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The problem of proving observability/detectability properties for selected non-linear uncertain model
of biochemical processes has been addressed in this paper. In particular, the analysis of observability/
detectability in the face of parametric and unstructured uncertainty in system dynamics transformed
into unknown inputs, and unknown initial conditions has been performed. Various sets of system
measured outputs were taken into account during the research. The considered biochemical
processes were modelled as a continuous stirred tank reactor with the microbial growth reaction and
microbial mortality with the aggregated substrate and biomass concentrations in aerobic phase.
Classical tools based on differential geometry and the method of indistinguishable state trajectories
(indistinguishable dynamics) were used to verify the properties of the system. The observability/
detectability analysis was performed for nine cases covering a wide range of possible combinations of
system measured outputs and unknown inputs. The obtained results of are crucial meaning for system
state reconstruction (estimation), which involves the synthesis of state observers.

Nowadays, effective handling of a majority of industrial processes requires advanced control and monitoring
algorithms. This requirement can be understood in many ways, such as meeting assumed control objectives,
ensuring process safety, or the cost efficiency of the performed process. The algorithms used must enable this
operation by covering fields such as control, monitoring, estimation, diagnostics, or optimisation. It undoubtedly
involves the issue of access to the information about process variables, e.g., state variables, controlled output vari-
ables (signals), etc., of the system (plant) in which the process occurs. It is known, e.g., from operational practice
that the access to these variables is limited. There are various reasons for this, and the most typical ones include
the impossibility of measuring a given variable due to a lack of measuring devices (sensors), physical impos-
sibility of installing a sufficient number of measuring devices in a given physical system, high cost of purchasing
and exploiting measuring devices and low quality of the measurements provided due to measurement errors
or measurement noise. Therefore, the missing information on, e.g., state variables may be completed by their
estimates. Typically, the reconstruction (estimation) of the system state is based on the mathematical model of
a given process and measurements of other available variables (system measured outputs). The typical tool used
for system state estimation is a state observer.

A significant number of various state observer structures can be found in the literature. The choice of the type
of state observer is mainly driven by the features of the system whose state is to be estimated. In this paper, a
bioreactor in which biochemical processes take place, that is part of a wastewater treatment plant is considered'.
From the point of view of mathematical modelling, which is an essential stage of system state reconstruction,
two main groups of non-linear models of biochemical processes can be indicated. These include activated sludge
models (ASMs) and balance models*”. The ASM model family is seen as the most faithfully reflecting the
behaviour of natural processes in a bioreactor>*®. Thus, they are primarily used for simulation purposes, e.g.,
to predict the run of a given process under certain operating conditions. On the other hand, these models are
burdened with a significant degree of complexity and, therefore, it is not always possible to use them to synthesise
a state observer or a control system. An alternative is to use balance models based on physical balance laws and
aggregating certain individual fractions occurring in ASM models®*. Unfortunately, the simpler structure of the
balance models often entails the appearance of both parametric (structured) and unstructured uncertainty in

!Department of Intelligent Control and Decision Support Systems, Gdarisk University of Technology,
G. Narutowicza 11/12, 80-233 Gdarisk, Poland. ?Digital Technologies Center, Gdanisk University of Technology,
G. Narutowicza 11/12, 80-233 Gdarisk, Poland. *“email: rafal.langowski@pg.edu.pl

Scientific Reports | (2022) 12:22327 | https://doi.org/10.1038/s41598-022-26656-3 nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-26656-3&domain=pdf

www.nature.com/scientificreports/

them. The parametric uncertainty stems from inaccurate knowledge of the values of system parameters, while
the unstructured uncertainty, in turn, usually holds unmodelled system dynamics (includes intended model
simplifications). In this paper, a non-linear uncertain balance model of a biochemical processes is considered.
It is worth adding that this kind of model belongs to a certain sub-class of the general class of affine non-
linear dynamic systems®’. In turn, typically taking uncertainty into account can be done through stochastic or
deterministic approaches. The first approach requires reliable probabilistic models. To obtain such models, it is
necessary to have sufficient data to guarantee the reliability of the assumed probability density functions. One
of the most popular estimation methods using probabilistic uncertainty models also for measurement noise is
estimation using the Kalman filter'®!!. Observers based on Kalman filter or, especially, an extended version of
it, i.e., extended Kalman filter are widely used in the state estimation of biochemical processes, also in a situ-
ation of not exactly known inputs'*2° . In contrast, the use of a deterministic approach generally leads to the
synthesis of Luenberger-like observers*?!-?%, For example, a set-membership approach to uncertainty modelling
is used in the design of an interval observer®. It involves that an interval observer produces upper and lower
envelopes bounding the reconstructed state variable?*™*. Another way is to eliminate the uncertainty from the
system dynamics by transferring it to an additional model component. From the point of view of the further
state observer synthesis, this component is treated as some additional unknown input (UI). This methodology
gives very good results and its application leads to so-called unknown input observers (UIOs)**%. The UIOs
include sliding mode observers (SMOs), which enable the generation of a point estimate of the reconstructed
state variable under uncertainty impact. Due to their properties, e.g., the possibility of estimating’ the uncertainty,
sliding mode observers have been widely used in biochemical systems, e.g.,*******~4%, However, it is important
to be aware that SMOs are very sensitive to measurement noise, hence their implementation requires the use of
appropriate filters. In the following sections of the paper some of the considerations take into account the pos-
sibility of further synthesis of the sliding mode observer. It is also worth adding that using of UIOs for estimation
purposes in other applications than biochemical processes is widely addressed in the literature. For example,
they are used in mechanical, electrical or water systems*->>.

It should be emphasised that the reconstruction of the system state associated with the synthesis of a given
state observer is strictly related to the observability/detectability (asymptotic observability) properties of the
system model. In general, when the particular input-output behaviour of the system is known, observability
addresses the ability to exactly reconstruct the system state in a finite time-horizon, whereas detectability only
enables estimating the system state in an asymptotic way>>?**-%%, It is also worth highlighting that there are many
different notions of observability/detectability for non-linear systems and they are more difficult to prove in such
systems than in linear systems®'>****%!, Moreover, the mathematical model of a given system is only a certain,
idealised representation of reality which primarily addresses the most essential features of the considered natural
phenomena. Consequently, there is parametric and unstructured uncertainty. Furthermore, it is typical in the
system that the initial conditions are not exactly known. Uncertainty can also burden input signals to the system,
which is manifested by, e.g., the occurrence of mentioned unknown inputs. In this situation, the observability/
detectability concepts become more complicated and extended. However, both of these two properties should
be maintained despite the uncertainties involved.

Hence, the main aim of this work is to investigate the observability/detectability for selected non-linear model
of biochemical processes in the presence of unknown inputs. A continuous stirred tank reactor (CSTR) with
the microbial growth reaction and microbial mortality with the aggregated substrate and biomass (reactants)
concentrations in aerobic phase is used as a cognitive bioreactor model>*. The analysis presented takes into
account various configurations of system measured outputs. A method of indistinguishable dynamics (indistin-
guishable system state trajectories) is used to prove these properties®>**$2-*. Moreover, the classical approach
based on differential geometry tools is used to provide sufficient conditions for observability®°¢56365-68 Several
methodological aspects of the analysis carried out are indicated. To summarise, the main contributions of this
paper are as follows:

(a) an observability/detectability analysis of the non-linear CSTR model of biochemical processes in the face of
parametric and unstructured uncertainty and unknown initial conditions, and taking into account various
sets of system measured outputs has been devised,

(b) a comprehensive discussion on performing simplification of the cognitive CSTR model for the observ-
ability/detectability analysis has been given,

(c) amethod of indistinguishable dynamics and an approach based on differential geometry tools has been
used during research, highlighting their essential features and aspects,

(d) the analysis has been presented for nine cases covering a wide range of choices of system measured outputs,
along with the way how to eliminate uncertainty from system dynamics.

