

sign and another one with positive sign. The positive sign makes the model destabilizing [37, 

38], but the negative sign produces a stable model. 

The stress resultants in the form of second strain gradient model can be written as 

follows 

2
2

112
1 Mag T

x

d du
N l C A N N

dx dx

  
     

  

                                                                                                   (31) 

22 2
2 31

112 2

33

1 T

x z

qd d w
M l I C M

dx a dx

    
       

     

                                                                                    (32) 
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2 2
2

31 312 2
1xxz

d d w
T l g h f

dx dx


  
     
  

                                                                                                            (33) 

As stated by the Lorentz’ law, the transverse magnetic field can generate a longitudinal 

mechanical force. Therefore,  

31MagN q                                                                                                                                (34) 

Assuming the variations of temperature in line with thickness of the beam, the below 

relation can be presented [39, 40] 

 
2

,     2 2,    0    
z h

T z T h z h
h




 

        
 

                                                               (35) 

in which T is the temperature variation as 

0fT T T                                                                                                                                    (36) 

The temperature variation along the thickness has here three forms (Figure 3) defined 

in the following 

0 :

1:

1:

Uniform

Linear

Nonlinear









                                                                                                                   (37) 

 

Figure 3. Thermal loading across the thickness 

The temperature can cause a thermal load axially applied on the beam as below 
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Afterwards, the total longitudinal and moment forces performed on the system can be briefly 

shown as 

0 Mag T
xN N N                                                                                                                                 (40) 

Mech
x

TM M M                                                                                                                                 (41) 

which the axial resultant is divided into magnetic and thermal parts. Moreover, the moment 

stress resultant is sectioned into two parts, that is mechanical and thermal ones.  

Taking into account Eqs. (11), (13), and (19) and embedding all in Eq. (8) result in the 

local governing equations as follows 

0xdN

dx
                                                                                                                                 (42) 

2 2 2
0

2 2 2
0x xxz

x

d M d T d w
N

dx dx dx
                                                                                                      (43) 

Writing Eqs. (42) and (43) on the basis of Eqs. (31-33), (40) and (41) leads to two independent 

equations which in order to solve the values of critical temperature, the second equation is 

required and sufficient as  

 
6 4 2

2

6 4 2
0Magd w d w d w

D l N T
dx dx dx


 

    
 

                                                                            (44) 

in which 

2

31
11 31

33

z

q
D I C g h

a

  
    

  

, 

  
11

1 1

C h


 


 
 

3   Solution approach 
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This section develops analytical solution methods for the present problem investigating two 

boundary conditions. Clamped and simply supported end conditions are satisfied here based 

on the two different admissible functions describing mathematically the physical conditions of 

these supports. A totally analytical process is demonstrated [41, 42]. Hence, 

   w x W X x   (45) 

The admissible function indices in Eq. (45) needed in the process is given as follows [41, 43].  

SS:   sinX x x
L

 
  

 
 (46) 

CC:   2sinX x x
L

 
  

 
 (47) 

The associated notations denote respectively for simply-supported (S), and clamped (C) 

boundary conditions. 

Substituting Eq. (45) into Eq. (44) and integrating over the longitudinal domain will lead to 

 1 2 0K TK X    (48) 

Some manipulating and arranging give the linear algebraic equation in which there can 

be critical temperature as the unknown parameter which requires to be determined. The 

coefficients in Eq. (48) can be expressed as follows 

   1 1

0

L

K x Y x dx     (49) 

   2 2

0

L

K x Y x dx     (50) 

in which 

6 4 2
2

1 6 4 2

Magd w d w d w
D l N

dx dx dx
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2

2 2

d w

dx
   

Consequently, let us manipulate and simplify the equation based on the critical 

temperature load and admissible functions as 

 
 

 
 

 
 

 
 

6 4 2

2

6 4 2

0 0 0

2

2

0

L L L

L

Magd X x d X x d X x
D l Y x dx Y x dx N Y x dx

dx dx dx
T

d X x
Y x dx

dx


      
           

      

 





 

  



 

                                                                                                                                               (51) 

One cane write the thermal analytical buckling formula for CC as: 

4 2 2 2 2 4 4

4

4 16Mag L DL m Dl
T

L

N m 



 
                                                                                                         (52) 

And also for SS as: 

4 2 2 2 2 4 4

4

Mag L DL m Dl m

L

N
T



  
                                                                                                         (53) 

4    Solution validity 

Results’ discussion shall be begun with a validation example in order to find the solution 

process accuracy. To do this, [44, 45] are utilized leading to tabulated results in Tables 1 and 

2. It should be noted that this comparison section is prepared for mechanical elastic buckling 

of a square macroscale Euler-Bernoulli beam for which the elastic properties E=1TPa, υ= 0.19 

are put. It is also worthy to note that [44] applied an exact solution method and [45] exerted the 

numerical differential transformed technique. We try to valid both end conditions used in this 

article. Accordingly, we can observe a very good agreement and accordance among the 

tabulated results. 
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Table 1. For a SS beam.  

L / h [44] [45] Present 

10 4.8447 4.8447 4.84473 

12 3.3644 3.3644 3.36439 

14 2.4718 2.4718 2.47180 

16 1.8925 1.8925 1.89247 

18 1.4953 1.4953 1.49529 

20 1.2112 1.2112 1.21118 

 

Table 2. For a CC beam. 

L / h [44] [45] Present 

10 19.379 19.379 19.37895 

12 13.458 13.458 13.45760 

14 9.877 9.877 9.88721 

16 7.4699 7.4699 7.56990 

18 5.9811 5.9811 5.98115 

20 4.8447 4.8447 4.84473 

5    Discussion and results 

The preparatory validation confirmed that the present analytical procedure can be transferred 

into further problems. Thereupon, we are here focusing on the temperature by which the 

piezomagnetic-flexomagnetic microscale beam buckles. At first, the structural specifications 

involving elasticity and magnetic features shall be identified to get to the main problem. Such 

the properties can be seen by Table 3 which were picked up from [46-48] 

Table 3. Magneto-mechanical features of a microscale ferromagnetic sensor 

CoFe2O4 

C11=286 GPa, ν=0.32 

f31=10-9 N/Ampere 

α=11.80×10-6 1/K  (room temperature) 
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q31=580.3 N/Ampere.m 

a33=157×10-6 N/Ampere2 

5.1    Microstructural effect 

It was shown by literature and experimental works that when a particle size diminishes, the 

stiffness of the material can be strongly affected, which this influence causes in enhancing the 

stiffness [49]. In order to consider this effect here, Figures 4a and 4b are drawn for simple and 

clamp supports, respectively. It is worth noting that the notations NL, L, and U are dedicated 

to nonlinear, linear, and uniform thermal loading distribution (TD) along the thickness. 

Furthermore, all the nonlinear results in this paper are extracted for second order nonlinearity 

expression. As expected, when the beam goes in micro size, the stiffness value becomes up 

leading to further resistance and stability of the MMP against temperature. Depending on the 

type of thermal loading, the intensity of this additive trend is different. For the nonlinear 

variation of temperature, it can be observed that the increasing slope is steeper. However, this 

case for uniform variation is smoother. It should be pointed out that the microscale parameter 

has affected the thermal loading so that the increase of the parameter increments the difference 

in the results of three cases. Thus, it can be concluded that the type of thermal loading for a 

microscale beam is more significant than a macroscale one. It is obvious that the beam has the 

highest stability against the nonlinear case of temperature variation and the lowest stability to 

the uniform temperature variation. A comparison of the results of both ends supports brings us 

to this conclusion that the type of thermal loading at less flexible end conditions is further 

important. This is obtained due to the more difference between the three cases results at CC. 

Moreover, it is apparent that the clamped end support is more resistant than the simple one, and 

further thermal stability is seen for CC. It should be remembered that all results in this paper 
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are presented for the first mode number. 

 

Fig. 4a. Microscale parameter vs. critical temperature for different cases of TD (Ψ=0.1A, 

L/h=20, SS) 

 

Fig. 4b. Microscale parameter vs. critical temperature for different cases of TD (Ψ=0.1A, 

L/h=20, CC) 

5.2    Magnetic field effect 

There are various reports on the effect of the magnetic field on micro and nanoscale smart 
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materials. But this study will, for the first time, investigate a microbeam in a magnetic field 

considering both the effects of piezomagnetic and flexomagnetic by the aid of Figures 5a and 

5b. To examine the magnetic potential, we inspect the reverse effect of the magnetic field, from 

the external potential of zero to the potential value of one Ampere. In this section, similar to 

the previous section, two figures are presented for the boundary condition of simple and 

clamped, respectively, based on the three modes of thermal loading. By looking at both figures, 

we can see that the magnetic potential has a significant impact on the results of the critical 

buckling temperature, and this effect leads to an increase in the amount of stability of the 

material against thermal load when the potential is high. Interestingly, this incremental effect 

is not with the same slope in the three thermal loading items for both boundary conditions, and 

for the nonlinear thermal loading distribution, the results increase with a steeper slope. 

 

Fig. 5a. Magnetic parameter vs. critical temperature for different cases of TD (l=0.1 μm, 

L/h=20, SS) 
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Fig. 5b. Magnetic parameter vs. critical temperature for different cases of TD (l=0.1 μm, 

L/h=20, CC) 

5.3    Slenderness ratio effect 

One of the necessary and influential parameters for designing beams and columns in 

mechanical engineering is the slenderness ratio of the beam. As a rule, this coefficient can also 

play an essential role in the design of beam-shaped micro sensors. Therefore, in this section, 

by presenting numerical results based on two Figures 6a and 6b, we will underestimate this 

coefficient in the current problem. The figures are for simple and clamped boundary conditions, 

respectively. All three cases of thermal loading are also considered in these two figures. It 

should be noted that the range of slenderness ratio variations is considered between 10 to 25, 

which is the range of a relatively thick to a thin beam. As can be seen, the greater the ratio of 

length to thickness of the beam, the lower the thermal stability of the micro sensor. This 

decrease in stability occurs in clamped boundary conditions with a steeper slope, which 

indicates that the beam with this boundary condition is more sensitive to the value of the 

slenderness coefficient. It can also be seen from the two figures that the larger the slenderness 

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 0.2 0.4 0.6 0.8 1

C
ri

ti
ca

l 
te

m
p
er

at
u
re

 (
K

)

Ψ (A)

NL L U

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


ratio, the less important the type of thermal loading. This result is obtained due to reducing the 

difference between the results of the three thermal loading states by increasing the slenderness 

coefficient. 

 

Fig. 6a. Slenderness ratio vs. critical temperature for different cases of TD (Ψ=0.1A, l=0.1 

μm, SS) 

 

Fig. 6b. Slenderness ratio vs. critical temperature for different cases of TD (Ψ=0.1A, l=0.1 

μm, CC) 
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5.4    Piezomagnetic-flexomagnetic effects 

Comparing the mechanical behavior of a piezomagnetic-flexomagnetic microbeam (PFM) with 

an ordinary and normal microbeam (MB) can be interesting. In order to address this issue, this 

section was prepared, based on which four figures are presented. Figures 7a and 7b are prepared 

with micro parameter changes in the horizontal axis for the two boundary conditions of simple 

and clamp, respectively. However, the two Figures 8a and 8b are drawn by considering the 

changes of the magnetic potential in the horizontal axis and for the two boundary conditions of 

simple and clamp, respectively. The results for all three thermal loading cases were prepared 

separately for both smart and ordinary microbeams. From Figures 7a and 7b, it is quite clear 

that the biggest difference between the results of a smart beam with a normal beam is when the 

thermal loading is nonlinear in the direction of thickness and the smallest difference is related 

to the uniform thermal loading. This difference is more evident in the results of the two beams 

for the simple boundary condition. The examination of Figures 8a and 8b also proves this. From 

these two figures, it can be concluded that the higher the amount of external magnetic potential, 

the more important the smart beam will be, which can be understood from the increase in the 

difference between the results of the two beams with increasing the magnetic potential. 
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Fig. 7a. Microscale parameter vs. critical temperature for PFM effect (Ψ=0.1A, L/h=20, SS) 

 

Fig. 7b. Microscale parameter vs. critical temperature for PFM effect (Ψ=0.1A, L/h=20, CC) 
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Fig. 8a. Magnetic parameter vs. critical temperature for PFM effect (l=0.1 μm, L/h=20, SS) 

 

Fig. 8b. Magnetic parameter vs. critical temperature for PFM effect (l=0.1 μm, L/h=20, CC) 

6    Conclusions 

Herein we reported a distinct investigation on piezomagnetic-flexomagnetic micro size beam-

shaped sensors on the basis of thin beam theory. In regard to the strain gradient theory, the 
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obtained by linear Lagrangian strain and the critical temperature was computed for clamped 

and simple end supports. The distribution of thermal loading in line with thickness was in 

linear, uniform, and nonlinear states. Influences of essential parameters were probed and some 

vital points were concluded, organized here as, 

 The topmost thermal stability of microbeam is in the nonlinear case of thermal loading 

distribution and the lowermost for the uniform one.  

 The higher the magnetic potential, the greater the critical temperature of buckling. 

 The type of thermal loading distribution at CC boundary conditions is further significant 

than the SS one. 

 For lengthy beam-shaped micro sensors, the effect of type of thermal loading distribution 

is insignificant. 

 The importance of piezomagnetic-flexomagnetic properties is further while the thermal 

loading distribution is nonlinear. 
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Abstract 

In this paper, the equation governing the buckling of a magnetic composite plate under the 

influence of an in-plane one-dimensional magnetic field, assuming the concept of 

flexomagnetic and considering the resulting flexural force and moment, is investigated for the 

first time by different analytical boundary conditions. To determine the equation governing 

the stability of the plate, the nonlocal strain gradient theory has been used by taking into 

account the classical plate theory. The axial magnetic force, which is originated from the 

magnetic field, is investigated. After extracting the governing differential equation, the critical 
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buckling load is obtained for different support conditions. The effect of nonlocal parameter, 

sheet aspect ratio and the effect of one-dimensional magnetic field on critical load are 

discussed. It was earned that if the nanoplate is rectangular so that the value of aspect ratio is 

less than one, the flexomagnetic response will be more noticeable. 

Keywords: Composite plate; Flexomagnetic; Critical buckling load; Nonlocal strain gradient theory; 

Analytical solution 

        Symbols 

,  ,  x y zH H H    Magnetic field 

components 

xxz    Gradient of the axial strain 

 yyz    Gradient of the lateral strain 

xx    Axial stress component 

 yy    Lateral stress component 

 xy    Shear stress component 

 xx     Axial strain component 

 yy     Lateral strain component 

 xy     Shear strain component 

xxz   Hyper axial stress 

yyz   Hyper lateral stress 

zB     Transverse magnetic flux 

component 

U      Strain energy 

       Symbol of variation 

      Magnetic potential 

m      Mode number 

      Nonlocal parameter 

a       Length of the plate 

b       Width of the plate 

h       Thickness of the plate 

W     Work done by external factors 

1u       Cartesian displacement along x axis 

2u      Cartesian displacement along y axis 

3u        Cartesian displacement along z axis 

u        Displacement of the midplane along x 

v        Displacement of the midplane along y 

w       Transverse displacement of the midplane 

, ,x y z    Length, width, and thickness coordinates 

31 15,q q   Components of the third-order piezomagnetic 

tensor 

14 15,g g  Components the sixth-order gradient elasticity 

tensor 

14 15,f f   Components of fourth-order flexomagnetic  

11 33,d d    Components of the second-order magnetic 

permeability tensor 
0 0 0,  ,  xx yy xyN N N   Initial total in-plane axial force 

      Initial Magnetic potential 

,  m nX Y   Residues in the solution method 

11 22 12 44 66, , , ,C C C C C   Elasticity constants 

l         Length scale strain gradient parameter 

,xxz yyzT T     Hyper stress resultants 

, ,xx yy xyN N N    Axial stress resultants 

, ,xx yy xyM M M  Moment stress resultants 

1    Introduction 
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The main characteristic of magneto-electro-elastic materials is the magneto-electric effect. 

This effect makes mechanical, electrical, and magnetic energies convertible to each other. 

Like the piezoelectric layers, magneto-elastic layers can be used to control the structure. 

Because, magneto-electro-elastic materials have the ability to convert energy between three 

electric, mechanical, and magnetic fields, these materials have direct applications in sensors 

and actuators, vibration control in structures, and so on. Their magneto-electro-elastic 

correlation occurs through stress-strain relationships. The difference is that the magneto-

elastic layers can be controlled remotely by applying a magnetic field to the mechanical 

response of the structure. 

Magnetic nanosheets (MNSs) are classified into small size particles handled by the aid 

of a magnetic field. These elements regularly include magnetic parts in the macro scale, for 

instance, cobalt, nickel, iron, and their mixtures. MNSs are commonly in the range of 5-500 

nanometers in thickness or diameter. Many MNSs have recently been studied due to their 

marvelous potential features. Optical filters, catalysts consisting of nanoparticles, and 

semiconductors can be a few examples of using MNSs [1-6]. 

In response to mechanical impact, the magnetization and/or polarization can physically 

appear into materials as a result of flexo-effect. It is worth to underline that polarization leads 

to piezoelectric [7-15] or flexoelectric [16-31] effects and magnetization results in 

piezomagnetic [32-40] and flexomagnetic [41-47] impacts. The piezoelectric and 

piezomagnetic properties resulted from the elastic strain, but the flexoelectric and 

flexomagnetic come from the gradient of elastic strain. In a general definition, elastic stress 

gradient induces magnetization in centrosymmetric magnetic materials that this concept is 

described as the direct flexomagnetic effect which may be exhibited in a linear behavior. 

Reversely, the flexomagnetic effect occurs when the magnetic field gradient induces 
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magnetization in the material. The difference between piezomagnetic and flexomagnetic is 

not limited to the aforementioned content. Piezoelectric or piezomagnetic properties can 

appear in non-centrosymmetric crystallines only; however, flexomagneticity can exist in 

centrosymmetric structures but those without time inversion. The well-studied flexoelectricity 

is entirely similar to the flexomagneticity in this definition. 

According to existing studies, it is observed that the flexomagnetic effect in two-

dimensional media and for piezomagnetic sheets has never been studied. Not long ago, 

Sidhardh and Ray [41] and Zhang et al. [42] developed early studies on the flexomagnetic 

model of piezomagnetic nanosized one-dimensional (1D) beams. These researches presented 

a flexomagnetic model described by the Euler-Bernoulli thin beam approach evaluating 

bending properties of the material. They have applied small deformations based on the linear 

strains of Lagrangian. They have captured both direct and converse magnetization in regard 

to the one-dimensional magnetic field. To bend the beam, a uniform static force was loaded 

on the beam length. The load acted transversely. [41] investigated a beam with one end free 

and another one clamped so-called cantilever. Moreover, [42] considered several boundary 

conditions and showed a good evaluation in this regard. Both references include a deficiency 

in inspecting size and nonlocal effects. In fact, they did not figure out the effects of stress 

nonlocality that is significant in nanoscale. However, they have used surface effects to analyze 

size influences. Further growth of flexomagneticity returns to [43-47] in which the size-

dependency behavior of flexomagneticity was confirmed fully. Malikan and Eremeyev [43] 

continued [41, 42] studies but with implementing stress-driven nonlocal elasticity while 

imposing the vibrational environment for the Euler-Bernoulli beam. Their formulation was 

performed based on the linear strains and their results were carried out by different diagrams. 

In another research, Malikan and Eremeyev [44] extended [43] for nonlinear natural 
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frequencies of a flexomagnetic model that existed in a piezomagnetic nanosized beam. In this 

work, the small-scale effect was fulfilled according to the nonlocal strain gradient elasticity 

approach. Besides the mentioned researches, in a benchmark study, Malikan and Eremeyev 

[45] investigated the static nonlinear bending of a piezomagnetic small size beam with the 

inclusion of flexomagneticity. They have combined Newton-Raphson iterative solution 

technique with the analytical Galerkin weighted residual method to calculate values of large 

deflections. Their brilliant results certified that the nonlinear bending analysis is severely 

applicable for the flexomagnetic response of a micro/nano-electromechanical system. Their 

conclusions acknowledged that the existence of flexomagnetic will lead to decreasing the 

deflections. Malikan et al. [46] kept up their studies in the category of flexomagneticity. This 

new research involved the response of post-buckling of a nanobeam containing both 

piezomagnetic and flexomagnetic features. Malikan et al. [47] studied the influence of 

porosities in several manners on an axially pressurized piezomagnetic nanoscale beam 

incorporating flexomagnetic effect. They have confirmed that some kinds of porosity can 

affect the material behavior of the flexomagnetic model.  

