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Abstract
The paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection
of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of
failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the
entire period of its shelf life and consumer use. This kind of testing is mandatory inter alia for all aerosol packaging as any
mechanical alterations of the packaging can cause the pressurized product to unseal and stop working properly. Moreover,
aerosol products are classified as dangerous goods and any leaking of the product or propellent can be a serious hazard
to the storage place, environment, and final consumer. Thus, basic compatibility observations of metal aerosol packaging
(i.e. general corrosion, pitting corrosion, coating blistering or detinning) and different compatibility factors (e.g. formula
ingredients, water contamination, pH, package material and coatings) were discussed. Artificial intelligence methods applied
in the design process can reduce the lengthy testing time as well as developing costs and help benefit from the knowledge and
experience of technologists stored in historical data in databases.

Keywords Machine learning · Compatibility testing · New product development · Smart products

Introduction

Every day new products or new formulations of cosmetic,
toiletry, household, or technical products are developed and
launched into the global markets. Research and develop-
ment (R&D)departments are constantly outdoing themselves
in developing completely new or improved, more sustain-
able,more cost-effective products and innovations. However,
every new product requires a lot of testing before it reaches
the store shelves or our homes. These include laboratory and
application tests (performed to confirm the variousmarketing
claims appearing on product labels), drop tests (performed
to ensure the strength of packaging, to provide information
relevant for the packaging’s design and to confirm whether
it is adequate to withstand the risks of the distribution cycle
or not) and transportation tests (performed to simulate pos-
sible stresses and strains on the product and pallets during
transport from factories to the distribution centers or final
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destinations). Most important, however, are stability and
compatibility tests, which ensures the shelf life of the prod-
uct and typically take the longest time in the new product
development (NPD) process.

Each finished good that emerges on the market should
ultimately be safe to the consumer, durable and, above all,
effective throughout the entire period of its shelf life and con-
sumer use. When conducting stability testing for a finished
product, the primary goal is to ensure that no detrimental
changes in the product’s intended physical, chemical, micro-
biological properties, as well as the product’s safety and
functional performance, occur during handling, transport-
ing, and storing under conditions that are appropriate for
those activities (Williams & Schmitt, 1992). Moreover, the
stability of a cosmetic is one of the most important param-
eters in assessing the quality and safety of a cosmetic, as
required by EU law (in accordance with Regulation (EC) No
1223/2009). The primary packaging directly affects the sta-
bility of the finished product due to the several reactions that
could take place between the package and the product (cor-
rosion, chemical processes, product components migration
adsorption into the container) and the packaging with the
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environment (the ability of a packaging to protect contents
from water and/or atmospheric oxygen impacts).

The aim of the compatibility test is to assess chemical
migration between the product and its primary packaging.
Because there may be physical and chemical interactions
between the product, the package, and the external environ-
ment, the packaging can have a direct impact on the stability
and safety of the product. For this reason, compatibility is one
of the mandatory safety tests which confirms that product’s
performance is not negatively affected during product’s spec-
ified shelf life. The test should be performed whenever new
product is developed, existing products are reformulated in
the market, there is a shift to new packaging or modification
of the manufacturing process. Compatibility testing is also
mandatory for all aerosol packaging. Any mechanical alter-
ations of the packaging can cause the pressurized product to
unseal and stop working properly due to can unpressurizing,
diminishing product efficacy by metal ion contamination or
clogging the valve by loose pieces of coating or laminate
film. Moreover, aerosol products are classified as dangerous
goods and any leaking of the product and propellent can be
a serious hazard to the storage place, environment and final
consumer.

As the development cycle of new products is relatively
short, real-time compatibly testing is not always practical
and feasible. Moreover, due to the great diversity of products
and their inherent complexity, regulatory bodies have not
established and uniform product shelf-life test criteria. As
a result, R&D laboratories must create and implement their
own expedited stability and compatibility testingmethod that
is both cost-effective and efficient in addressing the testing
requirements. These abbreviated methods usually take sev-
eral months anyway, which sometimes significantly inhibits
NPD projects. Moreover, sometimes testing several pack-
aging or formulations options at once is not possible due
to various constraints. Therefore, after negative tests, other
solutions and variants are tested which can further extend the
duration of tests.

In the paper, basic compatibility observations of metal
aerosol packaging (i.e. general corrosion, pitting corrosion,
coating blistering or detinning) as well as several compati-
bility factors (e.g. formula ingredients, water contamination,
pH, package material, and coatings) were discussed. The
effectiveness of selected machine learning (ML) algorithms
as modeling tools supporting the selection of packaging in
the product development process were compared. Artificial
intelligence (AI) applied in the design process can reduce
lengthy testing time, developing costs and help profit from
the expertise and experience of technologists stored in his-
torical data. The topic is especially relevant in view of the
implementation of Industry 4.0. The idea is based on combin-
ing the physical world with the virtual world of the Internet
and information technology. The technologies that enable

automated data, information, and knowledge exchange are
available to people, robots, and information technology sys-
tems (Rojek et al., 2019). Smart products development is one
of the critical aspects of this new industrial revolution, cre-
ating several opportunities for businesses and markets. The
disruptive changes that are being addressed by Industry 4.0
will have an impact throughout the whole product lifecycle.
This will be made possible by the introduction of advanced
computer platforms that are used to create digital tools for
product development and prototyping (Nunes et al., 2017).