The paper is organised as follows. The background and problem statement are presented in Sections "Back-
ground" and "Problem statement", respectively. In Section "Cognitive CSTR model" the cognitive model of con-
sidered biochemical processes is given. Section "CSTR model for observability/detectability analysis purposes”
includes derivation of the CSTR model for observability/detectability analysis purposes. A detailed observability/
detectability analysis of the non-linear uncertain CSTR model is presented in Section The observability/detect-
ability analysis of the CSTR model. The paper is concluded in Section Conclusions and completed with three
Appendices.

Scientific Reports |

(2022) 12:22327 | https://doi.org/10.1038/s41598-022-26656-3 nature portfolio



A\ MOST

www.nature.com/scientificreports/

Background

In this Section, the background of the most important aspects of the paper is presented. It includes defining the
considered affine uncertain non-linear dynamic system, describing possible ways of analysing observability/
detectability and investigating the problem of so-called ’bad inputs.

Description of affine non-linear system. Considering R as the n-dimensional vector space over a real
number field R, a multiple-input single-output (MISO) affine non-linear system ¥, can be defined as follows®*:

v(t) =), + Z #i, (v (1) ui, (t)
=1 , (1)

v(to) = o

y(®)  =h®)

where: (*) stands for the derivative with respect to t; t € T = Ry U {0} is the time instant, R} denotes a
positive part of R; Vt € T : v(t) € M C R" is the vector of state variables, which coincide with globally
defined cubic coordinates, M is a (connected) differentiable manifold with C*°(-) structure of dimension n;
VteT: llui, ) lloo = sup {l ui, |1 t € ’]I‘} < ub"““d < 00, ip = 1, p denotes the ipth exogenous input belonging
toVteT: u(t) € U, C RP; v signifies the vector of initial conditions; ¢y denotes the initial time equal to zero;
VieT: yt) € Yq C R7is the vector of system measured outputs; Ve € T: ¢ € C°(M): M x T — TM,
VieT: ¥, € CM): M —>TM, VteT: h: M — Y, are the smooth maps; T(:) stands for the
tangent bundle of vector field; x denotes a Cartesian product.

It should be added that the system X, is claimed as complete, i.e., the system state trajectories v(¢) are defined
for everyt € T and every initial condition vg and for all exogenous inputs which belong to their particular sets.

In turn, it is assumed that the internal dynamics of ¥, represented by @(v(f),t) is not exactly
known due to parametric and unstructured uncertainty. Due to uncertain nature of @(v(),t), the new
o(w(1)) € C®(:) : M — TM, which is the exactly known (independent of parametric and unstructured
uncertainty) assessment of @ (v (), t) for some sub-class of affine non-linear systems can be introduced as:

P()AW(), 1) £ @(t), 1) — (D)), )

where Vt e T: AWw(t),t) : M xT — W C R with |[AW@(®), )| = max{| A(wv(t),t) |: t € T} < A < o0;
VieT: peC®(): M — TMisthe smooth map.

Given the assumption expressed by (2), the following form of ¥, which is a model of some sub-class of affine
non-linear systems, can be written as:

() =om(®) + Z Bi, W(E)ui, (1) + p(v () AW (1), 1)
¥q: ip=1 (3)
v(th) =vo

y(®) = h())

The component A(w(t), t) may be considered as an additional input to system %4 bounded by A . Moreover,
taking into account (2) and interpreting p as a vector parameterising the uncertainty of the dynamics of the
original system (1), the component p(v(t)) A(v(t), t) models the parametric and unstructured uncertainty and
thus represents the (parameterised) unknown inputs of the system (3). This makes the vector of state variables
v(t) independent of the impact of uncertainty. This transformation provides very interesting properties since even
if the uncertainty is not the physically occurring unmeasured signal, introducing the new variable as the differ-
ence between real internal dynamics burdened by some uncertainties and known estimation gives the chance
of its compensation by method addressed to Ul-related systems. The unknown inputs expressed by A(v(t), t)
are depended on v(); however, they are not considered as tangent mapping but as certain distinct signals which
coincide with the field p (v(#)). Imposing this particular consideration of uncertainty has two strong advantages.
The first advantage is associated with the possibility of performing the observability/detectability analysis on
the perfect model of the system belonging to this sub-class of non-linear affine systems based on differential
geometry tools. The second one makes a way of estimation of uncertain part of the system dynamics by a certain
additional component in the structure of the state observer, e.g.,?>#146:69-74,

It is worth adding that there may be situations in which, due to the complex structure of a given model of the
system under consideration, it is preferable to decompose the system dynamics before performing transforma-
tions eliminating the uncertainty. The idea of such a decomposition is included in Appendix A.

Observability/detectability analysis for non-linear systems. As it has been mentioned, there are
many different notions of observability/detectability for non-linear systems. The classical approach to prov-
ing the observability of a non-linear system is based on differential geometry tools®>*>*$365-8_Tt js associated
with using observability maps’ expressed as the set of subsequent Lie derivatives of the system measured out-
puts along the drift vector field. By checking the injectivity of the Lie derivatives , e.g., by applying the inverse
function theorem to the map’s Jacobi matrix (checking its invertibility ), or investigating the positiveness of
principal minors of the Jacobi matrix, it is possible to prove whether the system is observable or not®*>36:5%7375,
This approach is also called observability rank condition’ and in detail is associated with local properties of the
manifold M. Due to the fact that this particular methodology is essentially based on the theory of differential
geometry and the theory of differential equations, the observability notion is extended and narrowed to local,
weak and local weak observability®*>%. Therefore, this approach generally provides only sufficient conditions for
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observability. This is due to that the observability can be given only for some time interval, which is dependent
on factors associated with the properties of system dynamics®°%%>%87¢, Hence, for the considered system (3) the

observability map (observation space’) O € C* (M) yields>**>5
h
Lgh
o= . | )
n—1
Ly h

where L( ) (-) denotes the Lie derivative®”’.

The o servability matrix is derived by exterior differentiation of O concerning the state vector v(¢). In this
single measured output system, it is equal to the following observability co-distribution after imposing particular
coordinates of v (¢):

dO = span{dh, dLgh, .-, dLT h: by Lgh, oo, L2 he O}, 5)
where d(-) stands for exterior differentiation, which is invariant with respect to the fields ¢ (v(¢)), #i, (v(1)) and

p( ()P,
Thus, the observability matrix which is equivalent to the Jacobi matrix is as follows:

dh Vh
dLyh VLsh
P (1) = : = : , (6)
n—1 n—1
stZ) h VL¢ h

where V(-) denotes the gradient operator.

If dO spans the whole manifold M (excluding singular points), which means that the rank of the observ-
ability matrix 9, ®(v(t)) equals the rank of the considered system, then the particular system states are observ-
able (locally weak observable). The system is globally observable if the local weak observability is proven for all
points (excluding singular points) on manifold M3, The potential singularities provide the problem, which
makes this condition only sufficient, not necessary for all considered cases. It is necessary to check, how the
parameters values, initial conditions, and inputs affect the singularity of 3, ® (v (¢)). In other words, the observ-
ability can be guaranteed in some time intervals contained in T, in which duration is strongly dependent on the
after-mentioned factors. If the system is unobservable (not all system states are observable) one can decompose
its dynamics into two sub-dynamics, the former of which consists of observable states and the latter includes
the stable unobservable part of the state vector. To make state decomposition properly, two assumptions must
be met: (i) the observability (Jacobi) matrix must be invertible, and (2) unobservable states must be Lyapunov
stable. These assumptions have important implications for further synthesis of the state observer, as shown in”8-%3,

Establishing the observability/detectability of a system using the classical approach outlined above does not
guarantee (asymptotic) system state reconstruction in the face of uncertainty. Its presence imposes additional
conditions closely related to the way it is modelled, and consequently to the synthesis of a state observer of
a given type. As it has been mentioned, in the systems considered in this paper, the idea of unknown input
sliding mode observers works well when eliminating the uncertainty leading to the appearance of unknown
inputs®70-728485 However, the estimation of the system state using these observers requires that, besides the
observability/detectability of the system, the matching condition is met®. For the system X4 under considera-
tion, this condition is as follows:

Ly h #0, (7)

what means that an element of field p - p; is invariant with respect to the first component of the observability
map (4), and that the span{p} does not annihilate dO. Hence, the matching condition (7) states that the relative
degree of system measured output y(t) with respect to A(v(t), t) (Lie differentiation with respect to p(v())) is
equal to one. That means that there is a significant relation between the system measured output and the uncer-
tainty, which makes a given (SMO) state observer to be able to cope with uncertain system dynamics via direct
‘counter action’ imposed by a particular part of the correction term*.