In this research and in continuation of studies on the flexomagnetic effect, the biaxial 

buckling of a nanosized smart piezomagnetic composite sheet consisting of flexomagnetic 

property in the isotropic state has been investigated for the first time. The classical plate 

theory, linear magneto-elastic stress-strain law, and the nonlocal strain gradient theory have 

been used to calculate the biaxial stability of the nanosheet. The characteristic equation was 

derived using Hamilton’s principle and Lagrangian strain considering von Kármán 

hypothesis. To make the numerical outputs further certain, our results are compared with the 

available molecular dynamics simulations in a simple case. Numerical results are presented 

analytically and graphically using the solution of the Galerkin integral method. Attempts have 
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been made to include two boundary conditions, clamped and simply-supported, in the 

evaluations.  

2    The Problem Modeling 

As shown in Figure 1, consider a piezomagnetic nanoplate with a, b, and h as its length, width, 

and thickness, respectively. The magneto-elastic material features are dedicated to this sheet. 

The plate is affected by the magnetic potential resulted from the one-dimensional magnetic 

field. The plate is supposed to be square/rectangular.  

 

Figure 1. A square/non-square PM nanoscale plate compressed biaxially involving FM  

The physical condition of the nanoplate is mathematically designed based on the 

classical plate theory. This is carried out as follows [48] 

( ) ( )
( )

1

,
, , ,

w x y
x y z u x y zu

x


= −


                                                                                                         (1) 
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( ) ( )
( )

2

,
, , ,

w x y
x y z v x y zu

y


= −


                                                                                                         (2) 

( ) ( )3 , , ,x y z w x yu =                                                                                                                          (3) 

Using the equations of motion of the nanosheet according to the classical theory, and relations 

(1-3), the linear forms of strain-displacement equations are obtained in terms of non-zero 

displacement derivatives as follows 

2

2xx

u w
z

x x


 
= −
 

                                                                                                                          (4) 

2

2yy

v w
z

y y


 
= −
 

                                                                                                                         (5) 

2

2xy

u v w
z

y x x y


  
= + −
   

                                                                                                                         (6) 

2

2

xx
xxz

w

z x




 
= = −

 
                                                                                                                   (7) 

2

2

yy

yyz

w

z y




 
= = −

 
                                                                                                                   (8) 

The constitutive relations that couple magneto-elastic properties can be expressed by 

tensor calculus as follows [41, 42] 

ij ijkl kl kij kC q H = −                                                                                                                    (9) 

ijk ij ijk ij kg f H = −                                                                                                                   (10) 

i ikl kl ij k ij ijkB q d H f = + +                                                                                                       (11) 

The Lagrangian variational principle can help find the equilibrium equations in the 

following 

0U W − =                                                                                                                               (12) 

It is assumed that the magnetic field exists only in line with the transverse axis. 
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Therefore, the global form of the strain energy including magneto-elastic effects can be 

established as follows 

( )xx xx yy yy xy xy xxz xxz yyz yyz z z

V

U B H dV           = + + + + + −                               (13) 

Thus, as per the infinitesimal deformations, the integration by parts gives 

1 21 2

=  +  +  + Mag MagMech Mech
U UU U

U                                                                                    (14) 

where 

1 2 2 22 2
0 0

2 2 2 2
2

yy xy xyxx

b a
Mech
U

yy xy yyzxx xxz

N N NN
u v v u

x y x y
dxdy

M M TM T
w

x yx y x y

   





   
+ + + 

    
 = −  

      + + + + +
        

                              (15) 

1

2

0 0 2

hb a
Mag z
U

h

B
dzdxdy

z
 

−


 = − 

                                                                                                     (16) 

2

0

0
0

0

2

a

xx xy xx
Mech
U

xx xxz
xxz

b

yy xy yy b
a

xy
yy yyz

yyz

w
N u N v M

x

M Tw
T w w

x x x

w
N v N u M

y
M w

M Tw
T w w

y y y


 




 


 




 

 
+ − − 

  = +
  

+ + 
   

 
+ − − 

  +
  
 + +    

                                                                  (17) 

( )
2

/2

0 0 /2

h
b a

Mag
zU

h

B dxdy 

−

 =                                                                                                         (18) 

The resultants of the biaxial in-plane forces, moment, and hyper stresses can be 

calculated by the below equations,  
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   
/2

/2

, , , ,

h

xx yy xy xx yy xy

h

N N N dz  
−

=                                                                                                          (19) 

   
/2

/2

, , , , ,

h

xx yy xy xx yy xy

h

M M M zdz  
−

=                                                                                                       (20) 

   
/2

/2

, ,

h

xxz yyz xxz yyz

h

T T dz 
−

=                                                                                                                        (21) 

Due to the existence of outer loads, there would be thermodynamics work performed 

on the system. To determine it, we have, 

222 2
0 0 0

0 0

1

2

b a

xx yy xy

w w w
W N N N dxdy

x y xy

       
= − + +                

                                                                  (22) 

in which 
0
xyN  shows shear in-plane force and is eliminated in this work. Hence, 

0 0

0 0

b a

xx yy

w w w w
W N N dxdy

x x y y

 


      
= − +   

       
                                                                                  (23) 

 Let us rewrite the constitutive equation of the piezomagnetic nanoplate as follows, 

11 12 31

12 22 31

44 15

44 15

66

0 0 0 0 0

00 0 0 0

0 00 0 0 0

0 00 0 0 0

0 0 00 0 0 0

xx xx

yy yy x

xz xz y

yz yz z

xy xy

C C q

C C q H

q HC

HqC

C

 

 

 

 

 

      
      

       
       = −        

                
            

                                  (24) 

where 

0xz yz = =  

In Eq. (24), the elastic and piezomagnetic properties of the nanoplate can be obtained 

using the following relations, 
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C
C

C C

C C
 C

CC

CC

C

 
−  

  
    

= −   
   
   
   

  

                                                                                                               (25) 

13 33
31 31

33

15
15

C q
q q

= C
q

q

 
  −   
   
    

 

                                                                                                              (26) 

And the constitutive equation of the flexomagneticity effect can be written as follows, 

14

15 14

15 15

14 14 15

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 00

0 0 0

xxz xxz

yyz yyz x

xzz xzz y

yzz yzz z

xyz xyz

f

g f H

g f H

g g f H

 

 

 

 

 

     
                     = −                      

         

                                            (27) 

in which 

0xzz yzz xyz  = = =  

11 15

11 15

33 31 31

15

15

14 14

0 0 00 0 0

0 0 0 0 0 0

0 000 0

0 0 0 0

0 0 0 0

0 00
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yyx x

xzy y

yzz z
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xxz

yyz

xzz

yzz

xyz

d qB H

B d H q

B Hd q q

f

f

f f





















 
                 

= + +       
       

         
 
 

 
 

   
  
  
     
 
 

                                            (28) 

in which 

0yz xz xzz yzz xyz    = = = = =  
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11
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2
33

3333

33

d
d

= q
dd

C

 
    
   

+    
 

                                                                                                                   (29) 

The magnetic potential-component relationship can be expanded as follows, 

z

x

k y

xH

H H
y

H

z

 
− 
   

   
= = −   

   
   

− 
 

                                                                                                                                 (30) 

To prescribe the electrical boundary conditions, one gets 

,  0
2 2

   
 + =  − =   
   

h h
                                                                                                       (31) 

The theoretical 1D magnetic field is supplemented by some mathematical efforts among 

Eqs. (18), (28), (30) and (31) as follows 

2 2 2
231

2 2
33 4 22

q h w w h
z z

hd x y

     
 = − − + + +           

                                                                                   (32) 

and then 

2 2
31

2 2
33

z

q w w
H z

hd x y

  
= + −    

                                                                                                                 (33) 

Now it is possible to expand the stress field components, hyper stresses, and magnetic 

flux as follows 

2 2 2 2
31

11 12 312 2 2 2
33

2 2 2 2
31

12 22 312 2 2 2
33

xx

yy

xy

qu w v w w w
C z C z q z

x y hdx y x y

qu w v w w w
C z C z q z

x y hdx y x y










           
− + − − + −                      

 
             

= − + − − + −                       
   2

66 2
u v w

C z
y x x y

 
 
 
 

 
 

 
 

    + −        

               (34) 
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



 

        
− + − + −                      

=   
            

− + − + −                  

                                                   (35) 
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z
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B d z q z z

h x yd x y x y

w w
f

x y

         
= + − + − + −                

  
− +    

                                      (36) 

Making the use of Eqs. (34-36), Eqs. (19-21) are re-written as follows  

11 12 31
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
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  
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   
       

= + +   
    

       
 + 
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                                                                                          (37) 
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   
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                                                                                                (38) 
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
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− + +      

                                                                                      (39) 

where 

( )
2
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, 1,2,4,6

−

= =
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h

A C dz   i j
                                                                                                    (40) 
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 
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 


h

ijij
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q
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a                                                                                           (41) 
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2
6666

2−

= 
h

h

D C z dz
                                                                                                                        (42) 

2

14 14

2−

= 
h

h

H g dz
                                                                                                                             (43) 

Let us collect the terms in Eqs. (15) and (16) related to the governing equations, hence, 

0
xyxx

NN

x y


+ =

 
                                                                                                                                 (44) 

0
yy xyN N

y x

 
+ =

 
                                                                                                                                 (45) 

2 2 22 2 2 2
0 0

2 2 2 2 2 2
2 0

yy xy yyzxx xxz
xx yy

M M TM T w w
N N

x y x y x y x y

     
+ + + + + + =

       
                                            (46) 

In the above equation, there are general biaxial compressive loads divided into two parts, 

mechanical and magnetic ones as follows, 

0 =  +Mech
x

a
x

M
x

gN k N N                                                                                                                                 (47) 

0 =  +Mech
y

a
y

M
y

gN k N N                                                                                                                                 (48) 

 Conforming to the Lorentz’ law, one can write 

31

MagN q =                                                                                                                                 (49) 

In mechanics, there are two general solutions to determine the strength behavior of 

nanostructures: 1- Laboratory methods and 2- Mathematical modeling. Since nanodimensional 

laboratory methods are expensive and have their own difficulties; Therefore, three main 

methods of mathematical modeling are considered, which are: a- Atomic modeling, b- 

Combined molecular and mechanical modeling, and c- Modeling based on continuum 
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mechanics. In terms of time constraints and the maximum number of atoms in the simulation, 

the first two methods are more expensive compared to modeling based on continuum 

mechanics, and also the unique relationships and formulations of the two methods are more 

complex. Therefore, this indicates that continuum mechanics can be used as a suitable solution 

to study physical phenomena in the field of nanotechnology. 

One of the most important issues in the field of continuum mechanics is the discussion 

of the effects of size and its effect on the mechanical behavior of different materials. These 

effects will have a predominant impact on the mechanical behavior of matter when the particle 

size becomes very small, and theories based on classical continuum mechanics are unable to 

take such effects into account. This is especially evident in atomic space where the size of 

structures is not very large compared to the intra-atomic properties of materials. In fact, the 

effects of size occur due to the interaction of two scales of internal characteristic length such 

as distance between particles and external characteristic length such as crack length. One of the 

generalized theories of continuum mechanics that study such a phenomenon is the theory of 

nonlocal elasticity of the strain gradient [49]. 

2 2 2 2
2

2 2 2 2
1 1ij ijkl klC l

x y x y
  

            
− + = − +                     

                                                                     (50) 

In the absence of thickness effect (  z ) on Eq. (50), Eqs. (37-39) shall be rewritten in 

terms of Eq. (50) as [50-55], 
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− + = − + + +                            
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 + 
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                        (51) 
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 
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                         (52) 
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− + = − +                               
− + +      

                (53) 

If we compare the x-y in-plane magnetic field and deformations with those in line with 

thickness, then the in-plane derivatives can be eliminated. Thus, by means of Eqs. (46) and 

(51-53), the characteristic equation of buckling of the PM nanocomposite plate representing 

FM, can be simplified as follows, 
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                                           (54) 

3   Solving approach 

3.1   Analytical process 

The solution of Eq. (54) gives the numerical values of critical buckling loads for the PM-FM 

nanocomposite plate. This section supplements an analytical process in conjunction with the 
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two analytical boundary/edge conditions that are simply supported and clamped. The essential 

and natural edge conditions can be mentioned as follows, 

Simply-supported (S): 

w (0, y) = w (a, y) = 0                                                                                                            (55a) 

w (x, 0) = w (x, b) = 0                                                                                                            (55b) 

Mx (x, 0) = Mx (x, b) = 0                                                                                                            (56a) 

My (0, y) = My (a, y) = 0                                                                                                            (56b) 

Clamped (C): 

w (0, y) = w (a, y) = 0                                                                                                             (57a) 

w (x, 0) = w (x, b) = 0                                                                                                            (57b) 

The closed-form approximate function is devoted to applying the analytical solution as 

follows, 

( ) ( )
1 1

mn m n

m n

w W X x Y y
 

= =

=                                                                                                       (58) 

The natural and essential conditions mentioned by Eqs. (55-57) can be satisfied by the 

next equation in which the admissible functions are demonstrated by Table 1 [33, 56], 

( ) ( )( )
0 0

a b

m nw X x Y y dydx                                                                                                                 (59) 

Table 1. Simply-supported and clamped analytical boundary conditions for plates 

Analytical edge conditions 

Notation x=0 y=0 x=a y=b Xm (x) Yn (y) 

SSSS S S S S sin x
a

 
 
 

 sin y
b

 
 
 
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CCCC C C C C 
2sin x

a

 
 
 

 2sin y
b

 
 
 

 

3.2   Solution validity 

To validate the proposed model, the isotropic nanosheet without piezo-flexomagnetic 

properties is considered and its critical load is shown and tabulated in Table 2 for the values 

provided for the simple boundary conditions and various values of length and width. The 

solution method is tested through molecular dynamics [57] and a good agreement can be seen.  

E=1TPa, υ=0.3, h=0.34 nm, μ=1.85nm2, l=0, β=a/b=1, k1=1, k2=1, SSSS [57] 
 

Table 2. A fully simply-supported nanoplate compressed biaxially  

Critical buckling load (Pa.m) 

Present 

(CPT) 
MD [57] a=b 

1.1570 1.0837 4.99 

0.6979 0.6536 8.080 

0.4658 0.4331 10.77 

0.2829 0.2609 14.65 

0.1874 0.1714 18.51 

0.1325 0.1191 22.35 

0.0981 0.0889 26.22 

0.0756 0.0691 30.04 

0.0601 0.0554 33.85 

0.0484 0.0449 37.81 

 

4    Discussion and results 

In this section, the importance of the flexomagnetic property will be evaluated in detail by 

changing important and key parameters, and we will find the conditions during which this 

effect manifests itself most. First, the magneto-elastic properties of the sheet are presented in 

Table 3 [33, 41, 42]. Variable parameters are expressed below each figure. 

Table 3. Magneto-elastic constants for the proposed PM-FM CoFe2O4 nanoplate 
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C11= C22=226GPa, C12=125GPa, C13=124GPa,  

C33=216GPa, C44=44.2GPa, C66=50.5GPa, 

f31=10-9 N/A 

q31=290.1 N/A.m, q33=349.9 N/A.m 

d33=83.5×10-6 N/A2 

The most important problem in terms of micro/nanoscale discussions is nothing but 

determining the amount of nonlocal and strain gradient length scale (SGLS) parameters. Some 

researchers found that these factors shall not have constant values and are dependent on several 

objects [58, 59]. In the case of SGLS, [59] indicated that geometrical sizes, particularly 

thickness has strongly affected the value of SGLS. However, in the matter of values of the 

nonlocal parameter, the effective factors influenced it, can be the type of boundary conditions. 

On that account, in this part, we realize the values of SGLS concerning the thickness of the 

plate and the values of the nonlocal parameter with reference to the previous works between 0-

2 nm. 

More importantly, in most figures, the behavior of the plate in the uniaxial compression 

mode is compared to that of the two-axis. The sheet will have an isotropic behavior and 

therefore no difference in the square state if the axial load of the uniaxial axis is longitudinal 

or lateral. Abbreviated terms such as PFM and PM define the sheet with piezomagnetic-

flexomagnetic and piezomagnetic properties, respectively. Magnetic potential values are 

obtained in milli-Amperes, which in turn indicates the greater importance of the magnetic field 

at the nanoscale. The β parameter has also been used to determine the length to width ratio 

(aspect ratio). 

Figures 2a and 2b show how changes in the SGLS will affect the flexomagnetic 

properties of the sheet. The first argument that the appearance of the two figures shows can be 
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the greater difference between PM and PFM results in uniaxial buckling. This means that if the 

magnetic sheet is subjected to in-plane loading of buckling in only one direction, its 

flexomagnetic property will be greater. As it turns out, the increasing slope of the critical load 

results from increasing the SGLS parameter for the CCCC boundary conditions is greater than 

the SSSS ones. This excess is also more obtained for uniaxial buckling. On the other hand, 

comparing the results of the two boundary conditions proves that the flexomagnetic effect is 

greater for the CCCC quadrilateral plate than the SSSS one. The last conclusion from these 

figures can be the impact of SGLS on the flexomagnetic response of the nanoplate. When l/h=0 

which means we eliminate the SGLS, the PFM/PM result for the uniaxial case would be 1.069 

and for l/h=1, it would be 1.070. These differences confirm that the larger the SGLS parameter 

values, the bit more emphasize the flexomagnetic property. 

 

Fig. 2a. SGLS parameter vs. critical load of buckling (ψ=1mA, e0a=1nm, β=1, b/h=15, 

CCCC) 
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Fig. 2b. SGLS parameter vs. critical load of buckling (ψ=1mA, e0a=1nm, β=1, b/h=15, 

SSSS) 

After examining Figures 2a and 2b and obtaining some important results, with the help 

of Figures 3a and 3b we will investigate the effect of changes in the nonlocal parameter. The 

effect of this parameter, as has been proved many times, is a reducing effect on the stiffness of 

the material, and therefore increasing it here will lead to reducing the critical load. According 

to these two figures, we can say that if the numerical value of the nonlocal parameter is large, 

in both uniaxial and biaxial buckling, we will see the results of the PM and PFM approach to 

each other. As a result, it can be stated that nonlocality will have a considerable effect on 

flexomagnetic behavior. However, unlike the SGLS parameter, which has a positive effect on 

the flexomagnetic behavior of the sheet, the nonlocal parameter will have a negative effect and 

leads to less importance of this magneto-elastic property of the material. 
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Fig. 3a. Nonlocal parameter vs. critical load of buckling in two states of magnetic (ψ=1mA, 

l=0.5h, b/h=15, β=1, CCCC) 

 

Fig. 3b. Nonlocal parameter vs. critical load of buckling in two states of magnetic (ψ=1mA, 

l=0.5h, b/h=15, β=1, SSSS) 

Although the effect of the magnetic potential will be more predictable due to the 

application of a linear magnetic field, its study is not without merit. Figures 4a and 4b deal with 
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uniaxial buckling, it will be more affected by the magnetic field. In general, increasing the 

numerical values of the magnetic potential will increase the stiffness of the material, but this is 

more the case in uniaxial buckling than in the biaxial one. The interesting thing about these 

two figures is that if the potential of the magnetic field is negative, the critical load of the PM 

plate will be greater than that of the PFM sheet. As a result, the positive or negative potential 

of the magnetic field indicates that the PM or PFM material is stiffer. 

 

Fig. 4a. Magnetic potential vs. critical load of buckling in two states of magnetic (e0a=1nm, 

l=0.5h, b/h=15, β=1, CCCC) 
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Fig. 4b. Magnetic potential vs. critical load of buckling in two states of magnetic (e0a=1nm, 

l=0.5h, b/h=15, β=1, SSSS) 

In the continuation of the discussion and results, we would like to examine the 

rectangularity of the sheet and its effect on the flexomagnetic response of the material. 

According to Figures 5a and 5b, we see that increasing the β coefficient leads to a reduction of 

the critical load and the overall stiffness of the material, which is true in both boundary 

conditions. But the most important result that can be found from these two figures is that in the 

case of a rectangular nanoplate, if the values of β are greater than 1, the results of PM are closer 

to the results of PFM, and this will increase with more amount of β. Rectangular nanosheets 

with a large value of β coefficient will not have a significant flexomagnetic effect. However, if 

the value of aspect ratio is less than 1, although the sheet is rectangular, the difference between 

the results of the PM plate and the PFM one is remarkable. 

Figures 6a and 6b are plotted to examine the results of Figures 5a and 5b for uniaxial 

buckling. It is interesting that when the critical buckling load is applied uniaxially on the sheet, 

before β=1, the critical load has a decreasing behavior, but after β=1, the critical load results 
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will have an increasing trend. Perhaps the physical reason is that because the uniaxial critical 

load is applied along the x-axis, and since β greater than 1 means that the longitudinal 

dimension of the nanoplate is larger, then increasing the value of aspect ratio will increase the 

critical load. 

 

Fig. 5a. Aspect ratio vs. critical load of biaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, CCCC) 

 

Fig. 5b. Aspect ratio vs. critical load of biaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, SSSS) 
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Fig. 6a. Aspect ratio vs. critical load of uniaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, kx=1, ky=0, CCCC) 

 

Fig. 6b. Aspect ratio vs. critical load of uniaxial buckling in two states of magnetic (ψ=1mA, 

l=0.5h, e0a=1nm, b/h=15, kx=1, ky=0, SSSS) 

5    Conclusions 

A biaxial buckling analysis-based mathematical modeling was depicted for converse 

flexomagnetic influence on a piezomagnetic nanoparticle composition of cobalt and ferrite. 
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The equation of motion was obtained based on the classical plate theory and plane strain 

assumptions. And after the analytical solution of the equation, the analytical relation was 

obtained for the first mode of the buckling load of this sheet based on the clamped and simply-

supported edge conditions. A MATLAB code was written to calculate the 2D domain 

flexomagneticity response. The following results are obtained by providing some examples and 

due to varying in values of fundamental parameters: 

• The uniaxial buckling makes the flexomagnetic response of the nanoplate more notable. 

• For the case of uniaxial buckling, the magnetic field has affected further the critical 

buckling load. 

• In terms of biaxial buckling, while β<1, the flexomagnetic response is more obvious in 

contrast to β>1. 

• Under uniaxial loading, whenever the nanoplate is rectangular and β<1, an increase of 

aspect ratio leads to softening and this is vice versa for rectangular nanoplate with β>1. 

Data availability 

The raw/processed data required to reproduce these findings cannot be shared at this time as 

the data also forms part of an ongoing study. 
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Abstract 

Our analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli 

ferromagnetic nanobeam accounting for a size-dependent model through assuming surface 

effects. In the framework of the flexomagnetic phenomenon, the large deflections are 

investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress 

coupled to the gradient of strain generates a scale-dependent Hookean stress-strain scheme 

related to the small scale. Taking into account the supports of the nanobeam in two cases, 
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that is, totally fixed and hinged, the deformations are predicted. A constant static lateral load 

is postulated uniformly along the length of the beam, which forces the deformation. As the 

analysis is based on the one-dimensional media, the electrodes are embedded so that they 

give off a transverse magnetic field creating a longitudinal force. The newly developed 

mathematical model is computed by means of the differential quadrature method together 

with the Newton-Raphson technique. The computational section discusses and reveals the 

numerical results in detail for the characteristics and parameters involved in the design of 

beam-like magnetic nanosensors. As shown later, the conducted research presents that there 

is a strong linkage between the surface effect and the flexomagneticity behavior of the bulk. 

Keywords: Flexomagnetic; Euler-Bernoulli beam; Surface effects; Nonlinear bending; Nonlocal 

strain gradient theory; Differential quadrature method 

List of symbols 

 xx    Stress component 

 xx    Strain component 

11C                   Elasticity modulus 

       Poisson's ratio 

m      Mode number 

z                 Thickness coordinate 

zI               Area moment of inertia 

L                Length of the beam 

                Magnetic potential 

b      Width of the beam 

h               Thickness of the beam 

u               Axial displacement of the midplane 

w               Transverse displacement of the midplane 

31q    Component of the third-order piezomagnetic tensor 

31g     Component of the sixth-order gradient elasticity 

tensor 

31f    Component of fourth-order flexomagnetic tensor 

33a   Component of the second-order magnetic 

permeability tensor 
MagN   In-plane axial magnetic force 

A                Area of cross-section of the beam 

1    Introduction 

Flexomagnetic coupling is between magnetic polarization and strain gradient or reversely, 
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elastic strain and magnetic field gradient. The perception of the flexomagnetic effect dates 

back to not-so-distant years, which can be a pervasive influence for all structures including 

symmetrical and nonsymmetrical crystals. However, studies of flexomagneticity in solids are 

rare in bulk samples due to the small amount of this effect. With the development of nanoscale 

technology, interest in flexomagnetic has renewed; because the large strain gradient is often 

manifested at the nanoscale, which leads to a strong flexomagnetic effect. One of the attractive 

applications of piezomagnetic is the extraction of energy from the mechanical vibrations of 

the environment in order to power micro-and nanodevices. However, piezomagnetic is limited 

to specific materials and is strongly influenced by temperature, which does not exist in 

flexomagnetic. This feature can be considered as a higher-order effect than piezomagneticity. 

The gradient size effect shows that the importance of the flexomagnetic effect in micro-and 

nanosystems is comparable to piezomagnetic and even beyond. In addition, flexomagnetic, 

unlike piezomagnetic, is found in any material with any symmetry. This means that compared 

to piezomagneticity, which is inefficient and invalid in materials with central symmetry, the 

effects of flexomagnetic are present in all biological materials and systems. These features 

have led to a growing interest and research in flexomagnetic in the last decade. As expected, 

in the future the effect of piezomagnetic on nanomotors and nano memory has important 

applications, the flexomagnetic effect may also play such an important role in the construction 

of these devices [1-9]. 

As a brief physical explanation of this effect, it can be mentioned that by bending a 

crystal, the atomic layers are stretched inside it, and it is clear that the outermost layer will 

have the most tension. A magnetic field can be created into the crystal due to movement of 

ions as a result of tension differences between the different layers. In other words, bending 

some materials creates a magnetic field, which is called flexomagnetism.  
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The effect of flexomagnetic in nanoscale should be considered and evaluated in light 

of several reasons, including [1-9]: a- Flexomagneticity is a pervasive property of any 

structural symmetry compared to piezomagnetic, and therefore expands the choice of 

materials that can be used for sensors and electro-magneto-mechanical actuators. b- Reduced 

dimensions lead to a larger strain gradient, meaning that the strain difference at smaller 

distances results in the larger strain gradient. The small scale is introduced in nanotechnology 

and therefore leads to an increase in the effect of flexomagnetism, which at the nanoscale can 

compete with piezomagnetism. c- A number of experiments have reported strong 

flexomagnetic coupling constants that are several times higher than theoretical estimates. 

Utterly different properties can be revealed for body surfaces from those dedicated to 

the interior [10] on account of unalike environmental conditions. At very small sizes, the 

importance of surface property can be pivotally considerable owing to the high surface-to-

volume ratio. In spite of the significance of surface effects at the mesoscale, it can be 

responsible as a size-dependent property. Gurtin and Murdoch [11, 12] posed a mathematical 

schema in terms of a continuum elasticity framework involving effects of the surface, where 

the surface was assumed as a virtual layer with zero thickness concerning a mathematical 

layer, in which the membrane has dissimilar material features and characteristics and 

underlying the layer as an entirely bonding with the bulk. 

By an exact look at the literature, the extensity can be found in studies of surface effects 

phenomena with electro-magneto-elastic coupling [13-18]. However, study of the 

flexomagnetic effect does exist in none of them, and the need to examine it is quite obvious 

which merits an investigation between surface effect and flexomagneticity. Furthermore, 

mathematical studies on the impact of flexomagneticity on micro/nanostructures have been 

extended slowly hitherto [19-26]. Despite the attention to this issue in recent years, 
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flexomagnetism has still many questions, ambiguities, and unresolved issues. According to 

the literature, it was found and confirmed that the surface effects can strongly and directly 

affect the electro-magneto-elastic coupling in an electro-elastic nanomaterial. For this reason, 

we were persuaded to theoretically consider the surface effect on the flexomagneticity as a 

higher-order coupling effect in ferrite nanostructures. In this research, while re-introducing 

the flexomagnetic effect and the relations governing its static bending, theoretical discussions 

on the subject are presented considering the effect of the surface layer. Specifically, a 

theoretical explanation of the effect of the surface layer on the flexomagnetic effect is given 

and the reason for its importance in nanoscale systems is stated. Noted that the effects of 

surface residual stress are eliminated in this paper and the surface energy alone has been 

investigated. After explaining the physical model of the theory, the governing relations are 

solved using the numerical method of differential quadrature and specifically the Newton-

Raphson method. Finally, the potential effects of the surface layer on the flexomagnetic effect 

are stated. 

2    Mathematical Model 

Regarding Fig. 1, the magnetic nanomaterial specimen in the form of a rectangular nanobeam 

with initial length L and height/thickness h is schematically discussed in an orthogonal 

coordinate system. The left-most end of the beam is postulated as the location of the 

rectangular coordinate system. Two flexible electrodes are covered and attached to the top 

and bottom transversal surfaces of the beam, which are connected to an ampere meter. These 

electrodes produce a lateral magnetic field.  
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Fig. 1. A square magnetic material specimen connected to a magnetic system 

The nonlocal strain gradient size-dependent model [27-36] has advantages in contrast 

to the Eringen's nonlocal elasticity theory [37-40] and coupled stress/strain gradient approaches 

[41-47] which contain one length scale factor only. Thus, the nonlinear nonlocal strain gradient 

static elasticity bending model of flexoferroic beam-like magnetic nanomaterial involving 

flexomagnetic effect is made available by use of [48] 

2 2 4 4 3 2
2
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Along with the longitudinal direction, the surface effect is important. This issue can be 

mathematically modeled by the following one-dimenional relation [49], 

11 11 S S SC                                                                                                                                 (3) 

in which 11

SC  denotes the surface elasticity modulus which the value may be found either based 

on experiments or atomic simulations [50, 51]. Noted that, in this paper, the upper index S 

introduces constants relate to the surface layer. 

The effective axial and flexural rigidities showed by Eq. (3) can be calculated as [52-

56], 

3 2 3
* *

11 11 11
12 2 6

 
   

 

S

z

bh bh h
C I C C                                                                                                  (4) 

Moreover, the effective magnetic properties can be written as follows, 
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*

11 11 11  Sf f f                                                                                                                                (5) 

*

31 31 31  Sq q q                                                                                                                                (6) 

*

33 33 33  Sa a a                                                                                                                                 (7) 

Accounts for the surface effect, the governing differential equations which define the 

large deflections of the magnetic beam-like nanomaterial can be conducted as, 
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3   Solution of equations 

Let us apply a superb, accurate, and convenient numerical solution method, namely, the 

differential quadrature method (DQM), to transfer the nonlinear differential equations 
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displayed by Eqs. (8, 9) into algebraic ones to advance the solution [57-66]. In comparison with 

other numerical techniques employed to solve complicated differential equations, such as finite 

difference, finite element, and dynamic relaxation, the differential quadrature technique 

provides low computational cost and simple procedure. 

For a one-dimensional problem, the first-order derivative of variables is carried out as 

   
1

,   =1,2,...,



N

x

i ik k

k

du
x a U x i N

dx
                                                                                                (10a) 

   
1

,   =1,2,...,



N

x

i ik k

k

dw
x a W x i N

dx
                                                                                                (10b) 

where the number of grid points along the axial direction is depicted by N. Moreover, 
xa  is 

expressed as follows, 

 

   

1,

   for  

,   , =1,2,...,
 

 


 

ix

ij

i j j

N
x x

ii ij

j i

R x
a i j

x x R x

a a i j N

                                                                                                  (11) 

in which  

   
1, 

 
N

i i j

j i

R x x x                                                                                                                (12) 

In addition, higher-order derivatives can be written as 

 

       
1


n N

n

i ik kn
k

d u
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dx
                                                                                                                  (13a) 

 
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1


n N

n

i ik kn
k

d w
x C W x

dx
                                                                                                                  (13b) 

where 
 n

C  shows a weighting equation which can be defined as follows, 
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 1
 xC a                                                                                                                                        (14) 
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x x
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                                                                                                  (15) 

Another issue that needs to be mentioned is how to mesh the beam. Different methods 

have been proposed for distributing nodes in the mesh network. The simplest type of meshing 

is the uniform distribution of nodes on the surface of the beam with equal distances. This type 

of meshing, although simple, is often less accurate (Fig. 2a). A high efficient mesh point can 

be obtained by embedding Chebyshev– Gauss–Lobatto relation as (Fig. 2b), 

1
1 cos   ;  1,2,...,

2 1


   
    

  
i

L i
x i N

N
                                                                                             (16) 

In fact, this type of meshing leads to more stability of the equations and the speed of 

convergence of the results. 

 
(a) 

 
(b) 

Fig. 2a. Uniform points distribution, 2b. Chebyshev– Gauss–Lobatto points distribution (assume N=7 

grid points for the beam, the red points relate to the boundary conditions) 

Implementation of the DQM presents Eqs. (8, 9) in the following scheme, 
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To complete the formulation, Eqs. (17, 18) are merged with the boundary conditions. 

These end conditions are exerted as follows, 

Clamped (C): 0   :  0,  U W x L  

Simply-supported (S): 0   :  0,   xU W M x L  

Then, by inserting the introduced end conditions in Eqs. (17, 18), nonlinear algebraic 

matrix equations can be obtained. 

The accuracy and convergence rate of the Newton-Raphson technique is quite high, 

leading to performing it on the current problem [67, 68]. In this approach, there should be 

primary guesses ( 0U  and 0W ) whose amounts directly regulate the convergence rate. The first 

loop can be written as [48] 

     U U J A    
1

1 0                                                                                                                            (19) 

     W W J A    
1

1 0                                                                                                                            (20) 

in which A exhibits a vector, J shows Jacobian in the framework of a matrix. 

 , ie
J i j

x





                                                                                                                                        (21) 

 
 
 i

U
A e

W

 
  

 

0

0

                                                                                                                                        (22) 

in which e is dedicated for equilibrium equations on the basis of the first guesses. In a point of 

fact, Eqs. (19, 20) should be in an iterative form as 

 n nU U J A


            

1
1                                                                                                                      (23) 

 n nW W J A


            

1
1                                                                                                                          (24) 
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in which the iteration number n determines the convergence speed. The desired accuracy can 

be obtained based on a few iterations. As a consequence, Eqs. (23, 24) result in values of 

deformations along the x and z axes in which the deflections are related to the transverse 

deformations. 

4    Solution method validation 

The method used to solve the nonlinear equations should be checked prior to the parametric 

study in order to assess its efficiency. Based on Tables 1 and 2, some results are tabulated 

which are reported from a finite element commercial software (FECS) and present study for 

linear and nonlinear deflections of an isotropic local beam alongside simple and clamped 

supports. It is borne to keep it in mind that the convergence rate of the present solution method 

is N=9. To achieve large deflections, the chosen load is much bigger than that of the first 

comparison. The validation criterion is the length-to-thickness ratio, which is selected in a 

range from a thick beam up to a thin one. 

The observation of these two tabulated examples says that in the case of large 

deflections the agreement is further passable particularly in terms of thinner beams. Of course, 

it should be logical as the present work used thin beam theory without involving shear 

deformations and, on the other side, FECS has the advantage of using shear deformations. More 

importantly, FECS considers large displacements in three axes, but the present formulation 

examines nonlinearity in the transverse axis respecting the von-Kármán theorem. Furthermore, 

the present mathematical model is based on the one-dimensional analysis; however, FECS is 

regarding three-dimensional problems. Regardless of these, FECS's outcomes vary due to lots 

of options in the solution, such as type of element, number of elements, and size. Consequently, 

a full matching among the results is not reasonable and the difference percentages (
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% 100
FECS DQM

Diff
DQM


  ) can be desirable. 

 

 

Table 1. Providing small deflections for a square macro beam (E=210GPa, p=100N/m, CC). 

L/h 

Linear deflections (mm) 

FECS 
Present 

(DQM) 
Diff% 

5 0.000272 0.000198 37.37% 

10 0.001648 0.001585 3.97% 

15 0.005243 0.005348 1.96% 

20 0.012173 0.012680 3.99% 

25 0.023553 0.024765 4.89% 

30 0.040499 0.042790 5.35% 

35 0.064131 0.067956 5.62% 

40 0.095561 0.101440 5.79% 

45 0.135907 0.144432 5.90% 

50 0.186285 0.198126 5.97% 

 

Table 2. Providing large deflections for a square macro beam (E=210GPa, p=0.5kN/m, CC). 

L/h 

Nonlinear deflections (mm) 

FECS 
Present 

(DQM) 
Diff% 

5 0.001362 0.000990 37.57% 

10 0.008242 0.007924 4.01% 

15 0.026218 0.026744 1.96% 

20 0.060869 0.063371 3.94% 

25 0.117767 0.123616 4.73% 

30 0.202465 0.212890 4.89% 

35 0.320469 0.335536 4.49% 

40 0.477106 0.493667 3.35% 

45 0.677421 0.685871 1.23% 

50 0.925881 0.906756 2.10% 

5    Practical examples 
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The most fundamental concept in terms of nanoscale problems consists of establishing 

nanosize effects by formulating between continuum mechanics and nonlocal and also strain 

gradient approaches proposed theoretically. The concept of nonlocality expands and indicates 

interaction between atoms based on Eringen's postulations. It is discussed that stress at a 

point/atom under consideration relates not only to strain at that point but all atoms’ strains in 

that media. This is mathematically meaningful by the Laplace operator which computes an 

average of a quantity in a planar domain. In addition to this, one can measure the large strain 

gradient of atoms by the use of well-known strain gradient elasticity models given by literature. 

These properties arrive from the bulk of a nanostructure. Another effective factor implies a 

nanostructure can behave differently against a macroscale and that this operator can be the 

effects of the exterior surface. Of course, surface effects happen on a macroscale though, this 

is eminent and more explicit on a small scale because of the large ratio of surface to volume. 

As a matter of fact, [10-12] showed that the surface of materials reacts differently from bulk.  

The focus of this section is to surface effects on the flexomagnetic behavior of the cobalt 

iron oxide as a ferromagnetic material with the structural properties assigned in Table 3 [69-

72] and three categories, that is, a piezo-flexomagnetic (PFM) actuator, piezomagnetic (PM) 

and an ordinary nanobeam (NB). 

Table 3. Employed structural properties 

Bulk (CoFe2O4) Surface layer 

C11=286GPa 

f31=10-9 N/A 

q31=580.3 N/A.m 

a33=1.57×10-4 N/A2 

11

SC =35.3 N/m 

31

Sf =10-9 N/A 

31

Sq =3.4 N/A.m 

33

Sa =1.4×10-4 H/m 

In the first study of the correlation between flexomagnetic and surface effects, Figs. 3a and 3b 

are drawn with changes in nonlocal and strain gradient length scale (SGLS) coefficients. The 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


aim here is that the surface layer affects the flexomagnetic behavior at smaller or larger values 

of these two small-scale parameters. In the first figure, which relies on the nonlocal parameter, 

it can be clearly seen that as we move towards the selection of larger values for the nonlocal 

parameter, the nonlocal parameter is effective in highlighting the flexomagnetic effect and it 

can increase the flexomagnetic response of the material even in the attendance of the surface 

effect. This result cannot be seen in Fig. 3b, and in fact, the boundary conditions have a direct 

effect on this achievement. Since the purpose of this study is to investigate the relationship 

between surface effect and flexomagnetic response, we will not interpret the results of the 

surface layer on the mechanics of the nanostructure. For example, the effect of the surface layer 

has led to a reduction in deflections and, as a result, greater stiffness of the material, which has 

been thoroughly discussed in the research background. Other results considered according to 

these two figures show a growth in the flexomagnetic effect while the surface effect is not 

examined. This is because, as mentioned before, the effect of the surface leads to the stiffness 

of the material and as a result, deduces the deflections. As the deflections decrease, the 

flexomagnetic effect will be less important. In fact, if the nanostructure under study has 

inestimable surface effects, the flexomagnetic effect on that material will be larger. 
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Fig. 3a. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

m=1, L/h=10, p0=0.1 N/m, l=1 nm, CC) 

 

Fig. 3b. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

m=1, L/h=10, p0=0.05 N/m, l=1 nm, SS) 

In this section, by presenting Figs. 4a and 4b, there will be a similar study of Figs. 3a and 3b, 

with the difference that here the changes of the SGLS are evaluated. Since in the previous 

figures we have come to the conclusion that in larger values of the nonlocal parameter, despite 
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the surface effect, the flexomagnetic effect becomes more dominant. This was because 

increasing the nonlocal parameter reduced the stiffness of the material, resulting in a larger 

strain gradient. Since the behavior of SGLS parameter is the opposite of the nonlocal parameter, 

it means that its enhancement leads to an increase in the stiffness of the material and, as a rule, 

the flexomagnetic effect should be underestimated, which is simply shown in Fig. 4a. However, 

it cannot be found in Fig. 4b. 