However, the particular analysis for high dimensional or highly non-linear dynamics is well-known to be
very troublesome. Moreover, this general methodology has not been ‘globally’ derived for systems with unknown
inputs. Therefore, the above classical approach is not always convenient, due to specific properties of a given
system , e.g.,*+#8606187-90 Tn order to overcome this problem, an alternative method based on the method of
indistinguishable dynamics (indistinguishable state trajectories) can be used. According to this method, two
states of a (non-linear) system with certain dynamics are said to be indistinguishable if the state trajectories
associated with certain initial conditions are different, although the exogenous inputs and system measured
outputs are the same®>*%6263, Let us consider the system X4 with known input u(t) and unknown inputs A (v(%), £)
and A (v(t), £)!1272:4448.5659-6165.88.

1. Two initial states vg # v0 € M are strongly u-indistinguishable, if for any u(t) and for
any pair of A(w(f),t), A@(#),t) e W (two unknown inputs not necessarily differ-
ent from each other) hold: yw(t,vo,u(t), A(v(t),1))) = y(v(t, vO,u(t) A (v(t),1))) and
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v(t,vo, u(t), A(v(t) 1) £ v(t, vo,u(t) A (v(®),1)). The set of strongly u-indistinguishable states from v
is denoted by I (u(t)wo)- 1he prefix 'u—(-)" refers to the situation when the known input does not affect the
observability property of the system. In the literature, this phenomenon is called the uniform observability.

2. System X4 is strongly u-observable if Vte T for every vo € M, and for any pair of
Aw(t),t), A (v(t),t) € W and for any u(t) holds: (u(t) vo) = = {vo}. It means that the state trajec-
tory is strongly u-distinguishable. In other words, the observability means that if (as assumed) v,
is indistinguishable from Vo, and y(t, o, u(t), A(v(1), 1)) # y(v(t, vo,u(t) A (v(t),t))) and
v(t, v, u(t), A(v(t),t)) # v(t, vo, u(t), A (v(t),1)) holds, then vO = vy (the assumption on indistinguish-
ability was a contradiction). Thus, the observable system state is only indistinguishable from itself’. It is worth
emphasising that if system X4 is not associated with any indistinguishable initial conditions (trajectories),
then it is fully observable.

3. System X is strongly u-detectable if V¢ € T and for every vo € M for every vO e U (u(t)wpy and for any
u(t) and also for any pair of A(v(¢), 1), A (w(6),1) € \W that causes 1ndlst1ngulshable v,. That means
that Vt € T y(v(t, vo, u(t), A(v(t), 1)) = y(v(t, vo,u(t) A (v(t),t))); from which it follows that
v(t,vo, u(t), A(w(t),t)) — v(t, vo,u(t) A (v(t),t))asymptotically.

4. System X4 is strongly observable (detectable) if it is strongly u-observable (u-detectable) for every u(t).

The ’practical’ usage of the above terms is based on comparison of two different state trajectories generated for
distinct initial conditions and unknown inputs V¢ € T. The first one is generated by the original’ (dependent on
(1)) system X4, and the other is generated by a copy’ (dependent on z(#)) of system X4. The dynamic meaning
of this idea implies considering an extended model of the system which will consist of ‘original’ and ‘copied’
dynamics Thus, it is necessary to derive the following error system’ (differential-algebraic equation - DAE)
e(t) e ECR"™

e(t) 2 v(t) — z(t). (8)

Assuming that the initial conditions of both systems are different, i.e., vy # 2o, and that the measured output and
known inputs of both systems are the same, and also that different unknown inputs affect the system’s dynamics
in the time interval T:

® the observability means that the only possible state trajectories of the original’ and ‘copied” systems under
these conditions are always equal (the error’ is zero) V¢ € T,
® the detectability means that the after-mentioned state trajectories mutually tend to each other asymptotically.

Several features of this approach are worth highlighting'260-61.87.88;

(1) The Lyapunov’ function-based approach may be used for analysing properties of system X4 such as observ-
ability and detectability.

(2) Both observability and, especially, detectability are provable in the presence of unknown inputs.

(3) The interpretation of the results obtained is relatively simple and based on classical terms linked with the
theory of differential equations.

(4) Tt can be used to characterise particular interactions between system states and exogenous inputs which
involve ensuring observability/detectability.

(5) By characterising zeros dynamics (known from the differential geometry based control approach, e.g..?),
it can be used to investigate observable and unobservable parts of the system.

(6) Topological interpretation of sets of system states which make the system indistinguishable is possible via
analysing properties of algebraic parts of the error systen’ .

(7)  The results can be directly interpreted as global without invoking the after-mentioned concepts of local,
weak or local weak observability.

‘Bad inputs’ problem. As mentioned above, proving the observability/detectability of a non-linear system
under the uncertainty resulting in the appearance of unknown inputs is a non-trivial task. Moreover, these
unknown inputs may cause the model of the system under consideration to become unobservable/undetectable.
The inputs that lead to this situation are usually called bad inputs. Hence, the observability/detectability prop-
erties for all ’bad inputs’ are, in general, necessary to consider when designing a state UIO expected to provide
good performance of the obtained estimates. It should be emphasised that the observability conditions must be
strictly linked with a priori guarantee that the unknown inputs do not belong to *bad inputs™!3247:5970.73,748591,
For example, meeting the matching condition (7) ensures the above, and thus the designed unknown input slid-
ing mode observer*’%7>%% is able to correctly reconstruct the state vector.

Let us consider the system %4 again. If for any initial condition vO and for any unknown input A (v(t),1)
where (vo, A(v(1),1)) # (g, A'(v(1), 1)) holds V¢ € T y(v(t, vo, u, A(v(£), 1)) = y(w(t, vy, u(t), A (v(t), 1)),
then the pair (vO,A (v(t),1)) is UI u-indistinguishable from the pair (vg, A(v(¢),t)). When the indis-
tinguishable pairs do not exist, the system is UI u-observable (or UI u-distinguishable). Whereas if
the indistinguishable trajectories converge asymptotically to each other, the system is UI u-detect-

able. That is, if Vie T y(v(t Vo, U (t) A(v(t), 1)) = y(v(t, vO, u(t), A v(t), t))) that implies that
v(t,vo, u(t), A(w(t),t)) — v(t, vo,u(t) A (v(t),t)) and, what is the most important, A (w(t),t) — A(t),1)
fort — oc.
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Thus, the equivalence of meeting the matching condition (7) and UT observability/detectability is justified,
which means that the conditions for the existence of the unknown input sliding mode observer are formulated.
It is worth adding that when the matching condition is not met, then the uncertainty may not only strongly affect
the performance of the obtained estimates, but also cause the unobservability of particular state variables. Several
additional remarks referring to UI observability/detectability and the equivalence of two methods®"*? used to
verify the observability/detectability property under uncertainty are given in Appendix B.

Remark 1. In general, the idea of ’bad inputs’ has been primarily developed in the context of the impact of
particular known (control) inputs, which in some circumstances may lead to state unobservability*>®>**. If
a particular control input distinguishes two different initial conditions vg and v, then it is called the universal
input. Hence, its action on system dynamics does not induce the unobservability of state trajectories. However,
this concept can be easily extended to the mentioned UI. Therefore , to avoid ambiguity, in this paper "bad inputs’
concern only unknown inputs.