 

Fig. 4a. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

m=1, L/h=10, p0=0.1 N/m, e0a=0.5 nm, CC) 
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Fig. 4b. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

m=1, L/h=10, p0=0.05 N/m, e0a=0.5 nm, SS) 

By preparing Figs. 5a and 5b, we consider the changes in transverse static load to find the effect 

of these changes on the connection between the surface layer and the flexomagnetic effect. As 

can be vividly seen, in the range of larger nonlinear deflections, the surface effect is more 

outstanding in particular when the loading is becoming greater in size. In the first figure, the 

difference between the results when the surface effect is examined compared with when it is 

omitted, the results are greater than those in the second figure. In fact, the first plot, which is 

prepared for the boundary condition of two clamped edges, shows that the larger the transverse 

load, the more substantial the surface effect, as well as its relationship to the flexomagnetic 

effect. However, if the two ends of the nanobeam use the hinge boundary condition, the 

differences will not increase significantly despite the larger static loads. 
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Fig. 5a. Static load vs. deflections for beams with and without surface effects (Ψ=1 mA, m=1, 

L/h=10, l=1 nm, e0a=0.5 nm, CC) 

 

Fig. 5b. Static load vs. deflections for beams with and without surface effects (Ψ=1 mA, m=1, 

L/h=10, l=1 nm, e0a=0.5 nm, SS) 
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ampere. In the first figure, in the boundary conditions of two fixed edges, no serious result is 

obtained. However, by examining the second figure, which is related to the boundary 

conditions of two hinged edges, it can be seen that while the problem involves the surface 

effect, increasing the magnetic potential values leads to a very small reduction in the difference 

between results of PFM and PM. In fact, a very little effect resulted from magnetic potential 

variation on the flexomagnetic effect can be observed. Nevertheless, as a general conclusion, 

it can be stated that changes in the magnetic potential do not have a noteworthy impact on the 

relationship between the flexomagnetic behavior of the bulk and the surface layer effect. On 

the other hand, by comparing the two figures, it can be concluded that the downward trajectory 

of the results is faster due to the increase of the magnetic potential in the hinge boundary 

conditions. 

 

Fig. 6a. Magnetic ampere vs. deflections for beams with and without surface effects (m=1, L/h=10, 

l=1 nm, p0=0.1 N/m, e0a=0.5 nm, CC) 
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Fig. 6b. Magnetic ampere vs. deflections for beams with and without surface effects (m=1, L/h=10, 

l=1 nm, p0=0.1 N/m, e0a=0.5 nm, SS) 

6   Conclusions 

The work reported the effects of the surface layer on the various significance items included in 

a ferromagnetic structure for providing the flexomagnetic response. On the basis of the 

obtainable data of a flexoferroic material, an appropriate consideration was performed to 

predict the surface layer effect on the flexomagneticity. Euler-Bernoulli beam assumption was 

used to find out large deflections of clamped-clamped and pinned-pinned nanoscale beams. 

When the nonlocal strain gradient model is applied, it can generate the stress nonlocality and 

large gradient of atoms in the nanoscale. When the magnetic field gradient is applied, one can 

observe the converse flexomagnetic effect which was our case in this article. The contribution 

of the nonlinear von-Kármán strain aided us to mathematically model the problem. With the 

substitution of the differential quadrature method, which has been widely used and its precision 

has been entirely approved, the partial differential relations have been converted into algebraic 

equations. Thereafter, the algebraic relations were solved vis-à-vis the Newton-Raphson 
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technique to compute the large deflections. Further, investigations were warranted via a simple 

structure using a finite element commercial software before the results and discussion section. 

This study argued and demonstrated a huge potential in affecting the flexomagnetic effect 

based on the surface layer. The suitable concluded remarks developed by this research will help 

the designers of small scale actuators and sensors, where some of them are indicated below, 

 If the end conditions are selected as less flexible, and values of nonlocal parameter or 

SGLS are respectively, big and small enough, the surface layer can affect and develop a 

further flexomagnetic response. 

 In general, the more dominant the surface effect, the stiffer the material, then the less 

important the flexomagnetic effect. 

 The less flexible the end conditions, the remarkable the surface effect and its coherency 

with flexomagnetic effect if the lateral load is increasing. 

 There was found no evidence to show that the relationship between the effect of surface 

layer and the flexomagnetic influence can be affected by changes in values of the external 

magnetic ampere. 
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Abstract 

This research work performs the first time exploring and addressing the flexomagnetic 

property in a shear deformable piezomagnetic structure. The strain gradient reveals 

flexomagneticity in a magnetization phenomenon of structures regardless of their atomic 

lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse 

magnetization couples both piezomagnetic and flexomagnetic features into the material 

structure. The mathematical modeling begins with the Timoshenko beam model to find 

the governing equations and non-classical boundary conditions based on shear 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1007/s00161-021-01034-y
http://mostwiedzy.pl


deformations. Flexomagneticity evolves at a small scale and dominant at micro/nanosize 

structures. Meanwhile, the well-known Eringen’s-type model of nonlocal strain gradient 

elasticity is integrated with the mathematical process to fulfill the scaling behavior. From 

the viewpoint of the solution, the displacement of the physical model after deformation is 

carried out as the analytical solution of the Galerkin weighted residual method (GWRM), 

helping us obtain the numerical outcomes on the basis of the simple end conditions. The 

best of our achievements display that considering shear deformation is essential for 

nanobeams with larger values of strain gradient parameter and small amounts of the 

nonlocal coefficient. Furthermore, we showed that the flexomagnetic (FM) effect brings 

about more noticeable shear deformations’ influence. 

Keywords: Flexomagneticity; Buckling analysis; Timoshenko nanobeam; NSGT; 

GWRM 

Nomenclature: 

xx : Axial strain  

xz : Shear strain 

xxz : Gradient of the axial elastic strain  

11C : Elastic modulus 

xx : Axial stress 

xz : Shear stress 

31f : Component of the fourth-order flexomagnetic coefficients tensor 

33a : Component of the second-order magnetic permeability tensor  

31q : Component of the third-order piezomagnetic tensor 

xxz : Component of the higher-order hyper-stress tensor 

zB : Magnetic flux  

zH : Component of magnetic field 

31g : Influence of the sixth-order gradient elasticity tensor 
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q : Third-order piezomagnetic tensor 

a : Second-order magnetic permeability tensor 

g : sixth-order gradient elasticity tensor 

C : Fourth-order elasticity coefficient tensor 

f : Fourth-order flexomagnetic tensor 

r : Fifth-order tensor 

ui (i=1,3): Displacement in the x- and z- directions 

u and w: Axial and transverse displacements of the mid-plan 

 : Rotation of beam elements around the y-axis 

z: Thickness coordinate 

 : External magnetic potential 

 : Magnetic potential function 

 l nm : Strain gradient length scale parameter 

   
2 2

0nm e a  : Nonlocal parameter 

mX : Residue of the equations 

sk : Shear correction factor 

xN : Axial stress resultant 

xQ : Shear stress resultant 

xM : Moment stress resultant 

xxzT : Hyper stress resultant 

1. Introduction 

Magnetic properties are divided into different categories: diamagnetic, 

paramagnetic, ferrimagnetic, ferromagnetic materials, etc. Ferromagnetic materials are 

magnetic structures with high permeability, such as cobalt and iron. Ferromagnetic 

materials are divided into hard (e.g., CoFe2O4) and soft groups (e.g., Fe3O4). Hard 

magnetic materials are materials that become magnetized hardly ever; That is, a strong 

magnetic field is required to create magnetism in them. As these materials become 

magnetized hardly, they also lose scarcely ever their magnetic properties. These structures 

are suited to be used as a steady magnetic state, such as sensors and measuring 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


instruments. Conversely, soft magnetic structures are easily magnetized and just as easily 

lose their magnetic properties [1-5].  

CoFe2O4 magnetic nanostructures have received particular attention among 

different spinel ferrites, such as exclusive physical features, excellent mechanical 

hardness, significant magnetostrictive coefficient, high coercivity, moderate saturation 

magnetization, etc. [6, 7]. From a technological perspective, these characteristic 

properties cause the structure described above entirely significant, leading to its 

application in gas sensors, magnetic hyperthermia, biosensors, ferrofluid technology, and 

high-density magnetic media [8-11]. 

A lot of practical applications can be observed from the phenomenological 

magneto-mechanical coupling of crystals. Structures with reduced dimensions 

functioning as nano configurations are affected principally and importantly from this type 

of coupling. It is already known that the connection between induced magnetization and 

strain gradient is mainly significant among small-size structures. Flexomagneticity (FM) 

is a phenomenon that exists during the magneto-mechanical coupling regarding the 

magnetic field and strain gradient [12-14]. Compared to the flexomagneticity, 

flexoelectricity influence appears in crystalline structures between the electric field and 

strain gradient (converse effect) [15-33]. The physical action of FM makes it competent 

to the economic outlook. The advantage of FM property gives a possible way of 

improving biosensor efficiency. 

The contemporary decade has been witnessed plenty of research work performed 

on the mechanics of piezomagnetic (PM) nano configurations [34-42]. However, the 

availability of FM in scientific papers is seen hardly and scarcely [43-52]. In the 
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aforementioned reports presented on FM for PM structures, in order to model the domain 

displacement field, all available references employed the concept of the Euler-Bernoulli 

(EB) approach regardless of shear deformation. By contrast, in the present research work, 

we analyze the transverse shear deformation on the basis of utilizing the Timoshenko 

beam approach. As long as the domain is a nanoscale volume, the size-dependent 

mechanical response should be considered. The literature in [43, 44] used the surface 

elasticity hypothesis to address this scale-dependent reaction. Oppositely, in the current 

paper and similar to [45-52], we handle stress/strain-driven non-classical elasticity 

models conforming to the nonlocal strain gradient size-dependent approach. Using this 

approach leads to investigating two concurrent size-dependent nanomaterials' behaviors: 

inhomogeneity distribution of atoms (material particles) and long-range lattice 

interactions. The first one occurs due to a large surface to the volume of atoms, and the 

second one arises concerning the long-range interatomic interaction among the whole 

atoms of the domain. It is germane to note that the [43, 44] applied both direct and 

converse magnetic fields; however, [45-52] and the present article have taken the 

converse effect only. We keep the ends of the magnetic nanobeam mathematically in 

simply-supported boundary conditions through a numerical solving procedure. Up to our 

knowledge, the literature has confirmed that FM behavior is completely size-dependent. 

Moreover, the crucial achievements of [45-52] approved that the FM can cause 

more material stiffness. Therefore, we aim to investigate the relevance between transverse 

shear deformation and the FM, which is a novel study in the present scientific work and 

what follows. In a point of fact, until now, the FM has been investigated on thin beam 

models only regardless of shear deformation [43-52]. Furthermore, the linear 
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mathematical model which is obtained by this study is solved through the medium of the 

Galerkin weighted residual method. The numerical results have appeared in line with the 

graphical figures and detailed parametric diagrams. 

2. Mathematical modeling 

2.1 Fundamental calculations of the piezomagnetic-flexomagnetic (PFM) media  

We begin the fundamental formulation of a PFM solid by assuming some 

restrictions acting as minute deformations in an isothermal environment, referencing [12-

14]. Thus, the magnetic field H and displacement u are variables in the vector framework. 

   ,u u x  H=H x                                                                                                          (1) 

in which x  defines a position vector.  

We introduce the free energy density U defined within the flexomagneticity as 

follows 

 
1 1 1

, , : : :
2 2 2

:

U U H H a H C g r

H q H f

       

 

       

   

                                                 (2) 

in which “⋮”, “:”, and “∙” depict the inner (scalar) products in the spaces of third-order 

tensor, second-order tensor, and vectors, respectively.   

The elastic strain and its gradient are  expressed as 

 1
,

2

Tu u                                                                                                        (3) 

where   is the 3D nabla operator. 

In what follows, we use the magnetic potential ψ related  with H as 

H                                                                                                                               (4) 
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To study the FM on a static PM model, based on the virtual work principle, one 

can use the variational approach 

V
UdV A                                                                                                                               (5) 

where A  is dedicated for performing the work of outer loads, V exhibits the domain 

volume occupied by FM solid. 

For simplicity, a standard relation for A  is introduced as 

V V

A F u t uds  



                                                                                                                                  (6) 

in which t and F display the surface traction and external mass forces, respectively. 

We illustrate the following equations based on Eq. (5) and calculus of variations 

  0F                                                                                                                                  (7a) 

0B                                                                                                                                (7b) 

where B  is a magnetic induction vector, and the constitutive relations of a PFM media 

can be established as 

:
U

C r H q  



    


                                                                                                                 (8a) 

: :
U

g r H f  



    


                                                                                                      (8b) 

:
U

B a H q f
H

 


     


                                                                                                             (8c) 

2.2 The PFM hard magnetic soft one-dimensional structure 

This research tries to develop the FM studies on PM solids by accounting for the 

shear deformation of the structure while both ends of the one-dimensional beam-shaped 
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configuration are held in simple supports. Regarding Fig. 1, a one-dimensional figured 

beam bridged by simple ends can be detected. Dimensions of the beam are respectively 

assigned in the parametric framework by h and L for its thickness and effective length. 

 

Fig. 1. Geometrical details of a simply supported square figured beam 

While a beam incorporates FM properties, the constitutive relations (Eq. (8)) are re-

defined as follows [43, 44] 

11 31xx xx zC q H                                                                                                             (9) 

31 31xxz xxz zg f H                                                                                                        (10) 

33 31 31z z xx xxzB a H q f                                                                                                (11) 

As the main scope of this paper is exerting transverse shear deformation in the PFM 

solid, we use the Timoshenko model as follows [53, 54] 

     1 ,u x  z u x z x                                                                                                                 (12a) 

   3 ,u x z w x                                                                                                                  (12b) 

 In view of Lagrangian strain and as the present study addresses the linear stability 

of PFM nanoscale beams, thus 
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1

2

ji
ij

j i

uu

x x


 
     

                                                                                                             (13) 

On developing Eq. (13) based on Eq. (12), one obtains 

xx

du d
z

dx dx


                                                                                                                       (14a) 

xz

dw

dx
                                                                                                                         (14b) 

xx
xxz

d d

dz dx

 
                                                                                                                                       (14c) 

Modifying the Lagrange principle (5), we came to  

  0W U                                                                                                               (15) 

where the given letters U  and W  state respectively the internal strain energy 

originated from mechanical and magnetic sections, and mechanical work of external 

elements accomplished on the system.  

The following relation can depict the whole strain energy of the beam 

 U xx xx xz xz xxz xxz z zV
B H dV                                                                   (16) 

Equilibrium equations and non-classical end supports conditions can be obtained 

after imposing the variational method on Eq. (16) as follows 

1

0

L
Mech x x x xxz
U x

dN dQ dM dT
u w Q dx

dx dx dx dx
     

 
        

 
                                  (17a) 

2

2

0 2

hL
Mag z
U

h

dB
dzdx

dz
 



                                                                                                 (17b) 

 
1 0

L
Mech
U x x x xxzN u Q w M T                                                                       (18a) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
2

/2

/2
0

L
hMag

zU h
B dx 


                                                                                                    (18b) 

where indices 1 and 2, respectively associated with the mechanical and magnetic parts, 

furthermore 

/2

/2

h

x xx

h

N dz


                                                                                                                     (19) 

/2

/2

h

x xx

h

M zdz


                                                                                                                     (20) 

/2

/2

h

x s xz

h

Q k dz


                                                                                                                      (21) 

/2

/2

h

xxz xxz

h

T dz


                                                                                                                  (22) 

Taking external items such as loads and environmental effects results in 

mechanical work in the solid, hence [55-58] 

2
0

0

1

2

L

W x

dw
N dx

dx

 
   

 
                                                                                                              (23) 

Then, the first variation of Eq. (23) can be produced as 

0

0

L

W x

d w dw
N dx

dx dx




 
   

 
                                                                                                   (24) 

where 
0
xN  reveals in-plane pre-buckling force. 

There is only a transverse component for the present media for the magnetic field 

determined as [59, 60] 

0z

d
H

dz


                                                                                                                                  (25) 
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Let us match the literature and embed the beam in a magnetic potential difference 

circuit so that the maximum and minimum magnetic potentials are at the uppermost and 

lowest surfaces, respectively. Therefore, the magnetic boundary conditions for a reverse 

PM impact besides closed-circuit yields [43, 44] 

, 0
2 2

h h
 

   
        
   

                                                                                      (26a-b) 

By combining Eqs. (11), (17b), (18b), (25), and (26) together and making some 

mathematical processes give the magnetic potential distribution in line with the thickness 

and component of the magnetic field as 

2
231

332 4 2

q h d h
z z

a dx h

    
           

                                                                               (27) 

31

33
z

q d
H z

a dx h

 
                                                                                                             (28) 

The study of the structural properties of nanodomains, especially the accurate 

measurement of their mechanical response, has required complex tools. The ultrasmall size 

space is transferred into a continuum solid media through some mathematical theorems to 

avoid using complicated equipment. These theoretical models can act in two forms, integral 

or differential operators. However, we here employ a differential framework of one of these 

models, which is famed as nonlocal strain gradient elasticity theory (NSGT) [61] 

2 2
2

2 2
1 1ij ijkl ij

d d
C l

dx dx
  

   
     

   

                                                                                   (29) 

In other words, in constitutive relations for stress tensor (8a), we consider C as an integro-

differential operator related to Eq. (29). 
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The right side of the NSGT relation is assumed to project the strain gradient role. 

This part is significant in the mechanics of micro/nanoscale deformable materials [62]. 

Further, the left side is considered to render the nonlocality of atoms. Both parts involve 

extra parameters, respectively   as a nonlocal parameter and l  as a strain gradient 

parameter. It should be reminded that    
2 2

0nm e a   where e  denotes a nonlocal 

quantity and a  indicates a characteristic internal length which can be the distance between 

the center of two neighbor atoms. It should be remembered that the values of small-scale 

parameters that existed in NSGT vary in light of several cases, such as the type of end 

supports. In general, the values of these factors are not constant or an associated value for 

each material [63-66]. 

Putting Eq. (14) and (27, 28) into Eqs. (9-11), and combining the obtained relations 

with Eq. (29), then, respectively, the components of magnetic induction, axial stress, and 

shear stress can be obtained as 

2 2
2 31 31 31

312 2
33

1 1xxz

q f z fd d d
l g

a dx hdx dx


 

      
             

      

                                         (30) 

22 2
2 31 31

11 112 2
33

1 1xx

q qd d du d
l C z C

dx a dx hdx dx


 

     
               

       

                                (31) 

2 2
2

2 2
1 1xz

d d dw
l GA

dxdx dx
  

      
                  

                                                                        (32) 

Nonlocal stress resultants can be obtained by substituting Eqs. (30-32) into Eqs. 