Problem statement

In general, this paper is focused on the investigation of observability/detectability properties under uncertainty
for a certain sub-class of the general class of affine non-linear dynamic systems. This sub-class is represented
by a bioreactor in a wastewater treatment plant. The considered bioreactor model is based on a CSTR with the
microbial growth reaction and microbial mortality with the aggregated substrate and biomass concentrations
in aerobic phase. This model is considered the feasibility study for showing the important issues which can be
encountered in the biochemical processes. The CSTR model of biochemical processes is less complex than the
ASM model, but unfortunately, there is uncertainty in it. The main source of uncertainty in the model dynamics
is the reaction kinetics function. In this paper, the reaction kinetics function is assumed to be the only uncertain
part of the model under consideration. The concept of simplifying/transforming the reaction kinetics function
in order to establish a model with exactly known dynamic part for analysing system properties and for further
synthesis of control or estimation algorithms is widely known and gradually exploited. Many methods and
approaches have been developed under distinct assumptions associated with the behaviour of system’s dynam-
ics, e.g.,>?781L93-97 Modifications in the reaction kinetics function have been realised by taking into account
various dependencies, e.g., time scales of the dynamics of state variables, available measurements, complexity
of the reaction kinetics function, and predictive capabilities or uncertainties in the model dynamics. The idea of
transforming the reaction kinetics function proposed in this paper is based on these experiences. However, the
consequence of this approach is the appearance of unknown inputs. For a model of biochemical processes, in
which the reaction kinetics function is an uncertain part of dynamics, proofing the observability/detectability
properties is non-trivial. In addition, when analysing the observability/detectability together with the issue of
unknown inputs, appropriate selection of system measured outputs must be made. This selection is essential for
the synthesis of an observer that will enable system state reconstruction. To summarise, a systematic approach
to analysing the observability/detectability of the non-linear uncertain bioreactor CSTR model with considering
a given selection of system measured outputs is devised.

Cognitive CSTR model

A CSTR with the microbial growth reaction and microbial mortality with the aggregated substrate S(t) [g/L],
biomass X(t) [g/L]and dissolved oxygen O(t) [g/L] concentrations is one of the most widely used models of
both the aerobic bioreactor and the sequencing batch reactor (SBR) in the aerobic phase*®%-7-;

S(t) + O(t) — X(t). 9)
For further considerations, V¢ € T the set of all possible system states is defined as follows:
2 = {(X(®),8(t),0(t)) € R} : X = X(t) = X, S> S(t) = S, 0= O(t) = O}, (10)

where X, S, O and X, S, O are the real positive the upper and lower bounds of a particular variable, respectively.
It is worth noting that 2 defined in this way is an invariant set meeting the condition of the general theory of
dynamics of biochemical processes : @ C M C R347212,

The cognitive CSTR model of the considered biochemical system includes the following phenomena?*278-100;

(a) microbial growth in the CSTR, described by the reaction kinetics function r(¢) [g/hL},

(b) inflow to the CSTR and its outflow, described by the positive dilution rate D(t) [h~' |Vt € T, which is upper
bounded by D,

(c) gas-liquid transfer of dissolved oxygen to the CSTR, described by the positive term including the oxygen
mass transfer coefficient ky,a(t) [hfl} Vt € T, which is upper bounded by kr.a,

(d) microbial mortality, which is considered in the CSTR dynamics as follows:

biomass death: X (t) — X4(t),
substrate and dissolved oxygen maintenance: O(t) 4+ S(¢) + X (t) — X (1),
where X4 [g/L} is the dead biomass concentration modelled as a dissipating linear component in all equations
of the model.

From the constituent mass balance law, the cognitive CSTR model taking into account the above-mentioned
phenomena can be written as follows®*:
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X(t) =rUi—ﬂmX0)—XOﬂX0

S(t) = =3O = mX(®) + (Sin = SEHD®)

, T

Ses : 4 00 =—ﬁﬂ0—wﬂﬂ+@m—mmDm) (11)
+ (05 — O(t)kva(t)

X(to) =Xo

S(to) = So

O(t)) = O

where: Vt € T : Y, [—] Y, [—] denote the positive yield coefficients of the growth of substrate and dissolved
oxygen concentrations, respectively; Vt € T : S, > 0 [g/L}, Oin >0 [g/L} signify the concentrations of
substrate and dissolved oxygen in the inflow to CSTR, respectively; V¢ € T : O; [g/L] stands for the positive
saturation constant of dissolved oxygen concentration; Vt € T : By > 0 [h1]is the biomass mortality rate;
vt € T: mg [h™'], my [h™']denote the positive maintenance coefficients of the substrate and dissolved oxygen
concentrations, respectively.

In model (11), the dilution rate (D(#)) and the gas-liquid transfer of dissolved oxygen (kpa(t)) signify the
bounded known inputs. In turn, the reaction kinetics function r(t) is one of the most crucial parts of the dynamics
of biochemical processes. This is because it is a time-varying component that is a major source of uncertainty. A
detailed explanation of selected aspects of the reaction kinetics function can be found in many literature refer-
ences, e.g.,">*?122262940 Taking this into account, in this paper all considered reaction kinetics functions are
modelled as multiplication of a linear function related to X(t) and the Monod function related to S(¢) or/and
O(1). Therefore, the general form of the reaction kinetics function yields:

() = u (HXQ®), (12)

whereVt € T : . (t)signifies the growth rate function which separately represents the effect of each component
of the rate, and the lower index refers to the concentration which occurs in a given model.

In general, the Monod function is based on the Michaelis-Menten law. This function for S(¢) or O(¢) is given
by:

S(t)
K1) 4+ S(8)’
o(1)
Ko(t) + O(t)’
where Vt € T : pmax(t) € Ry [h_l], Ks(t) e Ry [g/L}, Ko(t) e Ry [g/L] are the time-varying coefficients
of maximum specific growth rate, saturation of substrate concentration, and saturation of dissolved oxygen

concentration, respectively.
Whereas for S(¢) and O(t) is as follows:

us(t) = tmax(t)
(13)
no(t) = max(t)

S(t) o(t)
K1) + (1) Ko (1) + O(1)

1so(t) = max(t)

CSTR model for observability/detectability analysis purposes

According to the discussion so far, the model of bioreactor for the proposed observability/detectability analysis
should be of a general form (3). Therefore, the cognitive CSTR model (11) should be transformed. The following
state variables, (known) model inputs (see Section "Cognitive CSTR model"), and unknown inputs are defined as:

V() £ X(1), va(t) £ S(1), v3(t) £ O(t), ui(t) = D(t),
up(t) = Kpa(t), Aw(t),1) £ [uso(t) — fiy (D] vi (1),

where /i) (t) denotes the exactly known substitute growth rate function.
Taking into account the general form (3) and the definition (15), the particular components of the CSTR
model (&) for the observability/detectability analysis is as follows :

ﬁ(.) H)v1(t) — Bmv1(t)

(15)

Lot t ()
oot = | Ty o OO —man () ﬁmwm=[%—wm
1 N
=R OV = mevi (0 Oin = v3(1)]
A (16)
0 _ 1
Fa(v(t) = 0 } , P = | Y,
0, — v3(t) T
Y, |

The components @ (v(t)), #1 (v(t)), #2(v(¢)), and p(v(¢)) in (16) reveal the following general properties in terms
of biochemical system dynamics:
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(1) Component @(v(t)), which is a substitution part of internal dynamics is strictly linked with the simplifica-
tion of the reaction kinetics function. Many approaches to the modelling of reaction kinetics which lead
to the determination of a given reaction kinetics function can be found in the literature. Some of them are
based on neglecting the impact of slowly time-varying state variables either by treating them as constant
parameters or excluding them due to their insignificant influence on process dynamics®”*”?>-7191 Other
authors use a linear approximation of Monod, Haldane, etc. functions®>3782839397 There are also methods
based on linearisation>!%2. A very rich survey of derived reaction kinetics functions can be found in% As
it has been shown, e.g., in**%, the most common reaction kinetics function is the Monod function, which
is also used in this paper (see (13)). It is worth adding that the structure of this function provides meeting
the observability condition (injectivity of coordinate transformation). Therefore, it might be claimed that
the Monod function is a proper candidate for being a substitute model of real reaction kinetics*’. Once the
structure of the reaction kinetics function has been defined in terms of a Monod function, it needs to be
parameterised. The uncertain nature of reaction kinetics needs to consider parameters of this function as
time-varying, which is included in the cognitive CSTR model (11). However, due to meeting the mentioned
conditions, an approximating function fi.) (t) cannot have these kinds of parameters. Therefore, the origi-
nal parameters of the reaction kinetics function are replaced by their time-invariant alternatives, which is
done by calculating their mean values. To sum up, in this paper the exactly known substitute growth rate
function fi(.)(¢) is based on the following two postulates:

e the structure of the substitute growth rate function is understood as a product of Monod functions,
e the parameters of the substitute growth rate function are assumed constant.