(19-22) [67-75] 

2 2
2

1 42 2
1 1x

d d du
N l I I

dx dx dx


    
       

    

                                                                                (33) 
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 
2 2

2

2 32 2
1 1x

d d d
M l I I

dx dx dx




    
       

    
                                                               (34) 

2 2
2

442 2
1 1x

d d dw
Q l H

dx dx dx
 

     
         

     
                                                                       (35) 

2 2
2

5 62 2
1 1xxz

d d d
T l I I

dx dx dx




    
       

    

                                                                     (36) 

in which the numerical expressions bring about  

   
/2 /2 /22 2

2 31 31
1 2 11 3 4

33/2 /2 /2

/2 /2 /2

31
5 31 6 44

/2 /2 /2

, 1, , , ,

, ,

h h h

h h h

h h h

s

h h h

q z q
I I C z dz  I dz I dz  

a h

f
I g dz  I dz  H k GAdz

h





  

  

  

  

  

  
 

After implementing Eq. (17a) and (24) in Eq. (15), the equations which govern the 

PFM beam-shaped solid can be developed by which the beam behaves statically in a local 

domain 

0xdN

dx
                                                                                                                         (37) 

2
0

2
0x

x

dQ d w
N

dx dx
                                                                                                            (38) 

0x xxz
x

dM dT
Q

dx dx
                                                                                                                     (39) 

This is the time to simplify Eqs. (33-36) in the nonlocal domain. To do this, by 

way of Eqs. (37-39), one can derive 

2
2

1 42
1x

d du
N l I I

dx dx

  
    

  

                                                                                        (40) 

 
3 2 2

0 2

5 2 33 2 2
1x x

d d w d d
M I N l I I

dx dx dx dx

 

    

         
    

                                          (41) 
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3 2
0 2

443 2
1x x

d w d dw
Q N l H

dx dx dx
 
     

          
     

                                                         (42) 

2

5 62
1xxz

d d
T I I

dx dx




  
    

  

                                                                                                               (43) 

Let us re-write Eqs. (37-39) based on Eqs. (40-42) as 

2 2
2

12 2
1 0

d d u
l I

dx dx

  
   

  
                                                                                                                        (44) 

2 2 2 2
0 2

442 2 2 2
1 1 0x

d d w d d d w
N l H

dx dx dx dx dx




        
            

        
                                          (45) 

 
2 2 2 2

2

5 2 3 442 2 2 2
1 1 0

d d d d dw
I l I I H

dx dx dx dx dx

 
 

      
               

      
                    (46) 

It is quite clear that Eq. (44) is independent of Eqs. (45) and (46). Therefore, to 

compute the system's stability capacity, Eqs. (45) and (46) will be solved. It is vital to 

remember that if we consider l  , or 0, l 0   , the local analysis is performed. 

Now, the pre-buckling compressive axial forces can be written as  

0 Mec ag
x

h MN N N                                                                                                    (47) 

for which one can dedicate the magnetic and mechanical parts as MagN  and 
MechN  

respectively. 

Mech

crN P                                                                                                                                     (48) 

31

MagN q                                                                                                                        (49) 

3. Solution process 
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Buckling equations are solved based on various methods. In between these solution 

techniques, well-known ones can refer to the Galerkin weighted residual method 

(GWRM), which is a simple one involving a fast solution time [56]. To proceed with this 

method, the unknown functions  w x  and  x  can be chosen as 

   
1

N

m

m

w x a x


                                                                                                             (50) 

   
1

N

m

m

x b x


                                                                                                                (51) 

The existed functions  ma x  and  mb x  based on the GWRM are expanded as 

 
0

L

m m ma W x X dx                                                                                                                       (52) 

 
0

L

m m mb x X dx                                                                                                                      (53) 

Pertained to simple end conditions (SS), mW  and m  are trigonometric functions 

as 

  sinmW x x
L

 
  

 
                                                                                                                (54) 

  cosm x x
L

 
   

 
                                                                                                                 (55) 

Manipulating and simplifying Eqs. (45) and (46) and combining it with Eq. (23), 

then based on Eqs. (50) and (51) and associating m=1, the linear analytical stability 

equation of the PFM beam-like nano solid can be achieved. 

4. Discussion and numerical results 

4.1. Results validation 
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The verification section is here conducted to devote the exactness of the solution 

process. This part of the study is divided into two divisions. The first validation (Table 1) 

corresponds to Euler-Bernoulli (EB) and Timoshenko (TB) common nanobeams based 

on nonlocal effects only. The TB results are then compared with the EB ones in Table 2 

owing to the PFM nanoscale beams by comparing results of EB small size beam with TB 

on the basis of substituting physical quantities in Table 3 [43, 44].  

The listed results in Table 1 represent that the difference between TB with EB tends 

to be shorter while increasing the value of the nonlocal parameter. What is more, no one 

can see any conflicts between present TB with those of [76]. In another investigation 

adjusted by Table 2, it is mentionable that the difference between the stability amounts of 

TB versus EB has become smaller. This smaller difference is observed while µ is 

increasing and the structure is PFM. In fact, the nonlocal parameter effect except 

decreasing the stiffness of the nanostructure deactivates the influence of shear 

deformations and then brings the EB and TB close to each other. Ultimately, on the basis 

of these prepared Tables, one can say that a very good accuracy and agreement are 

revealed for the employed solving technique.  

Table 1. Comparison of critical buckling load ( 11C =1TPa, υ= 0.3, l=0 nm, ψ=0 mA, SS, 

2

11

Cr
Cr

c

P L
P

C I
 ) 

CrP  

L/h 

e0a=0 nm e0a=0.5 nm e0a=1 nm e0a=1.5 nm e0a=2 nm 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

EB[76],  

TB[76] 

TB-

Present 

10 
2.4674 

2.4056 
2.4056 

2.4079 

2.3477 
2.3477 

2.2457 

2.1895 
2.1895 

2.0190 

1.9685 
1.8685 

1.7690 

1.7247 
1.7247 
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30 

 

2.4674 

2.4603 
2.4603 

2.4606 

2.4536 
2.4536 

2.4406 

2.4336 
2.4336 

2.4079 

2.4011 
2.4011 

2.3637 

2.3569 
2.3569 

Table 2. Comparison of the critical buckling load of the piezomagnetic-flexomagnetic CFO 

nanostructure for EB and TB (l=1 nm, ψ=1 mA, SS) 

PCr (nN) 

L/h 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

EB TB EB TB EB TB 

10 3.2828 3.2111 3.0489 2.9832 2.8536 2.7928 

12 2.4074 2.3734 2.2946 2.2627 2.1954 2.1652 

14 1.9007 1.8825 1.8398 1.8225 1.7845 1.7679 

16 1.5803 1.5697 1.5446 1.5344 1.5115 1.5016 

18 1.3645 1.3579 1.3422 1.3358 1.3212 1.3150 

20 1.2121 1.2078 1.1974 1.1933 1.1835 1.1794 

22 1.1003 1.0974 1.0903 1.0875 1.0807 1.0779 

24 1.0159 1.0139 1.0089 1.0069 1.0021 1.0001 

26 0.9506 0.9491 0.9455 0.9440 0.9405 0.9390 

28 0.8990 0.8978 0.8951 0.8941 0.8914 0.8903 

30 0.8575 0.8566 0.8546 0.8537 0.8517 0.8509 

Table 3. Properties of the magnetic nanoparticle 

 

 

4.2. Buckling analysis 

In this article, the static linear buckling analysis of a piezo-flexomagnetic (PFM) 

nanobeam is probed to understand the flexomagnetic property more. We will determine 

the effectiveness of FM for a shear deformable structure in the ultrasmall size. The values 

of small scale parameters have been gotten as 0.5 nm<e0a<0.8 nm [77], and 0<e0a≤2 nm 

CoFe2O4 (CFO) 

11C =286 GPa 

ν=0.32 
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33a =1.57×10-4 N/A2 
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[78, 79]. The value of the strain gradient parameter has been estimated as same as the 

lattice number of the examined nanostructure as l=1 nm. 

In the results section, by maneuvering on the dimensionless relationship of length to beam 

thickness (L/h), we try to evaluate the difference between the results of EB and TB beams 

in both local and nonlocal phases. Since this dimensionless ratio directly determines the 

importance of shear deformations (It was seen that in small values of this coefficient, the 

beam is thicker and the shear deformations are further important), the aim is to determine 

the effect of shear deformations on beams with FM property to know whether FM will be 

more important considering the shear deformation. 

First, in order to evaluate the different cases, Figs. 2 and 3 represent the problem by 

focusing on the nonlocal parameter and the strain gradient, respectively. With the help of 

Fig. 2, it is quite obvious that the thinner the beam, the less important the shear 

deformation in the smart beam. However, the process of reducing the results in the local 

beam (e0a=0) will be on a steep slope. In fact, the nonlocal parameter and the shear 

deformation effect directly impressed each other. When the value of the nonlocal 

coefficient is other than zero (e0a=2nm), the difference between the results of EB and TB 

decreases. Thus, it can be stated that the local solution (e0a=0) of the nanostructures will 

lead to a more gap in the difference between the results of EB and TB. In Fig. 3, it can be 

seen that by increasing the value of the strain gradient parameter, the stiffer the material, 

the greater the difference between the EB and TB results. From these two diagrams, it can 

be concluded that the stiffer the material and its structure, the more important the shear 

deformations seem.  
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Fig. 2. Nonlocal parameter vs. EB and TB for COF nanostructure (l=1 nm, ψ=1 mA) 

 

Fig. 3. Strain gradient parameter vs. EB and TB for COF nanostructure (e0a =0.5 nm, 

ψ=1 mA) 

Fig. 4 is based on changes in the value of the strain gradient parameter. Both EB and TB 

consist of two modes. The first mode is the PM beam, and the second mode is the PFM 
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beam. The result of the critical load for the EB-PFM at l = 0 is 2.836 nN and at l = 2nm 

is 3.6876 nN. Also, for TB-PFM is 2.7757 nN and 3.6055 nN, respectively. But we see 

that for PM beam in EB mode is 2.7373 nN and 3.5889 nN, respectively, and in TB mode 

is 2.6821 nN and 3.5119 nN. Therefore, considering the large values of the strain gradient 

parameter, we see that the difference between the results of EB-PM and TB-PM will be 

less than those of the EB-PFM with TB-PFM. It can be said that the strain gradient 

parameter affects the PFM beam more than the PM beams. A physical reason may be that 

the piezo-flexomagnetic material is stiffer than the piezo material. 

 

Fig. 4. Strain gradient parameter vs. EB and TB for COF nanostructure (e0a=1 nm, 

L=10h, ψ=1 mA) 

According to Fig. 5, we have tried to compare EB and TB in piezo and piezo-

flexomagnetic modes by considering the numerical changes of the slenderness parameter 

(L/h). For this purpose, we assessed the beam in the thicker zone. It shall be reminded 

that the results of TB are not accurate enough in the very thick range, and TB theory is 
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often suitable for beams with 6<L/h, and also in the case of EB for 10<L/h. According to 

the diagram and in the thicker mode of the beams, it is observed that the critical load for 

the EB-PM beam is 12.615 nN and for the TB-PM is 11.471 nN, in contrast to EB-PFM 

is 13.009 nN and for TB-PFM beam is 11.793 nN. Therefore, it can be stated that the 

difference between the results of EB and TB in piezo-flexomagnetic mode is greater than 

those of piezomagnetic mode. Of course, the literature [43-52] reported that FM is 

dominant in thinner structures. However, as a result of this study, one can conclude that 

the flexomagnetic effect will lead to the greater importance of shear deformations in 

thicker nanobeams. 

 

Fig. 5. Slenderness ratio vs. EB and TB for COF nanostructure (l=1 nm, e0a=0.5 nm, 

ψ=1 mA) 

Fig. 6 is drawn to show a pure mechanical response of the nanoscale beam (NB) compared 

with PM and PFM for both EB and TB. The NB excludes magnetic and also the FM 

properties. It is tried to sketch the beams from a thick beam up to a moderately thick 
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beam. As seen, the NB has the least mechanical stability in comparison with the PM and 

PFM nanobeams. Interestingly, in an analogy between NB with PFM, and PM, it can be 

observed that the results of the EB-NB would be matched with those of TB-NB sooner 

than other cases. From L/h=11, the results of EB and TB for NB are so closed to each 

other. However, this does not apply to magnetic cases. It means the importance of shear 

deformation will be increased in piezomagnetic-flexomagnetic domains. 

 

Fig. 6. Slenderness ratio vs. EB and TB for different nanostructure (l=1 nm, e0a=0.5 

nm, ψ=1 mA) 

5. Conclusions 

This work aimed to extend the shear deformation effect on the flexomagneticity 

response of a piezomagnetic ultrasmall scale elastic beam. We established the governing 

equations by using the Timoshenko beam. The nonlocal mechanics of the nanobeam was 

concerned with the nonlocal strain gradient approach by which we are able to transfer the 

discretize atomic lattice into a continuum region. The solution of the obtained equations 
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corresponded to a closed-form solution within which the numerical results were reported 

for simply supported end support. We organized some tabulated verifications to 

corroborate the numerical results. Based on the detailed parametric study and from an 

engineering perspective, this work provides some new attainments and outcome remarks 

as 

 The stiffer structure leads to the further remarkable of shear deformations. 

 The lesser the values of the nonlocal parameter, the more marked the shear 

deformations. 

 The larger the values of the strain gradient parameter, the more considerable 

the shear deformations. 

 For the smart nanobeams, the FM will affect the existence of shear 

deformations, and the effect is to increase its importance. 
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Abstract  

Galerkin weighted residual method (GWRM) is applied and implemented to analytically 

address the axial stability and bifurcation point of thermal buckling of a functionally 

graded (FG) piezomagnetic structure containing flexomagneticity (FM). The continuum 

specimen involves an exponential mass distributed in a heterogeneous media with a 

constant square cross-section. The physical neutral plan is investigated to factually mark 

the postulated functionally graded material (FGM). Mathematical formulations are 

concerning the Timoshenko shear deformation theory. Small scale and atomic 

interactions are shaped as maintained by the nonlocal strain gradient elasticity approach. 
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Since there is no bifurcation point for FGMs, whenever both boundary conditions are 

rotational and neutral surface does not match the mid-plan, the clamp configuration is 

examined only. The fourth-order ordinary differential stability equations will be 

converted into the sets of algebraic ones by means of the GWRM, which its accuracy was 

proved before. Thereafter, by simply solving the achieved polynomial constitutive 

relation, the parametric study can be started due to various predominant and overriding 

factors. It was found that the flexomagneticity is further visible if the ferric nanobeam is 

constructed by FGM technology. In addition to this, shear deformations are also 

efficacious to make the FM detectable.  

          Nomenclature 

 xx Stress component 

xz  Shear stress 

xxz Hyper stress 

xxz Hyper strain 

 xx  Strain component 

xz   Shear strain 

E     Elasticity modulus 

G    Shear modulus 

1u    Displacement along x 

3u    Displacement along z 

     Poisson's ratio 

L     Length of the beam 

b    Width of the beam 

z     Thickness coordinate 

h    Thickness of the beam 

sk     Shear correction factor 

k     Material property variation 

zI     Area moment of inertia 

u      Axial displacement of the midplane 

w     Transverse displacement of the midplane 

      Rotation of beam nodes around the y axis 

31q   Component of the third-order piezomagnetic tensor 

31g   Component of the sixth-order gradient elasticity tensor 

31f   Component of fourth-order flexomagnetic tensor 

33a   Component of the second-order magnetic permeability 

tensor 

A      Area of the cross-section of the beam 

xN    Axial stress resultant 

xM   Moment stress resultant 

xQ     Shear stress resultant 

xxzT    Hyper stress resultant 

      Magnetic potential 

1     Introduction 

The progress in micro and nanoelectronic technologies is directly related to the 

achievements in the field of materials engineering. The wide range of currently tested 

Smart Magnetic Materials (SMM) provides opportunities to develop new, innovative 

components and devices. The physical and chemical properties of which will be sensitive 

to changes in environmental parameters, such as temperature, pressure, electric field, and 

magnetic fields. What is more, with the development of science, new properties are 
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obtained. One of the frequent discoveries is flexomagnetism (FM). The phenomenon is 

currently being examined by scientists by considering different boundary conditions and 

dynamic and static terms. The flexomagnetic effect is established with a strain field 

gradient. In other words, it may be named the direct flexomagnetic effect. Following the 

attendance of a magnetic external field gradient, the flexo-effect may be distinguished in 

reverse impact. These new-discovered phenomena may appear in all types of materials 

and crystalline structures [1-9]. 

Functionally Graded Materials (FGMs) are new and advanced materials with a 

heterogeneous structure. The mechanical properties of these materials are constantly 

changing from one level to another, and these changes are caused by a gradual change in 

the volume ratio of their constituent materials [10-19]. FG materials are typically made 

of both ceramic and metal. Since the structural material of ceramic has a low heat transfer 

coefficient and high resistance to temperature, it can withstand high heat, and on the other 

hand, another structural material, metal, provides the required flexibility and strength. 

Due to the continuous changes in mechanical properties, the discontinuity problems that 

exist in laminated composite structures do not arise in functional materials. These 

materials are widely used in thermal insulation, coatings for turbine blades, protection 

systems, biomedical materials, bone, and dental implants, and the aerospace industry. 

Another implementation of FGMs can be seen in spaceship walls and engine parts, 

including piezoelectric, thermoelectric devices, and micro/nano-electro-mechanical 

systems (MEMS/NEMS). 

Piezomagnetic is defined as a linear electromechanical reaction between two 

magnetic and mechanical states in insulating materials and crystals that do not have 

central symmetry. In fact, piezomagnetic structures are materials that, when pressed or 

stressed, a magnetic charge appears on certain surfaces. This phenomenon is called the 

Direct Piezomagnetic Effect, which is a reversible process, meaning that when a 

substance with this property is in an electric field, its dimensions change (Reverse 

Piezomagnetic Effect). In recent years, the mechanical response of micro and 

nanostructures, mainly electrically and magneto-electrically operated, has set off to be an 

intensive and significant region of investigation [20-37]. In order to confirm the novelty 

of this article, a thorough literature review was realized. The study of the most important 
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published works precisely associated with the investigation in this manuscript is 

presented. 

The smart nanobeams issue is well-known, and there are many papers according to 

this subject. Liang et al. [38, 39] performed an investigation related to flexoelectricity and 

its impact on static bending issues, considering the Euler-Bernoulli beam model with the 

piezoelectric effect. Tadi Beni [40, 41] carried out an analysis of the dynamic behaviour 

and static deflection of a nanobeam exposed to electrical and mechanical loads, following 

the Euler-Bernoulli and Timoshenko beam model theory. Arefi et al. [42] performed a 

study of bending and vibration of a piezomagnetic layered nanobeam exposed to magnetic 

and electric potential laying on a two-parameter foundation following nonlocal Eringen's 

theory. Another investigation performed by Tadi Beni et al. [43] considered Van der 

Waals forces and electric effect and their impact on nanobeam deflection, following the 

modified couple stress theory. Alibeigi et al. [44, 45] performed an investigation of 

piezomagnetic and piezoelectric nanobeams exposed to buckling on electrical, thermal, 

and mechanical loads, following the Euler-Bernoulli beam theory and modified strain 

gradient theory. Qi et al. [46] carried out a study of bending analysis and its impact on 

electro-elastic nanobeams based on Euler-Bernoulli beam theory and nonlocal strain 

gradient theory. Li et al. [47] performed an investigation of buckling analysis of bilayered 

piezoelectric nanobeams with imperfections under mechanical and electrical loads, 

following trigonometric shear, and Eringen's nonlocal elasticity theory. Sidhardh and Ray 

[48] carried out a study of deflection analysis of pinned-roller supported nanobeams, 

including the flexoelectric layer, using the finite element method (FEM). Baroudi et al. 

[49] established an analytical solution for free vibration and transverse deflection study 

of a piezoelectric nanobeam exposed to an electrical load, based on strain gradient theory. 

Mohtashami et al. [50] investigated buckling and vibration of piezoelectric nanobeams 

following Euler-Bernoulli beam theory. 

The nano-electro-mechanical devices are widely made as functionally graded 

nanobeams (FGN). This area is being crucially developed and investigated. Esfahani et 

al. [51] investigated the vibration and deflection of FGNs exposed to the external electric 

voltage, following the nonlocal strain gradient and Euler-Bernoulli beam theory. Zhao et 

al. [52] analyzed the free vibration and bending of flexoelectric FGNs with axial porous 
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based on strain gradient and Euler-Bernoulli beam theory. Xiao et al. [53] carried out a 

study of elastic-electro-magneto-thermal functionally graded nanobeams with porosity, 

following Eringen's nonlocal elasticity and higher-order shear deformation theory. 

Following the literature review made on the piezo-flexomagnetic mechanics of 

structures, theoretical studies may be found. So far, several studies have been performed 

on nanostructures considering the flexomagnetic effect. The pioneers in this subject were 

Zhang et al. [54] and Sidhardh et al. [55]. In their investigation, they presented studies 

about piezo-flexomagnetic nanostructures subjected to linear bending. Additionally, the 

assumption of small-displacement was made, and only the linear-elastic region was taken 

into account. In both investigations, the model of the structure was nanobeam, modelled 

following the Euler-Bernoulli beam theory. Furthermore, the two cases of magnetization 

influences were considered, the direct and reverse impact. In the first study, it was deemed 

to be different boundary conditions. However, [55] assumed a cantilever beam in his 

investigation. The static load acting on a beam was applied uniformly and vertically 

across the length of the nanobeam. In both analyses, there is a lack of consideration of the 

size-dependent effect. What is more, microstructure or nonlocal impact were not 

investigated too. Nevertheless, they checked the surface and flexomagnetic effects on the 

nanobeam. More recently, Malikan et al. [56] investigated a piezo-flexomagnetic 

nanobeam exposed to vibrational mode, following the Euler-Bernoulli beam theory. 

According to the nonlocal stress-driven elasticity method, the size-dependent effect was 

analyzed, and the structures were subjected to linear frequency analysis. Following the 

obtained results, it could be concluded that the size-dependent effect concerns the 

flexomagnetic feature. 

Furthermore, according to the nonlinear model, Malikan and Eremeyev [57] 

investigated the natural frequencies of piezo-flexomagnetic nanostructures. Following the 

nonlocal strain gradient elasticity model, they confirmed the size-dependent effect. 

Another study performed by Malikan et al. [58] presented piezo-flexomagnetic 

nanobeams subjected to large deflections, following two-step analytical and numerical 

solution methods. They found out that nano-electro-mechanical systems (NEMS) 

subjected to nonlinear bending and piezo-flexomagnetic effects are crucial in designing 

these systems. In this article, they showed a significant influence of the flexomagnetic 
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effect and its impact on the reduction of nanobeam deflection. More recently, Malikan et 

al. [59] investigated magnetic nanoparticles with piezo and flexomagnetic effect. The 

study concerning smart nanosensors investigates the analysis of the post-buckling impact 

on these structures. The conclusions included in this paper are very significant in the field 

of nanostructures. Newly, Malikan et al. [60] presented the nanobeam with porous state 

and piezo-flexomagnetic effect and the impact of beam size. Obtained results show that 

the flexomagnetic effect of the structure is dependent on the porosity of the materials. 

Most recently, Malikan and Eremeyev [61] investigated the composite nanoplate with the 

piezo-flexomagnetic effect subjected to the one-dimensional magnetic field, following 

the nonlocal strain gradient and classical plate theory. The conclusion earned from this 

paper is that flexomagnetic response is more significant if the ratio of nanoplate size 

(aspect ratio) is less than one. 

The purpose of this paper is to present a thermal buckling analysis and the thermal 

capacity approach to the problems of nano and microbeam functionally-graded structures 

with flexomagnetic effect. The issue has been examined according to the reverse magnetic 

solution. The primary investigation is concerned about the functionally graded material 

composition and its response to the practical flexomagnetic effect. The FGMs 

nanosensors are frequently exposed to contact with soft tissues that may be designed with 

elastic structures. The problem is modelled with constitutive relations following the 

nonlocal strain gradient theory (NSGT). Subsequent to Gauss's law and Maxwell's 

equation, a relevant magnetic potential distribution is obtained. Following the clamp 

support boundary conditions and Timoshenko beam theory, the interaction governing 

equations of the structure are derived with the terms of the piezo and flexomagnetic effect. 

The thermal stability problem is computed with the use of discretization of the equations 

following Galerkin's principle. To obtain the buckling values, the characteristics 

equations are calculated straightforwardly. In order to ensure the accuracy of the present 

approach, the answers received from the introduced method were presented on different 

diagrams. Concerning the static behavior of the system, the effect of various parameters 

is shown with some illustrations. The obtained results in the numerical section of the 

manuscript could be conducive to attain a significant and efficient nano actuators/sensors 

design. 
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2     Mathematical modeling 

To start up, a FGM piezomagnetic nanobeam is shown in Fig. 1. As the beam is shaped 

by a square cross-section and a schematic grading of grains of the cross-section, the 

Cartesian coordinate system is installed on the model. The dimensions of the beam are 

associated with L that is length, and h that introduces the thickness. 

 

 

Fig. 1. A typical continuum model of FGM beam-like smart nano actuator having rectangular 

coordinates 

Let us assume that it is essential to take into consideration the shear deformations for 

the FGM nanobeam. Accordingly, to concatenate the shear deformation throughout the 

thickness, this study utilizes the Timoshenko beam approach as [62], 

       01 , u x zu x  z z x                                                                                                                  (1a) 

   3 ,u x z w x                                                                                                                  (1b) 

The neutral plan's location is a crucial issue in FGMs with a physical concept. There 

is a minor deviation between the physical neutral surface and the mid-plan while 

appraising the FGMs due to the type of distribution of mechanical properties. The 

physical neutral plan's position can be described by [62-64], D
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









                                                                                                                                 (2) 

in which 0z  defines the distance between the physical neutral plan and the geometric mid-

surface. 

The Voight estimate or rule of mixture interprets reasonably and continuously 

distribution of mechanical properties for FGMs in a heterogeneous schema. Pursuant to 

the volume fraction of the FGMs as composed materials, including functions of sigmoid, 

exponential, or power-law, the change in the material properties of FGMs is postulated to 

vary continuously along with the thickness. In this study, to describe the volume fraction, 

an exponential function is employed. Let us depict  P z  which is a variable to define 

any property in the class of exponential functionality as [65], 

  0

kzP z P e                                                                                                                     (3) 

in which an index for the property of the material is shown by k and 0P  represents any 

property related to mid-plane (z=0). It is requisite to remind that all these properties are 

varied along with the thickness. The shift from the heterogeneous beam to a homogeneous 

one corresponds to k=0. It is germane to note that the Poisson's ratio is taken as constant 

and independent of thickness because the difference in the values is negligible. 

Lagrangian linear strain's relation layouts the following axial, shear, and hyper 

strains with the help of Eq. (1) as, 

   0xx

du d
z z z T

dx dx


                                                                                                                     (4) 

xz

dw

dx
                                                                                                                         (5) 

xx
xxz

d d

dz dx

 
                                                                                                                                       (6) 

Here, by expressing the principle of Lagrange, one can present the energy relation 

as, 

  0W U                                                                                                                       (7) 
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To define the internal strain energy and thermodynamic work of external forces, the 

letters U  and W  are dedicated. 

It is necessary to expand the strain energy based on the description of variational 

calculus as, 

 xx xx xz xz xxz xxz z zV
U B H dV                                                                       (8) 

By doing Eq. (8), we obtain single and double integrals which respectively correlate 

with non-classical end conditions and governing equations as follows, 

0

L
Mech x x x xxz

x

dN dQ dM dT
U u w Q dx

dx dx dx dx
     

 
       

 
                                   (9a) 

2

0 2

hL
Mag z

h

dB
U dzdx

dz
 



                                                                                                (9b) 

 
0

L
Mech

x x x xxzU N u Q w M T                                                                      (10a) 

 
/2

/2
0

L
hMag

z h
U B dx 


                                                                                                   (10b) 

in which 

/2

/2

h

x xx

h

N dz


                                                                                                                     (11) 

/2

/2

h

x xx

h

M zdz


                                                                                                                     (12) 

/2

/2

h

x s xz

h

Q k dz


                                                                                                                      (13) 

/2

/2

h

xxz xxz

h

T dz


                                                                                                                  (14) 

Let us here attend to the work of external forces which can be formulated as, 

2
0

0

1

2

L

x

dw
W N dx

dx

 
  

 
                                                                                                              (15) 

Then, the variational method approximates the following relation, 
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0

0

L

x

d w dw
W N dx

dx dx




 
  

 
                                                                                                   (16) 

where the total critical buckling force is denoted with 0
xN . 

It is postulated that a transverse magnetic field exists, which lets us retain the 

electrodes on the bottom and top surfaces of the thickness while a poling direction is kept 

transverse. Thus, the relation of magnetic field's lateral component corresponds to,  

0z

d
H

dz


                                                                                                                                  (17) 

The starting point of our study and the motivation is assessing flexomagneticity in 

smart functionally graded structures. The converse flexomagneticity is generated because 

of the magnetic field's strain gradient. Let us deem a closed-circuit through the thickness 

for which the topmost surface of the thickness contains the maximum potential, and the 

lowest surface involves the null of potential. To this, one can write 

, 0
2 2

h h
 

   
        
   

                                                                                        (18a,b) 

The transverse magnetic field's formulas and the magnetic potential across the beam 

can be achieved by joining Eqs. (6, 9b, 10b, 17, and 18) with one another and the more-

or-less mathematical efforts, 

 

 
   

2
231

0 0
332 4 2

q z h d h
z z z z

a z dx h

    
             

                                                                 (19) 

 
 

 
31

0
33

z

q z d
H z z

a z dx h

 
                                                                                                              (20) 

According to Eringen's nonlocal theory, the stress at a reference point inside the body, 

such as x, depends not only on the strain of the point x but also on the strains of all points 

inside the body [66, 67]. This theory is consistent with predictions derived from the atomic 

theory of molecular lattice dynamics and observations of molecular dispersion. In the limit, 

the classical theory of elasticity will be derived when the effects of strain are ignored at 

points other than point x. For homogeneous and isotropic objects, the linear theory of 

nonlocal elasticity leads to a set of partial integro-differential equations for the displacement 

field that is generally difficult to solve. For certain classes of integral, these equations are 

reduced to a set of single partial differential equations. On the other hand, atoms consist of 
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a large strain gradient on a small scale. This is mathematically simulated by the strain 

gradient elasticity theory of Mindlin [60]. These two phenomena are unified, called nonlocal 

strain gradient elasticity theory [68], by which a small scale is transferred into a continuum 

media based on a differential model. The relation of NSGT is available below, 

2 2
2

2 2
1 1ij ijkl ij

d d
C l

dx dx
  

   
     

   
                                                                                                    (21) 

in which the additional and higher-order parameters demonstrated by   and, l  

respectively, exhibit a nonlocal parameter and a strain gradient length scale parameter 

(SGLS). Amounts of these non-classical parameters are already determined for some 

classes of materials only [69]. 

Thereupon, infliction of Eq. (21) on Eqs. (11-14) causes Eqs. (22-24), 

 
    
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       

      (22) 
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h


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


     
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                      (23) 
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d d dw
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      
                  

                                                                    (24) 

Later, Eqs. (11-14) will be written in the framework of Eq. (21). Thus, one can obtain 

 
2 2

2
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x
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

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                                             (25) 
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2 2
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     
                                                                        (27) 
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d d d
T l I I I
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


     
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                                                                     (28) 

in which the established variables are expanded as follows, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


        
 

 

 

          
 

 
 

 

   
   

 

/2 /2 /22
31 31

1 2 0 3 0 4

33/2 /2 /2

/2 /2 /22
2 2 31 31

5 6 0 0 7 0 8 0

33/2 /2 /2

/2

31 31

9 31 10 0

33/2

, 1, , , ,

, , , , ,

,

h h h

h h h

h h h

h h h

h

h

q z q z
I I E z z z dz  I z z dz  I dz  

a z h

q z q z
I I E z z z z z dz  I z z dz I z z dz   

a z h

q z f z
I g z dz  I z z dz

a z





  

  



    

      

  

  

  


 

 
/2 /2 /2

31

11 44

/2 /2 /2

, ,

h h h

s

h h h

f z
I dz  H k G z Adz

h



  

   

 

                                                                                                                                       (29) 

It should be reminded that the pyromagnetic effect has been neglected in this work. 

The equilibrium equations can be pulled out from Eqs. (9, 10), moreover, mixed with Eq. 

(16), 

0xdN

dx
                                                                                                                          (30) 

2
0

2
0x

x

dQ d w
N

dx dx
                                                                                                            (31) 

0x xxz
x

dM dT
Q

dx dx
                                                                                                                     (32) 

Ensuingly, Eqs. (25-28) can be taken out of complexity based on Eqs. (30-32) as 

follows, 

 
2

2

1 2 3 42
1 T

x

d du d
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dx dx dx

  
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                                                                  (33) 
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              (34) 
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                                                                            (35) 
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9 10 112 2
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xxz
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dx dx dx




  
      

  
                                                                       (36) 

Eqs. (30-32) can be recasted with the aid of Eqs. (33-36) as, 

 
2 2 2

2

1 2 32 2 2
1 0

  
     
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                                                                                (37) 
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                               (39) 

The above-coupled equations should be solved towards determining the thermal 

stability capacity of the postulated structure. 

The total axial force is divided into the mechanical load, and a longitudinal magnetic 

load originated from the magnetic field, 

0 MagT
xN N N                                                                                                                (40) 

where  

/2

0 0

/2

1

1





 
 

h

T

h

N E Tdz                                                                                                                  (40) 

/2

31

/2





 
h

Mag

h

N q dz                                                                                                                 (40) 

where 

273.15  crT T K                                                                                                                   (40) 

3     Solving proceeding 

A structure can be mathematically analyzed by implementing different edge/end 

conditions. But, [70] endorsed that if a FGM structure is considered, taking the physics 

of the structure into account, incorporating a shift of neutral surface (z0), the bifurcation 

cannot occur while some supports, particularly simply-supported end conditions, are 

modelled. In this manner, the specimen tends to bend instead of buckling. Thereby, in 

continue, the fully fixed end conditions are analytically formed as 

   2

1

sin exp n

m

d m
u x x i t

dx L
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





  
   

  
                                                                          (41) 
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L








 
  

 
                                                                                     (42) 
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   2

1

cos exp n

m

m
x x i t

L


 





 
  

 
                                                                                      (43) 

in which t relates to time in dynamic systems. 

With respect to the Galerkin weighted residual method, the clamped end conditions 

can be satisfied by the foregoing series. To calculate the residuals in the technique, the 

pursuing integrals assist us, 

   1

0

0

L

R x u x dx                                                                                                                      (44) 

   2

0

0

L

R x w x dx                                                                                                                  (45) 

   3

0

0

L

R x x dx                                                                                                                      (46) 

in which the residuals are illustrated by   1,..,3iR x i  . 

Arranging the terms of Eqs. (44-46) with respecting unknown parameters , ,u w  and 

  in a matrix form leads to 

11 12 13

21 22 23

31 32 33

0

K K K u

K K K w

K K K 

   
  

  
     

                                                                                                                       (47) 

Then, the determinant of the coefficient matrix gives a polynomial characteristic 

equation of axial stability of the smart FGM structure consisting of flexomagneticity, 

det 0ijK                                                                                                                           (48) 

Subsequently, solving the attained polynomial equation results in having values of 

the critical buckling temperature ( crT ). 

4     Results and discussions 

The fabrication of a piezomagnetic functionally graded structure with exponential 

functionality is deemed to evaluate and study its flexomagnetic response inside the 

illustration of a complete parametric study. Thence, Table 1 [71-73] detailedly indicates 

the structural properties needed for this section. Let us here see that the FGM can emboss 

the role of flexomagneticity or not. Therefore, a scientific interpretation is observed based 
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on Figures 2-5. Pursuing this, it is urgent to note that two states are considered, which are 

the piezomagnetic FGM encompassing flexomagneticity (FG-PFM) and piezomagnetic 

FGM that does not incorporate the flexomagneticity (FG-PM). Let us note that in all 

figures, the horizontal axis is the index k, and the vertical axis is the amount of heat 

stability capacity of the nanobeam. We must also confirm that the results were calculated 

only for the first buckling mode. The values of the other variables are included next to the 

titles of the figures. 

Table 1. Available material properties 

CoFe2O4 

E0=286GPa 

f31=10-9 N/A 

q31=580.3 N/A.m 

a33=1.57×10-4 N/A2 

α0=11.80×10-6 1/K  

(room temperature) 

We start presenting the results by changing the nonlocal coefficient in Figure 2. The 

most obvious possible consequence from the diagram is that increasing the coefficient k 

will increase the thermal stability of the nanobeams, and more importantly, the higher the 

value of k, the more significant the difference between the curve of the FG-PFM 

nanobeam and the FG-PM one. Of course, this distance between the results is crucial in 

the larger value of the nonlocal coefficient. Therefore, a significant outcome that can be 

deduced from this figure is that producing a piezomagnetic material in the skeleton of a 

FGM structure, while the cross-sectional FG properties follow an exponential function, 

increases the flexo-effect, and this will be even more momentous when the nonlocality 

parameter is larger. 
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Fig. 2. FGM variation index vs. critical temperature for various cases (Ψ=1mA, l=0.05nm, 

L/h=10) 

Many references have shown that the presence of the nonlocal coefficient in the 

relationships and modeling of the small-scale problems leads to a reduction in material 

stiffness and vice versa, the presence of the length scale strain gradient parameter (SGLS) 

existed in the couple stress relations and the first and second Mindlin gradients helps to 

increase the material stiffness. Therefore, regardless of Figure 3, we must conclude that 

the results of Figure 2 in Figure 3 will be obtained when the SGLS parameter has smaller 

values. That is, here, a smaller value of the SGLS enhances the importance of flexo. Of 

course, the most substantial result remains in place, which means in Figure 3, we again 

find that increasing k has raised the importance of the flexo-effect. If we examine and 

compare Figures 2 and 3 more carefully, we will come to the important conclusion that 

the increase in the difference between the FG-PFM and FG-PM results for l=0.01nm in 

Figure 3 is greater than e0a=0.03nm in Figure 2. Therefore, it can be said that the SGLS 

parameter is more effective than the nonlocal parameter in this part. 
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Fig. 3. FGM variation index vs. critical temperature for various cases (Ψ=1mA, e0a=0.05nm, 

L/h=10) 

 

 

 

 

 

 

Figure 4 is drawn to investigate the effect of the magnetic field. Following the 

previous diagrams, increasing k will develop the critical temperature stability. The 

amount of magnetic potential produced by the magnetic field is given in milliamperes. 

The point to consider in this figure is that, unlike the previous figures, the results initially 

differ for two different potential values, namely one and two milliamperes. On the other 

hand, it is crystal clear that the difference in the results obtained after increasing k is 

greater than the previous two figures. That is, the difference between FG-PM and FG-

PFM is more pronounced than in Figures 2 and 3. This figure shows that the role of 

magnetic potential in magnetic FGMs will be more prominent. Also, the difference in the 

results of PFM and PM at k=10 is the same for both magnetic potentials, thus showing 

that different values of the magnetic potential have the same effect on the behavior of the 

flexomagneticity. 
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Fig. 4. FGM variation index vs. critical temperature for various cases (l=0.05nm, e0a=0.1nm, 

L/h=10) 

Let us measure the results and the relevant discussion by showing the effectiveness 

of changes in length to thickness coefficient (slenderness ratio). The nanobeam is 

designed in two modes, relatively thick (L/h=10) and relatively thin (L/h=20). At first 

glance, the point to be evaluated is that the results are increasing for three modes (FG-PM 

for L/h=10 and L/h=20, and FG-PFM for L/h=20) with almost the same slope, but in the 

relatively thick beam manner, the model FG-PFM, L/h=10, will have a greater slope and 

a more considerable increase. At k=10, this model distinguishes itself more than other 

models. This is an excellent argument to confirm that although the shear deformation is 

serious in relatively thick and thick beams, it will be doubly important if the 

flexomagnetic effect is analyzed in these beams. 

2300

2600

2900

3200

3500

3800

4100

4400

0 1 2 3 4 5 6 7 8 9 10

C
ri

ti
ca

l 
te

m
p
er

at
u

re
 (

K
)

k

ψ=1mA, FG-PFM ψ=1mA, FG-PM

ψ=2mA, FG-PFM ψ=2mA, FG-PM

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 5. FGM variation index vs. critical temperature for various cases (Ψ=1mA, l=0.05nm, 

e0a=0.1nm) 

5     Conclusions 

It was observed that flexomagneticity (FM) could be even stronger in a ferroic 

functionally graded material (FGM). The Galerkin weighted residual method (GWRM) 

warranted the numerical results in the framework of analytical solutions for fully fixed 

ends conditions. The beam’s behavior depended on the shear deformations; therefore, the 

Timoshenko beam was taken into the model. The nanoscale examination was revealed by 

exerting both stress nonlocality and strain gradient in the circumstance of the nonlocal 

strain gradient approach. The implementation of the material composition was presumed 

as exponential functionality concerning the rule of mixture. Inclusive of flexomagneticity 

was performed in terms of reverse field effect. Under the axially compressed conditions 

of the system, the critical buckling temperature was explored. Notwithstanding that the 

FGMs can be correctly analyzed in a way that the mid-plan plays the role of the neutral 

surface, this research took into account the physical neutral plan that differs from the mid-

surface. Furthermore, one observed that the FM would be more visible in FGMs while 

shear deformations exist. This study provides and offers new principal aspects that suit 

the designing of a small-scale actuator/sensor. 
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a b s t r a c t 

This paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional 

critical stability situation. As the magnetic field affects remarkably nanostructures in the 

small size, a three-dimensional magnetic field is assessed which contains magnetic effects 

along the circumferential, radial and axial coordinates system. Based on the results of the 

nonlocal model of strain gradient small-scale approach and the first-order shear deforma- 

tion shell theory (FSDST), the problem is estimated. Afterward, the numerical results are 

taken analytically and compared with other existing literature. Hereafter, the influences of 

various factors, such as the magnetic field, are discussed deeply. It is observed that when 

the magnetic field is studied in three dimensions, the transverse magnetic effect is the 

most serious factor that affects fundamentally the torsional stability of the shell. 