Taking into account the above and (13), (14), the following forms of /i) (¢) are further considered:

® time-invariant Monod function related to S(¢):

. V2 ()
t) = 0 _—,
is(t) Hma"KSO—i—vz(t) (17)
® time-invariant Monod function related to O(t):
. v3 (1)
)= p1l
Lo () = Hmax KO+ v3(0) (18)
® time-invariant product of two Monod functions related to S(¢) and O(¢):
. v2(¢) v3(t)
t) = .
MSO( ) Mmax KSO I Vz(f) K(()) + V3(t) (19)

Time-invariant parameters 13, € Ry [h7'], K € Ry [g/L]and K? € R [g/L]in (17)-(19) related
to their time-varying originals are calculated as the mean values derived by using the knowledge about
bounds of particular originals*.

(2) Components#;(v(t))and #,(v(t)) are straightforward due to a general theory of ’building’ a form of non-
linear affine systems. Because D(t) and kya(t) are considered as exogenous known inputs to the CTSR,
B#1(v(t))and #,(v(t)) are defined as coeflicients which multiply particular inputs to the model. Neverthe-
less, it should be noted that in many papers, e.g.,**>?, kp a(t) is treated as a time-varying parameter. Also,
the observability/detectability analysis of a system similar to that under present consideration has been
performed in based on this assumption®*°. However, in?®-1% the authors presented profound explanation
that kpa(t) should be treated as an input to the model. The work in this paper also includes this approach.
The key reason for this is the need to derive the component @ (v(¢)) in as simple form as possible.

(3) Component p(v(t)) is related to the task of deriving A(v(¢), t) using formula (2). Because the unknown
input is defined as a difference between two elements related to the reaction kinetics function, the elements
of p(v(t)) are either constant with value equal to one, or they express the yield coefficients.

The last important issue from the point of view of proving the observability/detectability of the model of the
considered system is the choice of system measured outputs. In the papers devoted to state estimation of bio-
chemical processes , especially those modelled as CSTR, a single measured output—biomass concentration—is
usually used*'*?%?’_ In real implementation of the state observer this proposition is in general possible but not
essentially convenient. It is because of hardware aspects of the measuring tasks. On the other hand, in?"?7%,
the authors proposed that the concentrations of substrate or dissolved oxygen have to be the system measured
outputs. This case is more realistic and some interesting model properties for state observer synthesis purposes
may be observed. For instance, unlike biomass concentration, the measurements of dissolved oxygen concentra-
tion are commonly used in the control system of dissolved oxygen in CSTR?-1%,

The next Section presents the results of studies of various combinations of available measurements—S(t),
X(t), O(t) and fi(.) (t) forms (17)-(19), which give a wide view on the observability/detectability of the model of
the biochemical system under consideration. Based on these studies, cases for which it is possible to synthesise
a state observer (primarily SMO) guaranteeing proper state reconstruction are indicated.
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The observability/detectability analysis of the CSTR model

The observability/detectability analysis has been performed for nine cases covering a wide range of possible
combinations of the after-mentioned system measured outputs and forms of the growth rate function. It was
needed to state that for all considered cases of system measured output and growth kinetics function choice, the
unknown input meets the matching condition (7) (is in certain sense observable’). In other words, due to the
form of p(v(t)) in (16), it is easy to state that L, h # 0in all cases of system measured output choice:

Loh=1ifh(w(t)) = vi(t),

1.
Lyh= ¥ if h(v(t)) = va(t), (20)

Lyh= —Yi ifh(v(t)) = v3(t).

Thus, the field p is invariant with respect to the first component of the ‘observability map’ and the span{p} does
not annihilate dO.

It is necessary to mention here a special (emergency) situation that can occur in a bioreactor. It is the wash-
out state during which biomass is washed out, i.e.,, Itx € T : X(#x) = 0. From the point of view of the observ-
ability/detectability analysis based on model (16), X(¢) remains zero V¢t > tx. The evolution of the O(t) and S(¢)
dynamics becomes independent of the impact of the reaction kinetics function and therefore obtaining any
information about other states becomes extremely complicated or even impossible (it relies on the choice of the
system measured output and the substitute reaction kinetics function). Hence, since X (tx) = 0, all states of the
system are not observable for all known (control) and unknown inputs, and it is impossible to reconstruct all
of the system states!>%**°. Certainly the wash-out state is highly undesired for the physical requirements of the
entire process. Thus, this state is not considered in the further part of the observability/detectability analysis.

Analysis based on differential geometry tools. To show how a given choice of /i (f) and y(¢) affects
the observability matrix 9, ® (v (¢)) the following analysis is given. According to the assumption that in all cases
only one state variable is considered as a system measured output, i.e., k(v (t)) = v;(¢), where j € {1,2,3}, it is
obvious that:

oh; L —
VieT: —=0,i#j,i=13. (21)
d Vi

Therefore, in general, the sufficient condition for observability of the system in a particular case is dependent on
values of dLgyh and dL(zbh. Let us make the first case analysis.

(1) y(¢) = v3(t)and fi()(t) = fio(t) Due to the knowledge about the structure of 1o (¢) it is easy to show that
vt e T: @(vi(t), va(t), v3(t)) — @(v1(t), v3(t)). Therefore, Vt € T : 8,,Lyh = 0and szLéh = 0, which
results in obtaining the following observability matrix:

oph o h  d,h  dyh 001
3, ®(v(t)) = BVL?h — Bvng,h aszg,h BVSL?h = |% 0 x|, (22)
3‘,L¢h avlL(;)h asz(;)h 8V3L¢h * 0 %

where the symbol x denotes a certain non-linear expression calculated as particular partial derivative
which is not equal to zero. The analytical calculations and explicit form of the observability matrix is not
included in this paper. This is due to its bulkiness which the authors believe would not benefit the read-
ability of the paper.

The rank of the observability matrix (22) is not equal to the rank of the considered system model. Con-
sequently, it is unobservable.

However, it is worth noting that if we decompose the system dynamics into two parts, *partial’ observ-
ability will be obtained. More specifically, the first part of the dynamics will meet the sufficient condition
for observability if it consists of state variables v; () and v3(t). The second part, consisting of state variable
v, (t), will be unobservable, which is due to the lack of this variable in fio (¢). For decomposition purposes,
Appendix A may be used. Then, the first part of the dynamics will be represented by subsystem ’x(t)” con-
taining v () and v3(¢), and by the second subsystem & () containing v, (¢) as parameter & (¢) in the unknown
input A(x(t), £(¢), t). A detailed procedure is shown in Appendix C.

An analogous analysis to case (1) was carried out for the other combinations and its results, together with case
(1), are summarised in Table 1.

To complement the above conclusions, the following comments are added:

® In cases, (7), (8) and (9), the considered model meets the sufficient condition of observability, which is due
to the effect of consistence of v (t) and v3(t) ensured by the structure of the substitute growth rate function.
Naturally, v; (t) is a part of all particular ¢(v(t)), therefore it is always an observable state variable. However,
from the point of view of further SMO synthesis , formula (19) is complicated, and, as a result, the established
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Case

No. |[y(®) |f()(t) | Observability
1 v3(t) | Ao(t) |No
(2 vi(t) |fo(t) |No
(3) va(t) |fo(t) | Yes
(4) v3(t) |fs(t) | Yes
(5 vi(t) |fas() | No
(6) | wa(t) |As®t) |No
(7) | vi® |fso(®) | Yes
(8) va(t) | fso(t) | Yes
9 |vs(®) |fso(®) | Yes

Table 1. Results of analysis based on differential geometry tools.

state coordinate transformations (6) would contain very complex components. Therefore, when designing
SMO, this formula is further simplified, but without losing the observability property.

e (Cases (1), (2), (5) and (6) concern situations when the considered model is unobservable. However, it is
possible to separate the observable part of the system dynamics. This translates into the observability of two
of the three state variables. This situation is an effect of the possibility of decomposition of the considered
model, as explained in Appendices A and C.

® (Cases (3) and (4) are the most interesting. It is due to deriving the methodology of the observability analysis
for further convenient synthesis of SMO. Both situations give certain combinations of substitute growth
rate function and system measured outputs which guarantee the observability of all system states and con-
sequently their reconstructability.

Remark 2. As it has been mentioned, the observability or unobservability of the particular state variable is
strictly dependent on its occurrence in the considered function /i (. (t). Taking into account that SMO might be
able to generate the system states estimates (¢) under uncertain reaction kinetics function it always follows to
v(t) — v(t) asymptotically when the system is observable.

Analysis based on the method of indistinguishable state trajectories. To show how a given choice
of fi¢.y(¢) and y(t) affects the observability/detectability properties, the following analysis is given. The copied’
(dependent on z(t)) system EéSS‘TR is structurally the same as the original’ (dependent on v(¢)) one from (16).

According to Section Observability/detectability analysis for non-linearsystems, the error’ is defined as follows:
e(t) 2vt) —z(t) — z(t) =v(t) —e(t). (23)

Moreover, the difference between uncertain parts of the dynamics of the original’ and copied’ systems is defined
in the following way®®¢!875;

SAW(D),z(1),1) 2 A(w(t), t) — A/(z(t),t), (24)

where A(v(t),t)and A’ (z(t), t) are the unknown inputs considered in a particular original system and its copy’
defined in (15), respectively.

Symbol §A(v(t),z(t),t) is a universal symbol for denoting the variance (error) of the unknown input in all
considered cases; henceforth, denoted as § A for simplicity. The initial conditions are not equal, i.e., v(tp) # z(t),
which imposes a potential different behaviour of the integral curves*#361.878%90,

For all considered cases, the dynamics of the error system’ X’ reads:

1) = Do Ovi) — Ly (O — e1()]
- ﬁmil(f) —u(He1(f) +8A
b2(0) = =[O EOM(0) = i, O = 1 (D] + 4]
g = M) = i 50 : (25)
B30 = = [ Ao OMO = AL OO - e(0] + 84
— mo1 () — [ur(t) + uz()]e3(t)
e(t) =eo

System (25) has an analogous form to the general form of the affine system invoked in (1), whereas its dynam-
ics is a 6-dimensional manifold conﬁposed as the Cartesian product of the original state space and the error’
(e(t) € B) space, ie,[vT (1), eT(t)] e x E =W C R} x R%.

Due to the fact that system (25) presents a general form of error’ dynamics, the following comments are given:
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e Dynamics (1) is not affected by (25); however, the inverse relation is necessary for the purposes of the observ-
ability/detectability analysis.

® System Z,(:') is the ’base dynamics’ for each case considered in the observability/detectability analysis.

e Symbol /L/ (t) is a universal symbol for denoting the Monod function for the copied’ system, the structure
and parametrlsatlon of which is the same as that of the original” system.

The pair of systems L&, and Zg) has a so-called strongly indistinguishable dynamics, which means that the

state trajectories of these systems are indistinguishable. By interpreting the dynamic behaviour of ) supplied’
by known and unknown inputs, measurements, and the state behaviour of (3), it may be stated that the original
system is observable or not. Hence, by invoking to propositions from****%” and the content of Section "The
observability/detectability analysis ofthe CSTR model", the following extended definitions are given:

¢ System S&err is globally strongly u-observable (briefly: strongly u-observable) if and only if for any pair A(-)
and A’ (+), for every input-output system’s behaviour, and for every (#y) there is no solution trajectory in T
for X”. There is only the trivial solution given by () =& = 0Vt € T, where # is an equilibrium point of
error dynamics (so-called ’zero point’). The lack of trajectory solution means that there are no time-varying
integral curves derived from ‘error system’ dynamics which would coincide with the stability of "zero point’,
but there exists only a constant solution at this point indeed. In this situation, all state variables, as well as
unknown inputs, are observable.

o System X &% is locally strong u-observable if and only if the conditions for global strongly u-observability
hold only in a certain neighbourhood V C E of zero point’

® System &y is globally strongly u-detectable (briefly: strongly u-detectable) if and only if for any pair A(-)
and A (-), for every input-output system’s behaviour, and for every e (tp) # €, the zero point’ of EE is globally
an attractive point for all trajectories defined in T. It means that for any initial condition & (fy), the dynamics
of ‘error systemy’ (t) — 0 whent — oo. In this situation, at least one state variable must be detectable and
the unknown input must be observable or detectable.

® System Y& is locally strongly u-detectable if and only if the conditions for global strong u-detectability
hold only in a certain neighbourhood V C E of ’zero point.

The understanding of local and global definitions of observability and detectability based on indistinguishable
dynamics is not equivalent to the notions of local, weak and local weak observability introduced in Section
"Observability/detectability analysis for non-linearsystems". Whereas the abovementioned notions based on
differential geometry tools invoke the properties of the manifold M and are associated with state-space transfor-
mations (precisely Lie derivative based co-distributions), the meaning of the concepts presented in this Section
comply with classical understanding of the theory of stability. More specifically, they are natural extensions of
definitions presented in Section "Observability/detectability analysis for non-linearsystems". Local observability/
detectability may be constituted due to the occurrence of the potential impact of ’bad inputs’ or the existence
of singular points which can make the system unobservable/undetectable in some regions of M. By using the
Lyapunov stability?, it is possible to state that the dynamics of the error system’ is asymptotically stable for all
initial states or it is stable only for their particular subset (local asymptotic stability). For the geometric approach,
an analogous interpretation may be presented, e.g., if the rank of the observability matrix is equal to the system
rank everywhere, then the system is globally observable the necessary and sufficient conditions for observability
are met. If not, it might be claimed that the system is locally observable in some region of manifold M. However,
as it has been emphasised in Section "Observability/detectability analysis for non-linearsystems" the classical
approach has minimal aptitude to perform a detectability analysis.

Thus, if the inputs and measured outputs of both systems, i.e., &ty and EF , are identical in T, the observ-
ability property is equivalent to the statement that the only possible solution trajectories of the original’ and cop-
ied’ systems are always equal. It means that particular components of & (¢) are equal to zero V¢ € T. Whereas, the
detectability property is equivalent to the statement that the abovementioned trajectories mutually tend to each
other asymptotically for t — oco. Naturally, that means that particular components of & (¢) tend to zero V¢t € T.

The next Section analyses selected cases from Section "Analysis based on differential geometry tools". Finally,
for comparative purposes, an analogous analysis is carried out in the absence of uncertainty in the considered
model.