© 2019 The Author(s). Published by Elsevier Ltd. 
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1. Introduction 

Due to the urgent need of industries for high strength structures with low weight, nano-composite shells are a good

choice for this field. Over the years, nano-composite materials have been found from laboratory to commercial and indus-

trial applications and have also many applications in various industries such as aerospace, defense, offshore and automotive.

Some nano-composite structures which have been made, e.g. magnetic nano-composite structures, have received further

attention over the previous years. These materials present impressive properties that outweigh the properties of conven-

tional composite materials. The magnetic nano-composite structures are useful for producers of actuators and small motors,

especially computer hardware, audio and video ( Elimelech, Gregory, Jia & Williams, 1995 ). 

To design different structures, analyzes such as static, dynamic, vibrational, fracture and buckling ones are performed.

Since cylindrical nano-shell/tube structures are more susceptible to buckling loads, stability analysis is one of the most
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serious analyses of these types of structures. Among the nano-shell structures, the carbon nanotubes (CNTs) are the most

customary nano-shells that have been greatly investigated. Han and Lu (2003) based on the local continuum mechanics,

studied the torsional stability of a double-walled carbon nanotube (DWCNT) based on considering an elastic substrate.

They employed the classical shell model and solved the gained equations by means of the Navier solution technique.

Wang, Yang and Dong (2005) considered multi-walled carbon nanotubes (MWCNTs) under a torsional stability condition

based on the local classical continuum shell model. Lu and Wang (2006) combined torsional and axial stability condi-

tions in order to estimate the local continuum shell MWCNTs. Zhang and Shen (2006) examined a single-walled carbon

nanotube (SWCNT) with the help of molecular dynamics (MD) simulation subjected to torsion, axial and external pres-

sures by assuming a thermal surrounding. In some valuable research works, other researchers have also studied CNTs in

the case of torsional stability ( Jeong, Lim & Sinnott, 2007 ; Wang, Quek & Varadan, 2007 ; Yang & Wang, 2007 ; Zhang &

Wang, 2008 ). Later, Shen and Zhang (2010) modeled a DWCNT by using first-order shear deformation shell theory (FS-

DST) and in conjunction with nonlocal elasticity and also considering the thermal environment. Hao, Guo and Wang (2010) ,

Natsuki, Tsuchiya, Ni and Endo (2010) , on the other hand, worked on the shell model of DWCNTs based on the nonlo-

cal elasticity theory. Khademolhosseini, Rajapakse and Nojeh (2010) used a modified Timoshenko shell model to evaluate

a SWCNT in a shell domain based on the nonlocal theory of Eringen. In various conditions and cases, some other studies

have been done on the CNTs exposed to torsional stability ( Chowdhurry, Wang & Koh, 2014 ; Parvaneh, Shariati, Torabi, Ma-

sood & Sabeti, 2012 ; Song & Zha, 2011 ; Zhang & Li, 2015 ). More newly, Xiaohu, Yugang and Hanzhou (2013) carried out an

electric and thermal field around the CNTs exposed to torsion by examining size effects. Ghorbanpour Arani, Abdollahian,

Kolahchi and Rahmati (2013) analyzed a DWCNT subjected to the torsional critical force and thermal effects with consider-

ing piezoelectricity impact. They applied the FSDST and also assumed a matrix outer the system. The piezoelectric field was

assumed in one direction. They solved the harvested stability relations regarding the Navier approach. In an effective paper,

Mehralian, Tadi Beni and Karimi Zeverdejani (2017) simulated natural frequencies of a shell FSDST-CNTs by using MD based

on different small-scale theories, namely modified couple stress theory (CST), nonlocal elasticity theory (NT), strain gradient

theory (ST) and nonlocal strain gradient theory (NSGT). Their numerical outcomes approved more conformity of the results

of nonlocal strain gradient theory with MD. More recently, however, Shojaeefard, Mahinzare, Safarpour, Saeidi Googarchin

and Ghadiri (2018) presented the natural frequencies of a Timoshenko nano-composite shell by taking electric-magnetic and

thermal environments into account. They assumed that the shell was under an ultra-fast rotation and was inserted in an

elastic substrate. To capture the small-scale effects, the modified couple stress theory was discussed. Finally, they calculated

the natural frequencies of the shell in the mentioned conditions based on the Navier analytical method and also generalized

differential quadrature (GDQ) numerical method. Sahmani and Aghdam (2018) established the nonlocal strain gradient ap-

proach to study axial stability and post-stability responses of a nano-shell incorporating electric and magnetic field effects.

They used the classical shell model in employing the cartesian coordinate system. To give their results numerically, they

applied an improved perturbation technique. 

Until the date, no paper has been recorded on an analysis of the torsional stability of nano-composite shells regarding a

three-dimensional magnetic field based on the NSGT. Therefore, this paper studies a nano-composite material, i.e. BaTiO 3 -

CoFe 2 O 3 in a shell-like structure. As this material is a smart piezomagnetic structure, it could be utilized in several nano-

electro/magneto-mechanical systems. Hence, torsional stability analysis of such the nanostructure can be significant resulting

in many advantages. This motivated authors to assess the torsional stability of the nano-composite shell while the magnetic

field has three-dimensional influences. To predict the motion of the model’s nodes, the first-order shear deformation shell

hypothesis is employed. To address the size effects, the nonlocal theory of strain gradient is practiced. To attain the graphs

based on the numerical outcomes, an analytical solution technique is exploited. In the results section, different key factors,

such as the magnetic field and small-scale act, are taken into the investigation. 

2. Basic formulation 

A schematic picture of the SWCNS is below presented in which the radius, length, and thickness of the model are re-

spectively, R, L , and h Figure 1 . 

In this research, concerning the cylindrical shape of the nano-shell, the first-order shear deformation shell theory (FSDST)

is given by Ghorbanpour Arani et al. (2013) , Mehralian et al. (2017) , Shojaeefard et al. (2018) { 
u 1 ( x , θ, z ) 
u 2 ( x , θ, z ) 
u 3 ( x, θ, z ) 

} 
= 

{ 
u ( x, θ ) + z ϕ x ( x, θ ) 
v ( x, θ ) + z ϕ θ ( x, θ ) 

w ( x, θ ) 

} 
(1) 

in which u i ( i = 1 , 2 , 3 ) represents the displacement components of each point of the nano-shell along axial, circumferential

and radial axes, respectively, u ( x, θ ), v ( x, θ ) and w ( x, θ ) correspond to the mid-plan displacements along with axial, cir-

cumferential and radial directions, ϕx and ϕθ display the rotation around the axial and circumferential axes. Furthermore, a

coordinate for the thickness of the nano-shell is chosen as z . 

Based on the Lagrangian strain, a continuum nonlinear strain-displacement equation can be written as 

{
ε i j 

}
= 

1 

2 

{
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 
+ 

∂ u k 

∂ x i 

∂ u k 

∂ x j 

}
(2) 
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Fig. 1. A SWCNS under a three-dimensional magnetic field exposed to the torsional force. 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the principle of curvilinear derivation and also the model of cylindrical shell, the components of strain for the

shell SWCNS based on the Eq. (2) can be expanded as below 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε xx 

ε θθ

γxz 

γxθ

γθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂x 

+ z ∂ ϕ x 
∂x 

+ 

1 
2 

(
∂w 

∂x 

)2 
1 
R 

(
w + 

∂v 
∂θ

)
+ 

1 
2 R 2 

(
∂w 

∂θ

)2 + 

z 
R 

∂ ϕ θ
∂θ

ϕ x + 

∂w 

∂x 

∂v 
∂x 

+ 

1 
R 

(
∂u 
∂θ

+ 

∂w 

∂θ
∂w 

∂x 

)
+ z 
(

∂ ϕ θ
∂x 

+ 

1 
R 

∂ ϕ x 
∂θ

)
1 
R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(3)

The tensor of classical stresses of an element of the nano-shell along axial, circumferential and radial directions that

includes the terms of magnetic and mechanic can be written as ( Ghorbanpour Arani et al., 2013 ; Mehralian et al., 2017 ;

Shojaeefard et al., 2018 ) ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

σxx 

σθθ

τxθ

τxz 

τθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎡ 
⎢ ⎢ ⎢ ⎣ 

C 11 C 12 0 0 0 

C 12 C 22 0 0 0 

0 0 C 44 0 0 

0 0 0 C 55 0 

0 0 0 0 C 66 

⎤ 
⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε xx 

ε θθ

γxθ

γxz 

γθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

−

⎡ 
⎢ ⎢ ⎣ 

0 0 q 31 

0 0 q 32 

0 0 0 

q 15 0 0 

0 q 24 0 

⎤ 
⎥ ⎥ ⎦ 
⎧ ⎨ 

⎩ 

H x 

H θ

H z 

⎫ ⎬ 

⎭ 

(4)

where the H k is the magnetic field. Moreover, q i j depicts piezomagnetic moduli related to the magnetic property of the

nano-shell. Also, σ
i j 

and ɛ ij are respectively the static stress and strain fields. Additionally, C i jkl ( i, j = 1 , ..., 6 ) is the stiffness

matrix defined as follows ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C 11 

C 12 

C 22 

C 44 

C 55 

C 66 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C 11 − C 2 13 

C 33 

C 12 − C 13 C 23 

C 33 

C 22 − C 2 23 

C 33 

C 44 

C 55 

C 66 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(5)

The Hamilton’s principle is utilized to derive the equilibrium equations as ( Mikhasev, Eremeyev, Wilde & Maevskaya,

2019 ) 

δ
 = 

∫ t 2 

t 1 

( δK − ( δU − δW ) ) dt = 0 (6)

in which the variated kinetic and strain energies are respectively δK and δU . On the other hand, the work of outer loads is

δW . Note that, in this paper, the effects of mass moment of inertia are removed. 

The variated strain energy is presented below 

δU = 

∫ ∫ ∫ 
v 

(
σi j δε i j − B k δH k 

)
dV = 0 (7)
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where the B k is the magnetic induction which can be formulated as follows 

⎧ ⎨ 

⎩ 

B x 

B θ

B z 

⎫ ⎬ 

⎭ 

= 

[ 
0 0 0 q 15 0 

0 0 0 0 q 24 

q 31 q 32 0 0 0 

] ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε xx 

ε θθ

γxθ

γxz 

γθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

+ 

[ 
η11 0 0 

0 η22 0 

0 0 η33 

] ⎧ ⎨ 

⎩ 

H x 

H θ

H z 

⎫ ⎬ 

⎭ 

(8) 

in which ηi j shows a magnetic quantity. The magnetic constants can be expressed as ⎧ ⎪ ⎨ 

⎪ ⎩ 

q 31 

q 32 

q 15 

q 24 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

q 31 − C 13 q 33 

C 33 

q 32 − C 23 q 33 

C 33 

q 15 

q 24 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

;
{ 

η11 

η22 

η33 

} 
= 

⎧ ⎨ 

⎩ 

η11 

η22 

η33 + 

q 2 33 

C 33 

⎫ ⎬ 

⎭ 

(9) 

Based on the available magnetic potential, the following linear function can be employed ( Ghorbanpour Arani et al., 2013 ;

Mehralian et al., 2017 ; Shojaeefard et al., 2018 ) 

�(x, θ, z) = − cos 

(
πz 

h 

)
�(x, θ ) + 

2 z ψ 0 

h 

(10) 

in which the initial magnetic potential is symbolized with �(x, y), and the magnetic potential is ψ 0 . 

By means of Eq. (10) , the magnetic field can be indicated in three dimensions as below ⎧ ⎨ 

⎩ 

H x 

H θ

H z 

⎫ ⎬ 

⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

− ∂ �
∂x 

− 1 
R + z 

∂ �
∂θ

− ∂ �
∂z 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cos 
(

πz 
h 

)
∂�
∂x 

1 
R + z cos 
(

πz 
h 

)
∂�
∂θ

−π
h 

sin 

(
πz 
h 

)
� − 2 ψ 0 

h 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(11) 

Assuming an element of the nano-shell in an equilibrium condition gives us the stress resultants as 

{ N xx , N θθ , N xθ , M xx , M xθ , M θθ , Q xz , Q θz } = 

∫ 0 . 5 h 

−0 . 5 h 
{ σxx , σθθ , σxθ , σxx z, σxθ z, σθθ z, k τxz , k τθz } dz (12) 

where the moment stress resultants ( M xx , M x θ , M θθ ), the transverse shear stress resultants ( Q xz , Q θz ), and the axial stress

resultants ( N xx , N θθ , N x θ ) are shown. In addition, k defines a shear correction factor by which the value of the transverse

shear stress along the thickness of the model can be refined. 

Hence, based on Eq. (4) , Eq. (12) can be developed as below 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

N xx 

N θθ

N x θ

M xx 

M θθ

M x θ

Q xz 

Q θz 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A 11 

A 21 

0 

0 

0 

0 

0 

0 

A 12 

A 22 

0 

0 

0 

0 

0 

0 

0 

0 

A 44 

0 

0 

0 

0 

0 

0 

0 

0 

D 11 

D 21 

0 

0 

0 

0 

0 

0 

D 12 

D 22 

0 

0 

0 

0 

0 

0 

0 

0 

D 66 

0 

0 

0 

0 

0 

0 

0 

0 

k A 55 

0 

0 

0 

0 

0 

0 

0 

0 

k A 66 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂x 

+ 

1 
2 

(
∂w 

∂x 

)2 
1 
R 

(
w + 

∂v 
∂θ

)
+ 

1 
2 R 2 

(
∂w 

∂θ

)2 
∂v 
∂x 

+ 

1 
R 

(
∂u 
∂θ

+ 

∂w 

∂θ
∂w 

∂x 

)
∂ ϕ x 
∂x 

1 
R 

∂ ϕ θ
∂θ

∂ ϕ θ
∂x 

+ 

1 
R 

∂ ϕ x 
∂θ

ϕ x + 

∂w 

∂x 

1 
R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

+ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ̄q 31 ψ 0 

2 ̄q 32 ψ 0 

0 

X 35 �
X 63 �

0 

−X 21 
∂�
∂x 

−X 23 
∂�
∂θ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(13) 

in which 

A i j = 

∫ h 
2 

− h 
2 

C̄ ij dz : ( i, j = 1 , 2 , 4 , 6 ) , D i j = 

∫ h 
2 

− h 
2 

C̄ ij z 
2 dz : ( i, j = 1 , 2 , 6 ) (14) 

By doing δ
i = 0, the equilibrium equations can be obtained as 

δu 1 = 0 : 
∂ N xx 

∂x 
+ 

1 

R 

∂ N xθ

∂θ
= 0 (15a) 

δu 2 = 0 : 
1 

R 

∂ N θθ

∂θ
+ 

∂ N xθ

∂x 
+ 

Q θz 

R 

= 0 (15b) 

δu 3 = 0 : 
∂ 

∂x 

(
N xx 

∂w 

∂x 

)
+ 

1 

R 

∂ 

∂θ

(
N θθ

1 

R 

∂w 

∂θ

)
+ 

1 

R 

∂ 

∂θ

(
N xθ

∂w 

∂x 

)
+ 

1 

R 

∂ 

∂x 

(
N xθ

∂w 

∂θ

)
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− N θθ

R 

+ 

∂ Q xz 

∂x 
+ 

1 

R 

∂ Q θz 

∂θ
= 0 (15c)

δϕ x = 0 : 
∂ M xx 

∂x 
+ 

1 

R 

∂ M xθ

∂θ
− Q xz = 0 (15d)

δϕ θ = 0 : 
1 

R 

∂ M θθ

∂θ
+ 

∂ M xθ

∂x 
− Q θz = 0 (15e)

δ� = 0 ;
∫ h/ 2 

−h/ 2 

[
∂ ̄B x 

∂x 
cos 

(
πz 

h 

)
+ 

1 

R + z 

∂ ̄B θ

∂θ
cos 

(
πz 

h 

)
+ 

π

h 

B̄ z sin 

(
πz 

h 

)]
dz = 0 (15f)

where { 
B̄ x 

B̄ θ

B̄ z 

} 
= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

B x cos 
(

πz 
h 

)
B θ

1 
R + z cos 
(

πz 
h 

)
B z 

π
h 

sin 

(
πz 
h 

)
⎫ ⎪ ⎬ 

⎪ ⎭ 

dz = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

X 21 

(
ϕ x + 

∂w 

∂x 

)
+ Y 11 

∂�
∂x 

X 23 

(
1 
R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

)
+ Y 22 

∂�
∂θ

X 34 
∂u 
∂x 

+ X 35 
∂ ϕ x 
∂x 

+ X 63 
1 
R 

(
∂v 
∂θ

+ w 

)
+ X 64 

1 
R 

∂ ϕ θ
∂θ

− Y 33 �

⎫ ⎪ ⎬ 

⎪ ⎭ 

(16)

The additional parameters in Eqs. (13) and (16) are 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

X 21 

X 23 

X 34 

X 35 

X 63 

X 64 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

q̄ 15 cos 
(

π
h 

z 
)

q̄ 24 
1 

R + z cos 
(

π
h 

z 
)

q̄ 31 
π
h 

sin 

(
π
h 

z 
)

q̄ 31 
π
h 

z sin 

(
π
h 

z 
)

q̄ 32 
π
h 

sin 

(
π
h 

z 
)

q̄ 32 
π
h 

z sin 

(
π
h 

z 
)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

dz ;
{ 

Y 11 

Y 22 

Y 33 

} 
= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

η̄11 cos 2 
(

π
h 

z 
)

η̄22 

(
1 

R + z 
)2 

cos 2 
(

π
h 

z 
)

η̄33 

(
π
h 

)2 
sin 

2 
(

π
h 

z 
)
⎫ ⎪ ⎬ 

⎪ ⎭ 

dz (17)

Following on from the application of small-scale theories, such as ( Eringen, 1983 ; Farajpour, Ghayesh & Farokhi, 2019 ;

Mikhasev & Nobili, 2019 ; Reddy, 2007 ), couple stress ( Akbarzadeh Khorshidi, 2018 ; Akgöz & Civalek, 2012 ; Malikan, 2017 )

and the strain gradient ( Gholami, Darvizeh, Ansari & Sadeghi, 2016 ; Lurie & Solyaev, 2019a ; Lurie and Solyaev, 2019b ;

Solyaev, Lurie, Koshurina, Dobryanskiy & Kachanov, 2019 ; Solyaev & Lurie, 2019 ), a new theory has been proposed

( Lim, Zhang & Reddy, 2015 ) that presents two different properties of nanomaterials (stiffness-hardening and stiffness-

softening), namely nonlocal theory of strain gradient with which much research works have been demonstrated ( Arefi, Kiani

& Rabczuk, 2019 ; Karami, Shahsavari & Janghorban, 2019 ; Malikan & Nguyen, 2018 ; Malikan, Dimitri & Tornabene, 2019 ;

Sahmani & Aghdam, 2017 ; She, Yuan, Karami, Ren & Xiao, 2019 ). This theory in its differential form is formulated as (
1 − μ∇ 

2 
)
σi j = C ijkl 

(
1 − l 2 ∇ 

2 
)
ε kl (18)

in which the ∇ 

2 = 

∂ 2 

∂ x 2 
+ 

1 
R 2 

∂ 2 

∂ θ2 is the Laplace operator in cylindrical coordinates, l , and μ exhibit the small scale parameters

which respectively define two independent effects for nanostructures. The first one assigns hardening effect resulted from

reducing the size from macro to nano and the second one defines the interaction between atoms in an atomic lattice which

means stress nonlocality. 