Analysis for the CSTR model with uncertain dynamics. Case: (1) - y(t) = v3(t) and fi¢y(t) = fLo(t).
The system measured output is: y(¢t) = v3(t). It implies that V£ € T : e3(¢t) = 0, and é3(t) = 0. Thus, the
third equation in (25) yields:

1 / 1
0= = [A0®VI®) = O (D) = e1(1)]] = moer()) = 64 —
Yo Yo (26)

88 = ~[it0 (M) = 1o O — e1(D]] = Yomoer 1),

Taking into account that e3(¢) = 0, the growth rate functions of the ‘original’ and ‘copied’ systems are
ao(t) = /Lo(t) Vt € T. Hence, (26) is rewritten as follows:

SA = —e1(D)[o(t) + Yom,). (27)

Scientific Reports |

(2022) 12:22327 | https://doi.org/10.1038/s41598-022-26656-3 nature portfolio


http://mostwiedzy.pl

www.nature.com/scientificreports/

It is worth mentioning that due to the boundedness of v3(t), the growth rate function 1o (¢) is also bounded.
Considering the above, (25) is transformed to the following DAE system:

é1(t) = —e1(®)[Bm + w1 (t) + Yomo]
1
o bt = —eOui(t) — a1(t) {m + YYDmO} : (28)
SA = —e1()[o(t) + Yomo)

The first differential equation of system E](ED is globally asymptotically stable, so the error g1 (t) — 0. Therefore,
the second differential equation of X’ can be written as follows:

1
7 Yomo] > (29)

s

&) = —ur(H)e2(t) — y2(t) [ms +

where €1 () = y,2(t) = &1(t) exp (— ftg u1(t)dt — [Pm + Yomo](t — to)> — 0, for t — o0 is the solution of
the first differential equation (& (t) dependent) in (28).

The two known inputs of the system are always positive, therefore it may be stated that the solutions of dif-
ferential equations in (28) and (29) tend to zero asymptotically for any initial condition. This leads to § A in (28)
approaching zero if &1 () — 0 asymptotically. Therefore, in case (1), the state variables v; (t) and v, (¢) are strongly
u-detectable, whereas §A is detectable. The potential situation (but physically impossible due to permanent
system activation) of zeroing both growth rate functions due to v3(t) = 0 does not affect the conclusion.

Case: (5) - (y(t) = vi (1) and fiy (1) = fs(1)).

The system measured output is: y(t) = v;(¢). It implies that Vt € T : ;(¢) = 0, and &;(t) = 0. Thus, the
first equation in (25) yields:

0= [ias(t) = O]+ > 5 = [150) = s m ®. (30)

Taking into account (30), and by performing proper substitutions, (25) is transformed to the following DAE
system:

&(t) = —ui(Hex(t)

&3(t) —[u1(t) + uz(t)]es ()
6 = [0 — s () -
e(ty) =e&o

I (31)

The two known inputs of the system are always positive, therefore it may be stated that the solutions of differential
equations in (31) tend to zero asymptotically for any initial condition. Since both growth rate functions /;L/S(t)
and [is(t) are the Monod functions, if ;(f) — 0 then ,LLg(t) — [is(t) asymptotically without the occurrence of
causing ’bad inputs. Moreover, due to the boundedness of all state variables, the growth rate function, and con-
sequently the reaction kinetics function, do not tend to infinity. Therefore, in case (5) the system state variables
v, (t) and v3(¢) are strongly u-detectable.

To show the convergence of the growth rate functions, by assuming that Vt € T : v;(¢) # 0, the following
calculations are performed:

_ 0 w)  n) —a@®)
P = e | R0 00 T KO 4 va() - 82(0} n,
o [ 4 n®) () — e2() — 2 () (KO + va(t) — £2(1))
SA = Mmax i (KSO n Uz(t)) (KS T l)z(t) — Sz(t)) V1 (t): (32)
[ K9%,(t)
_,,0 s
OA = Hmax I (KO 4+ va(1)) (KO 4 v2(t) — £2(1)) } V1 (0.

Therefore, if £2(f) — 0, then § A must also asymptotically tend to zero, which means that the uncertainty is
detectable.

However, in this moment, the considerations about the observability/detectability of §A in (31) should be
divided into two situations. The first situation takes place when the state variable v, (t) is always positive, whereas
the second is linked with the wash-out state. In the second situation, the state variable v; (t) becomes zero either
asymptotically (A) or due to initial condition (IC) v1(fp) = 0, while in the first situation, where vy (¢) is always
positive (and bounded by assumption), the right-hand side of the third equation in (31) is not equal to zero
until the growth rate functions become equal to each other. It leads to the conclusion that the uncertainty §A is
approaching zero when &;(t) — 0. That means that §A is detectable. The detectability of v, (¢) and v3(¢) is not
affected by this assumption. In the second situation, when the initial condition of state variable v; (¢) is equal to
zero, the right-hand side of the third equation in (31) must always be equal to zero. This leads to the conclusion
that the uncertainty §A is observable. In turn, if the state variable v (¢) tends to zero asymptotically, the uncer-
tainty § A is detectable until vy (#) = 0. This provides the observability of § A. In both cases of the second situation,
this property is independent of asymptotic approaching of the growth rate functions. Also, the detectability of
v, (t) and v3(t) is not affected by this assumption.
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Case Observability Detectability
No. | y(® Rey@®) [vi@®) [va(®) |[v3@®) [SA |vi(®) |v2(t) |v3(®) |SA
(1) v3(t) o(t) | No No - No | Yes Yes - Yes
vi(t) >0 - No No No |- Yes Yes Yes
) vi(t) =0(IC) | o) |- No No Yes |- Yes Yes No
vi(t) =0(A) - No No No |- Yes Yes No
3) Vo (t) o(t) | Yes - Yes Yes | Yes - Yes Yes
(4) v3(t) fis(t) Yes Yes - Yes | Yes Yes - Yes
vi(t) >0 - No No No |- Yes Yes Yes
(5) v1(t) =0(1C) | as(t) - No No Yes | - Yes Yes Yes
vi(t) =0(A) - No No No |- Yes Yes Yes
(6) v (f) fs(t) No - No No | Yes - Yes Yes
vi(t) >0 - Yes Yes Yes |- Yes Yes Yes
(7) vi(t) =0(1C) |fso(t) |- Yes Yes No |- Yes Yes No
vi(t) =0(A) - Yes Yes No |- Yes Yes No
(8) v (t) fso(t) | Yes - Yes Yes | Yes - Yes Yes
9) v3(t) so(t) | Yes Yes - Yes | Yes Yes - Yes

Table 2. Results of analysis based on indistinguishable dynamics with the uncertainty.

An analogous analysis to cases (1) and (5) was carried out for the other combinations and its results, together
with cases (1) and (5), are summarised in Table 2.

Analysis for the CSTR model without uncertain dynamics. In this Section, for comparative purposes, an analo-
gous analysis to that presented in Section “Analysis for the CSTR model with uncertain dynamics” is carried out
in the absence of uncertainty in the model under consideration.

Case: (1) - y(t) = v3(t)and iy (t) = Lo ().

The system measured output is: y(¢t) = v3(t). It implies that V£ € T : e3(¢t) = 0, and é3(t) = 0. Thus, the
first equation in (25) yields:

0= [fio®w(®) = AoO(®) = e1(1)]] = Yomoz: (1. (33)

Taking into account that e3(f) = 0, the growth rate functions of the ‘original’ and ‘copied’ systems are
ao(t) = uo(t) Vt € T. Hence, (33) is rewritten as follows:

0=—e1(t)[fio(t) + Yom,]. (34)

It is worth mentioning that due to the boundedness of v3(t), the growth rate function fio(¢) is also bounded.
Considering the above, (25) is transformed to the following DAE system:

&1(t) = —e1(®)[Bm + w1 () + Yomo]
ISR EN0)
0

1
—&(Hur(t) —e1(t) I:ms + ?Yomo:| . (35)
—e1(1) [fio(t) + Yomo|

The third equation of system 2 )is equal to zero only if 1 () = 0 and &; () = 0. This leads to the conclus1on
that the state variable v; (¢) is strongly u-observable. Therefore, the second differential equation of EE Y can be
written as follows:

&(t) = —ur()ex(t) — ya(t) [ms + YLYomo]) (36)

S

where £1(t) = ya(t) = €1(to) exp (— ft; u1(t)dt — [Bm + Yomo|(t — to)) — 0, for t — oc is the solution of
the first differential equation (& (t) dependent) in (35).

The two known inputs of the system are always positive, therefore it may be stated that the solutions of dif-
ferential equations in (35) and (36) tend to zero asymptotically for any initial condition. Therefore, in case (1),
the state variable v, (¢) is strongly u-observable, whereas state variable v, (t) is strongly u-detectable. The potential
situation (but physically impossible due to permanent system activation) of zeroing both growth rate functions
due to v3(t) = 0 does not affect the conclusion.