According to Eq. (18) , Eq. (13) in the NSGT form becomes [
N xx − μ

(
∂ 2 N xx 

∂ x 2 
+ 

1 

R 

2 

∂ 2 N xx 

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
){ 

A 11 

[ 
∂u 

∂x 
+ 

1 

2 

(
∂w 

∂x 

)2 
] 

+ A 12 

[ 
1 

R 

(
w + 

∂v 
∂θ

)
+ 

1 

2 R 

2 

(
∂w 

∂θ

)2 
] } 

+ 2 ̄q 31 ψ 0 (19a)

[
N θθ − μ

(
∂ 2 N θθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 N θθ

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
){ 

A 21 

[ 
∂u 

∂x 
+ 

1 

2 

(
∂w 

∂x 

)2 
] 

+ A 22 

[ 
1 

R 

(
w + 

∂v 
∂θ

)
+ 

1 

2 R 

2 

(
∂w 

∂θ

)2 
] } 

+ 2 ̄q 32 ψ 0 (19b)

[
N xθ − μ

(
∂ 2 N xθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 N xθ

∂ θ2 

)]
= A 44 

(
1 − l 2 ∇ 

2 
)[∂v 

∂x 
+ 

1 

R 

(
∂u 

∂θ
+ 

∂w 

∂θ

∂w 

∂x 

)]
(19c)
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[
M xx − μ

(
∂ 2 M xx 

∂ x 2 
+ 

1 

R 

2 

∂ 2 M xx 

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
)(

D 11 
∂ ϕ x 

∂x 
+ D 12 

1 

R 

∂ ϕ θ

∂θ

)
+ X 35 � (19d) 

[
M θθ − μ

(
∂ 2 M θθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 M θθ

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
)(

D 21 
∂ ϕ x 

∂x 
+ D 22 

1 

R 

∂ ϕ θ

∂θ

)
+ X 63 � (19e) 

[
M xθ − μ

(
∂ 2 M xθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 M xθ

∂ θ2 

)]
= D 66 

(
1 − l 2 ∇ 

2 
)(∂ ϕ θ

∂x 
+ 

1 

R 

∂ ϕ x 

∂θ

)
(19f) 

[
Q xz − μ

(
∂ 2 Q xz 

∂ x 2 
+ 

1 

R 

2 

∂ 2 Q xz 

∂ θ2 

)]
= A 55 

(
1 − l 2 ∇ 

2 
)(

ϕ x + 

∂w 

∂x 

)
− X 21 

∂�

∂x 
(19g) 

[
Q θz − μ

(
∂ 2 Q θz 

∂ x 2 
+ 

1 

R 

2 

∂ 2 Q θz 

∂ θ2 

)]
= A 66 

(
1 − l 2 ∇ 

2 
)(1 

R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

)
− X 23 

∂�

∂θ
(19h) 

By substituting Eq. (19) into Eq. (15) , and based on Eq. (13) , and also by linearizing the obtained equations, we derive

the stability equations as below (
1 − l 2 ∇ 

2 
){[

A 11 
∂ 2 u 

∂ x 2 
+ A 12 

1 

R 

(
∂w 

∂x 
+ 

∂ 2 v 
∂ x∂ θ

)]
+ A 44 

1 

R 

(
∂ 2 v 
∂ x∂ θ

+ 

1 

R 

∂ 2 u 

∂ θ2 

)}
= 0 (20a) 

(
1 − l 2 ∇ 

2 
){

A 44 

(
∂ 2 v 
∂ x 2 

+ 

1 

R 

∂ 2 u 

∂ x∂ θ

)
+ 

[
A 21 

R 

∂ 2 u 

∂ x∂ θ
+ 

A 22 

R 

2 

(
∂w 

∂θ
+ 

∂ 2 v 
∂ θ2 

)]
+ 

A 66 

R 

[
1 

R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

]}
− X 23 

R 

∂�

∂θ
= 0 

(20b) 

(
1 − μ∇ 

2 
)(

N 

0 
xx 

∂ 2 w 

∂ x 2 
+ 

2 

R 

N 

0 
xθ

∂ 2 w 

∂ x∂ θ

)
+ 

(
1 − l 2 ∇ 

2 
){

A 55 

(
∂ ϕ x 

∂x 
+ 

∂ 2 w 

∂ x 2 

)
+ A 66 

[
1 

R 

2 

(
∂ 2 w 

∂ θ2 
− ∂v 

∂θ

)
+ 

1 

R 

∂ ϕ θ

∂θ

]

−1 

R 

[
A 21 

∂u 

∂x 
+ A 22 

1 

R 

(
w + 

∂v 
∂θ

)]}
− X 21 

∂ 2 �

∂ x 2 
− X 23 

R 

∂ 2 �

∂ θ2 
= 0 (20c) 

(
1 − l 2 ∇ 

2 
){(

D 11 
∂ 2 ϕ x 

∂ x 2 
+ D 12 

1 

R 

∂ 2 ϕ θ

∂ x∂ θ

)
+ 

D 66 

R 

(
∂ 2 ϕ θ

∂ x∂ θ
+ 

1 

R 

∂ 2 ϕ x 

∂ θ2 

)
− A 55 

(
ϕ x + 

∂w 

∂x 

)}
+ X 35 

∂�

∂x 
+ X 21 

∂�

∂x 
= 0 

(20d) 

(
1 − l 2 ∇ 

2 
){

D 66 

(
∂ 2 ϕ θ

∂ x 2 
+ 

1 

R 

∂ 2 ϕ x 

∂ x∂ θ

)
+ 

(
D 21 

R 

∂ 2 ϕ x 

∂ x∂ θ
+ D 22 

1 

R 

2 

∂ 2 ϕ θ

∂ θ2 

)
−A 66 

[
1 

R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

]}

+ 

X 63 

R 

∂�

∂θ
+ X 23 

∂�

∂θ
= 0 (20e) 

X 21 

(
∂ ϕ x 

∂x 
+ 

∂ 2 w 

∂ x 2 

)
+ X 23 

[
1 

R 

(
∂ 2 w 

∂ θ2 
− ∂v 

∂θ

)
+ 

∂ ϕ θ

∂θ

]
+ Y 22 

∂ 2 �

∂ θ2 
+ Y 11 

∂ 2 �

∂ x 2 
+ X 34 

∂u 

∂x 
+ X 35 

∂ ϕ x 

∂x 

+ X 63 
1 

R 

(
∂v 
∂θ

+ w 

)
+ X 64 

1 

R 

∂ ϕ θ

∂θ
− Y 33 � = 0 (20f) 

in which the axial membrane magnetic and torsional membrane mechanical forces are as [33–35] 

Magnetic force : N 

0 
xx = N 

mag 
xx = 

∫ h/ 2 

−h/ 2 

q̄ 31 
2 ψ 0 

h 

dz (21a) 

Torsional mechanical force : T = 2 πR 

2 N 

0 
xθ (21b) 

where T denotes the torsional mechanical critical force, which should be dependent on the radius ( Han & Lu, 2003 ), which

determines the torsional stability condition of the SWCNS. 
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Fig. 2. (a) The axial half-wave number vs. stress nonlocality ( l = 0. 5 nm , n = 1 ). (b) The axial half-wave number vs. stress nonlocality ( l = 0. 5 nm , n = 5 ). 

Fig. 3. (a) The circumferential half-wave number vs. stress nonlocality ( l = 0. 5 nm , m = 1 ). (b) The circumferential half-wave number vs. stress nonlocality 

( l = 0. 5 nm , m = 5 ). 

Fig. 4. (a) The axial half-wave number vs. strain gradient parameter ( e 0 a = 0. 5 nm , n = 1 ). (b) The circumferential half-wave number vs. strain gradient 

parameter ( e 0 a = 0. 5 nm , m = 1 ). 
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3. Solution of equations 

In this section, the obtained Eq. (20) is considered to be solved with both ends simply-supported edge conditions. To do

this, the below trigonometric displacement functions are utilized ( Mehralian et al., 2017 ). 

u ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

U mn cos 

(
mπ

L 
x 

)
cos ( nθ ) (22a) 

v ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

V mn sin 

(
mπ

L 
x 

)
sin ( nθ ) (22b) 

w ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn sin 

(
mπ

L 
x 

)
cos ( nθ ) (22c) 

ϕ x ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

�xmn cos 

(
mπ

L 
x 

)
cos ( nθ ) (22d) 

ϕ θ ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

�θmn sin 

(
mπ

L 
x 

)
sin ( nθ ) (22e) 

�( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

�mn sin 

(
mπ

L 
x 

)
cos ( nθ ) (22f) 

in which the axial and circumferential half-wave numbers are defined with m and n . By embedding Eq. (22) into Eq. (20) ,

manipulating and also simplifying, we get ⎡ 
⎢ ⎢ ⎢ ⎢ ⎣ 

K 11 K 12 K 13 0 0 0 

K 21 K 22 K 23 0 K 25 K 26 

K 31 K 32 K 33 K 34 K 35 K 36 

0 0 K 43 K 44 K 45 K 46 

0 K 52 K 53 K 54 K 55 K 56 

0 K 62 K 63 K 64 K 65 K 66 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

U mn 

V mn 

W mn 

�x mn 

�θ mn 

�mn 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 

0 

0 

0 

0 

0 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(23) 

where the matrix K ij is the coefficients one (The elements of the matrix are presented in Appendix A ). Setting the determi-

nant of the coefficients matrix to zero gives the characteristic equation of the torsional stability of the SWCNS. 

4. Numerical results 

4.1. Verification of results 

As far as no literature has been reported till now on the torsional buckling of a nano-composite shell inserted in a

three-dimensional magnetic field, therefore, the formulation would be reduced into a nano-shell/tube under torsion with

removing magnetic effects. On the other hand, in order to compare the results of the torsional buckling of the nano-shell,

the molecular dynamics (MD) simulation as Table 1 in which the comparable results are found, is taken into validation

( Chowdhurry et al., 2014 ). As can be observed, outcomes of the FSDT shell model while the size-dependent approach is

NSGT, are in good agreement with those of MD. Although the numerical results originated from NSGT completely depend

on the correct values of the parameters e 0 a and l , these factors should be obligatory obtained in an experiment. 

4.2. Parametric study 

To proceed with the parametric solution for the nano-composite shell, the properties mentioned in Table 2 are employed.

To make the numerical outcomes, first, the effect of stress nonlocality versus magnetic field by variations in axial half-

wave numbers is depicted. To do this, Figure 2 a is for n = 1 and Figure 2 b is drawn for n = 5. As it is shown, the increase

of axial half-wave numbers tends to increase the torsional capacity. In addition to this, an increase in the magnetic field

enlarges the torsional capacity. It is also worthy to note that an increase in axial half-wave numbers remarkably increases the

effect of stress nonlocality. This is due to the increase in the distance of curves of the results of various nonlocal parameters.

It is also observed that the increase of axial half-wave numbers makes the torsional stability noticeably larger in a local

condition than while the stress nonlocality is considered. This is due to the softening effect of the nonlocality. That’s why

the slope of the results of e 0 a = 0 in both cases is much steeper. Besides these, it can be conducted that for higher axial

half-wave numbers, the impact of magnetic potential in a nonlocal domain is more than a local one. This is because of

more gaps between the results of cases e a = 0.5 nm, ψ= 0, with e a = 0.5 nm, ψ= 0.5 A, and also another one. Based on the
0 0 
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Table 1 

Results of torsional buckling ( nN/nm ) of MD for single-walled carbon nanotubes. 

SWCNT ( ∗a = 5, b = 5) SWCNT (10, 10) SWCNT (15, 15) SWCNT (20, 20) 

d = 0.678 nm d = 1.356 nm d = 2.034 nm d = 2.713 nm 

L/d MD Present ∗∗ L/d MD Present L/d MD Present L/d MD Present 

2 16 16 1 43.6 43.6 1 53.3 53.3 1.5 46 46 

3.1 11.2 11.2 1.5 30.6 30.6 1.4 43.8 43.8 1.8 42 42 

4.2 8.9 8.9 2.1 24.6 24.6 1.6 39.1 39.1 2 39.2 39.2 

4.9 8 8 2.4 22.9 22.9 2 35.3 35.3 2.2 38.7 38.7 

6 7.2 7.2 3 20.2 20.2 2.4 31 31 2.6 36.8 36.8 

7 6.7 6.7 3.5 19.5 19.5 2.7 27.8 27.8 3 31.7 31.7 

8.1 6.5 6.5 4.1 18.5 18.5 3 26.7 26.7 3.5 29 29 

8.9 6.3 6.3 4.4 16.8 16.8 3.3 24.6 24.6 3.8 28.4 28.4 

9.9 6.2 6.2 5 14.8 14.8 4 22.6 22.6 4 27.7 27.7 

6.1 12.5 12.5 4.6 21.8 21.8 4.5 26.3 26.3 

7 11.2 11.2 5 20.9 20.9 

7.5 10.8 10.8 5.4 20.8 20.8 

8 10.4 10.4 6 19 19 

9 9.9 9.9 6.7 16.8 16.8 

10 9.6 9.6 

20 8.4 8.4 

∗ d(nm ) = 

2 . 46 
π

√ 

a 2 + ab + b 2 ( Kok & Wong, 2016 ). 
∗∗ FSDT shell theory in conjunction with NSGT (0 < e 0 a ≤ 1.5 nm, 0 < l ≤ 8 nm). 

Table 2 

Mechanical and magnetic characteristics of Barium Titanate–Cobalt Ferrite nano-composite shell 

( Gholami & Ansari, 2017 ; Ghorbanpour Arani et al., 2013 ; Mehralian et al., 2017 ; Shojaeefard et al., 

2018 ). 

Elastic properties ( GPa ) 

BaTiO 3 –CoFe 2 O 4 C 11 = C 22 = 226, C 12 = 125, C 13 = C 23 = 124, C 33 = 216, C 44 = C 55 = 44.2, C 66 = 50.5 

Piezomagnetic quantities ( N/A.m ) 

q 15 = q 24 = 275 , q 31 = q 32 = 290.1 , q 33 = 349.9 

Magnetic quantities ( N.s 2 /C 2 ) 

η11 = η22 = −297e-6, η33 = 83.5e-6 

Sundry quantities 

h = 4 nm , R = 6 nm , L = 10R, l ∗= l/h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

second figure, it is clear that while the circumferential half-wave number is greater than one, the increase of axial half-wave

numbers does not make the increasing effect only for the numerical results of torsional buckling. And the buckling results

would be initially decreased and then increased. Plus, there has been found that when the circumferential half-wave number

is bigger than one, the effect of stress nonlocality is remarkable even at lower values of the half-waves. But according to the

first figure, the effect is not noticeable for the lower values of the half-waves. 

To consider the influence of stress nonlocality and magnetic field more deeply, Figure 3 a,b as similar as the previous

ones are indicated, however by changes in circumferential half-wave numbers. Regarding both presented figures, it can be

witnessed that the increase of the circumferential half-wave numbers makes the torsional stability fundamentally further

than axial ones. It is noteworthy that the increase of circumferential half-wave numbers even if the axial wave number is

chosen as greater than one, leads to a steadily increasing trend for buckling loads. The important point of these two figures,

however, can be the fact that for larger circumferential half-wave numbers, there has never been seen any major impact on

variations of the magnetic potential. 

To clarify the influences of the strain gradient scale parameter, Fig. 4 a and b are revealed, respectively. Based on these

figures it can be remarked that the increase of the strain gradient parameter leads to decreasing the effect of the magnetic

field. This is in light of the distances between results of l = 0, ψ= 0 and l = 0, ψ= 0.5A with l = h, ψ= 0 and l = h, ψ= 0.5A.

In fact, the distance is lower for the second case leads to this conclusion that the increase of torsional buckling loads which

resulted from the increase of the magnetic potential is lower in the larger values of the strain gradient parameter. It can be

somehow stated that if the material is stiffer, the increase of magnetic potential does not affect outstandingly the stability.

On the other hand, as is clear, the increase of the axial half-wave numbers when the strain gradient parameter is chosen

as larger, results in a greater impact of the waves on the torsional stability. This means the larger the values of the strain

gradient factor, the greater the impact of the axial half-wave numbers. 

To study the effect of an increase of magnetic potential on the torsional stability response of the nano-composite shell,

the Fig. 5 a–c is displayed, respectively. The first two figures are plotted for changes of axial half-wave numbers and the

third figure shows the role of changes of circumferential half-wave numbers. For the first figure, the circumferential half-

wave is chosen as n = 1 and subsequently the n = 10 for the second figure. As shown by the first figure, the increase of
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Fig. 5. (a) The axial half-wave number vs. magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, n = 1 ). (b) The axial half-wave number vs. magnetic influences 

( e 0 a = 0. 5 nm , l ∗= 0.5, n = 10 ). (c) The circumferential half-wave number vs. magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, m = 1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the magnetic potential increases further the torsional stability by an increase of the axial half-wave numbers. This result is

also achieved for the second figure. Additionally, by comparing Figs. 2 b and 5 b, it is interesting to say that whenever the

circumferential half-wave number is selected bigger, the negative slope of curves of results which is related to the lower

axial wave numbers, is steeper. On the other side, Fig. 5 c illustrates that even powerful and high magnetic environments

cannot affect the torsional stability of the nano-composite shell while the circumferential half-wave number is large. Either

way, about the effect of the magnetic surrounding on the circumferential wave numbers, it can be said that the strong

magnetic field affects the shell’s stability if and only if the circumferential half-wave number is small. 

In order to consider the effect of a three-dimensional magnetic field versus other magnetic fields, initially, the axial half-

wave number is investigated while the magnetic potential is for two cases, weak and powerful magnetic fields which are

shown by Fig. 6 a and b respectively. From the first figure, as it is vividly seen, when the magnetic field three-dimensionally

affected the model, the torsional stability capacity of the shell is lower. But, on the other hand, when the effect is two-

dimensional as well as while the transverse effect ( B z = 0) is neglected, the highest stability for the nano-shell is predicted.

This means that the transverse magnetic effect makes weaker the composite shell under torsional conditions. By comparing

the results of three cases of one-dimensional magnetic effect, one can find that on the torsional stability of nano-shells, the

transverse magnetic effect ( B z = 0), circumferential magnetic effect ( B θ= 0) and axial magnetic effect ( B x = 0) respectively are

making the model weaker under torsion. This can prove that the effect of transverse magnetic is more significant than the

others. It is also worth mentioning that when we have a three-dimensional magnetic effect; the stability is further than

when there is a two-axis effect by assuming B x = 0. It is also interesting to note that by the increase of the axial half-wave

numbers the importance of analysis of magnetic effect in various directions can be demonstrated. In fact, this can be in light

of the increase in the distances between the results of various cases in the diagram by the increase of the wave numbers.

Moreover, after looking into the second plotted figure, it can be clearly seen that the second diagram also approves the
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Fig. 6. (a) The axial half-wave number vs. three-axis magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, n = 1, ψ= 0.1A ). (b) The axial half-wave number vs. three-axis 

magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, n = 1, ψ= 100A ). 

Fig. 7. (a) The circumferential half-wave number vs. three-axis magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, m = 1, ψ= 0.1A ). (b) The circumferential half-wave 

number vs. three-axis magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, m = 1, ψ= 100A ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

significance of the transverse magnetic effect in a magneto-elastic analysis. The analysis of the high magnetic environment

which is appeared by the second figure presents that in a high potential magnetic field, the effect of direction for magnetic

potential is lesser. To conclude, these two figures confirmed that even in a nanoscale the direction of magnetic influences is

very important. 

Fig. 7 a and b respectively exhibit the influence of an increase of the circumferential half-wave number under different

cases of the magnetic field, first, in a weak magnetic condition and second for a high magnetic condition. First off, in

comparison of these two figures with the Fig. 6 a and b, one can find that the increase of the circumferential half-wave

numbers increases dramatically the importance of the different magnetic fields. In other words, whatever the circumferential

wave numbers increased, the results in the figures have become far from each other by a very steep slope. Consequently, in

very large circumferential wave numbers, the direction of the magnetic field is seriously important. Furthermore, as shown

in the figures, for lower circumferential half-wave numbers, the directions of the magnetic field cannot be considerable. 

5. Conclusions 

This paper performed a study on the torsional resistance of the nano-composite shell under a three-dimensional mag-

netic field based on the first-order shear deformation shell approach in combining with the nonlocal theory of strain gradi-

ent. In order to take the numerical findings, an analytical approach was used. After validation of numerical outcomes, the

role of key parameters was investigated on the torsional behavior of the shell. According to the remarkable findings, some

notes are summarized as below 
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• In a three-dimensional magnetic analysis of the nano-composite shell, the most important magnetic effect can be for the

transverse effect. 
• While the larger amounts of circumferential half-wave numbers are considered, it is very important to study the three-

dimensional magnetic field. 
• The influence of the magnetic environment is more remarkable for the larger axial half-wave numbers. 
• The larger amounts of the strain gradient parameter, the smaller the effect of magnetic potential. 
• The higher values of the axial half-wave number, the higher the impact of the magnetic potential in a nonlocal domain. 
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