Case: (5) - (y(t) = vi(t)and A, (8) = fis(1)).

The system measured output is: y(t) = vy (¢). It implies that Vt € T : &;(¢) = 0, and &;(t) = 0. Thus, the
first equation in (25) yields:
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Case Observability Detectability
No. | y(®) Re@® [(n@® [ n@®) |vi@®) [n@®) |v) |vi@®)
(6] v3(t) fo() |Yes |[No |- Yes |Yes |-
vi(t) >0 - No Yes - Yes Yes
) vi(t) =0(IC) | o) |- No No - Yes Yes
vi(t) = 0(A) - No |No |- Yes | Yes
3) v (f) o(t) | Yes - Yes Yes - Yes
(4) v3(t) s(t) Yes Yes - Yes Yes
vi(t) >0 - Yes No - Yes Yes
(5) v1(t) =0(1C) | as(t) - No No - Yes Yes
vi(t) =0(A) - No No - Yes Yes
(6) v (f) fs(t) Yes - No Yes - Yes
vi(t) >0 - Yes Yes - Yes Yes
7)) |n®=0(0IC) |fso(®) |- No |No |- Yes | Yes
vi(t) =0(A) - No No - Yes Yes
(8) vy () fso(t) | Yes - Yes Yes - Yes
9) v3(t) so(t) | Yes Yes - Yes Yes

Table 3. Results of analysis based on indistinguishable dynamics without the uncertainty.

0= [Ais(®) = 501 ). (37)

Taking into account (37), and by performing proper substitutions, (25) is transformed to the following DAE
system:

&) = —ui(t)ex(t)
5 | &3(t) = —[ur(t) + ua(t)]es(t)
E o0 |50 = s m®
e(ty) =¢€o

(38)

Since the left-hand side of the third equation from (38) must be equal to zero V¢ € T, the following considera-
tions about the observability/detectability of v, (¢) are divided into two situations. The first situation takes place
when the state variable v; (t) is always positive and both growth rate functions are the same, whereas the second
is linked with the wash-out state. In this second situation, the state variable v; (#) becomes equal to zero either
asymptotically or due to initial condition v; (fp) = 0. Moreover, by assumption, both of the known inputs u; (¢)
and uy (t) are always positive. In the first situation, where vy (t) is always positive (and bounded by assumption),
the right-hand side of the third equation in (38) is not equal to zero until s(t) = ug(t) Vt € T. This leads to
the conclusion that v, (t) must be strongly u-observable, what is imposed by €2(¢) = 0and &,(¢) = 0,Vt € T.In
the second situation, when the initial condition of the state variable vy (¢) is equal to zero, the behaviour of the
growth rate function strictly depends on changes of €;(¢). Thus, the first differential equation in (38) must be
taken into account, which leads to the conclusion that v, (¢) is globally strongly u-detectable. In turn, if the state
variable v; (f) tends to zero asymptotically, the behaviour of the growth rate function also relies on changes of
&2(1). Hence, vy () is globally strongly u-detectable due to the same reasons where v (fy) = 0. Due to the fact
that us(t) and /15(t) are the Monod functions, if &,(t) — 0, then us(t) — [1s(t) asymptotically.

To show the convergence of the growth rate functions, after assuming that Vt € T : vi(t) # 0, the following
calculations are performed:

n) @) —al)
KO +vy(t) KO+ va(t) — ex(t)
— (KO 4+ 02(5) (n2(t) = £2(8)) = va() (K + va(t) — £2(8)) —
Kle(t) = 0.

(39)

To meet the equality of both sides of (39), &, (¢) must be always equal to zero. This induces the observability of
state variable v, (¢).

The detectability of state variable v3(¢) is associated with the fact that both known inputs of the system are
always positive. Thus, it may be stated that the solution of the second differential equation in (38) tends to zero
asymptotically. Therefore, in case (5), the state variable v, (¢) is strongly u-observable, whereas the state variable
v3(t) is strongly u-detectable.

An analogous analysis to cases (1) and (5) was carried out for the other combinations and its results, together
with cases (1) and (5), are summarised in Table 3.
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Diff. geom. Ind. dyn. + unc. Ind. dyn. - unc.
Case |vi(®) |v2(®) |v3(®) |vi(®) |[v2(®) |v3(®) |[v1(®) |v2(®) |v3(2)
(1) Uo |UO |M D D M o D M
2) M Uuo Uo M D D M D O/D
(3) (@] M (@] (6] M (6] o M o
(4) O O M O O M O O M
(5) M Uuo Uo M D D M O/D |D
(6) Uuo M Uuo D M D O M D
7) M O (6] M (6] (6] M O/D | O/D
(8) (0] M (0] O M O (0] M (0]
9) (6] (6] M (6] (6] M (6] (6] M

Table 4. Overview of the results of the observability/detectability analysis.

The summary of the observability/detectability analysis. Sections “Analysis based on differential
geometry tools” and “Analysis based on the method of indistinguishablestate trajectories” present an observ-
ability/detectability analysis of a non-linear system burdened by unknown inputs. First, the classic geometri-
cal approach based on checking the invertibility of the observability matrix and checking the matching condi-
tion has been used. Secondly, the method based on the analysis of indistinguishable state trajectories has been
employed. For nine cases, which include distinct choice of system measured outputs and form of the substitute
reaction kinetics function, the research was performed in a way that if the first of the aforementioned methods
reveals a negative result on state observability, the second method is applied and gives answers on state estima-
tion possibility. Strong u-detectability has been proven for all cases, which entails asymptotic reconstruction of
states and unknown input in the context of the measured output and the estimated reaction kinetics function.
The analysis performed by using the indistinguishable dynamics method has also been applied in a situation
when the uncertainty has been excluded. The comparison of results presented in Sections “Analysis for the CSTR
model with uncertain dynamics” and “Analysis for the CSTR model without uncertaindynamics” shows how
significantly the uncertainty occurrence affects the observability/detectability property. In fact, this analysis also
shows that some approaches to system state (and also unknown input) estimation cannot be applied since full
state observability cannot be obtained. It is worth mentioning that the results obtained by using the second
method are non-trivial and entail performing certain transformations on DAE system dynamics to derive that a
particular state variable (or unknown input) is observable/detectable or not. To make the above clearer, the con-
clusions drawn are summarised in Table 4. The symbols used in Table 4 stand for M—measured, O—observable,
UO—unobservable, and D— detectable. It should be added that in the case of an approach based on the tools of
differential geometry, the symbols ’O” and "UO’ have the meaning of meeting, or not the sufficient conditions of
observability for the full considered model (without decomposition), respectively.

Conclusions

In this paper, an observability/detectability analysis for selected non-linear uncertain model of biochemical
processes with various sets of system measured outputs has been performed. As a model of the considered bio-
chemical processes, a continuous stirred tank reactor with the microbial growth reaction and microbial mortal-
ity with the aggregated substrate and biomass concentrations in aerobic phase was used. In order to eliminate
uncertainty from the system dynamics, it was transferred to an additional model component, which was then
treated as an additional unknown input to the model. The analysis was performed for nine cases which covered
a wide range of possible combinations of system measured outputs and unknown inputs. The observability/
detectability properties were investigated using the classical approach based on differential geometry tools and
the method of indistinguishable state trajectories (indistinguishable dynamics).

The delivered comprehensive analysis shows how the given structure of the mathematical model of the sys-
tem is linked to the uncertainty of its dynamics, and how the selection of the system measured output affects
the observability/detectability properties. The results obtained allowed to determine whether it is possible to
develop a state observer, especially a sliding mode observer, depending on the available measured outputs of the
considered system. Thus, these results, and the resulting conclusions may be used for state observer synthesis,
and consequently for the development of monitoring and diagnostic systems for biochemical systems.

Data availibility
All data generated or analysed during this study are included in this published article.
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