Related work

A new product development (NPD) can be conceived as a
multi-phased process in which the design is detailed gradu-
ally. When developing a new product, harmonizing all stages
of process is essential since only then can development time
be shortened. Several researchers have discussed the activ-
ities that take place during the various stages of the NPD
process and have concluded that the volume and contents of
the activities that take place during each stage are contin-
gent on the quantity and the purpose of the product (Ayağ,
2016; Kus̆ar et al., 2004). Moreover, there is a significant gap
between the NPD efforts and knowledge sharing involved in
individual production and those involved in mass production
(Duhovnik et al., 2001; Gao & Bernard, 2018).

The process of developing a product requires individual
adjustments to be made in accordance with the product, the
manufacturingprocess and the designers involved.Within the
context of this process, the know-how and approach of the
designers aswell as their level of expertise are very individual
and are frequently incapable of being stated in a manner that
is rule-based without significant effort. Despite this, there
are a lot of routine tasks that may be identified and that
have a significant automation potential. It has been presented
that machine learning, and particularly deep learning, has a
tremendous capacity to recognize patterns, derive knowledge
from complex data sets and support each phase of the com-
plex process of product development (Krahe et al., 2020;
Santos et al., 2017). Some examples here may include the
use of Naïve Bayes algorithm to map customer requirements
to product variants (Wang & Tseng, 2015), Intelligent Sup-
port Systems for product design (Figueroa Pérez et al., 2018;
Hayes et al., 2011) orAI-basedComputerAidedEngineering
for automated product design (Krahe et al., 2019). There are
some applications of machine learning modelling tools sup-
porting the selection of materials. Rojek and Dostatni (2020)
considered both technological and environmental parameters
in classification methods to guarantee the desired compati-
bility of materials used in ecodesign process. Merayoa et al.
(2019) examined how the artificial intelligence techniques
can assist the manufacturing process by choosing the most
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convenient material for the envisaged applications according
to their properties and in-service behavior. Silva et al. (2021)
used the k-NearestNeighbor (KNN) algorithm to classify and
select biodegradable packaging produced from fish gelatin
incorporated with palm oil and clove and oregano essential
oils.

Due to the development of many technologies associated
with the fourth industrial revolution and in addition to the
concepts of Smart Manufacturing, Smart Processes, Smart
Factories, the term Smart Product has also become a buzz
word in recent years. Moreover, the idea of Smart Product
appears in a variety of contextual situations and application
fields with diverse meanings (Gutiérrez et al., 2013). Maass
and Janzen (2007) outlined three fundamental requirements
for Smart Products: adaptability to situational circumstances,
adaptation to actors who engage with products or product
bundles, and adaptation to underlying business limitations.
The authors of the same paper divide these requirements into
six characteristics for a fully implemented Smart Product:
location-based, personalized, adaptive, proactive, business-
aware, and network-capable. Mühlhauser (2008) describes
Smart Products as entities (tangible objects, softwares, or
services) designed for self-organized integrating into vari-
ous smart environments throughout their lifecycle, offering
improved simplicity and approachability through the use of
improved interactions by various means, such as AI andML.
Smart Productsmay feature various applications form speech
recognition systems and production control systems.

Recent studies also introduce the idea of a system for
Smart Virtual Product Development (SVPD) that can support
the decision-making process of industrial product develop-
ment cycle at many stages and activities, such as product
design, production, and inspection planning. Improvement
is accomplished by utilizing knowledge of formal prior deci-
sions events that are recorded, stored, and retrieved as a set
of experience (Ahmed et al., 2019). Some researchers have
also presented the idea of Lean ProductDevelopment but also
new criteria for intelligent and Smart Product Development
(SPD)by implementing Industry 4.0-related information sys-
tems (Rauch et al., 2016). On the basis of the axiomatic
design methodology, the authors outline a set of guidelines
and principles for designing a lean product development pro-
cess. These recommendations highlight how cutting-edge
technology and tools can be leveraged to create a lean and
smart product development process by connecting them to
concepts from Industry 4.0.

Most early studies as well as current work focus on the
need of defects detection systems for finished goods. As a
result of the rapid development of machine vision, image
processing and pattern recognition technologies, industrial
automation detection has become an inevitable part of many
manufacturing processes, as it can significantly improve their
precision and efficiency. Wu and Lu (2019) combined in

their study a machine vision and machine learning tech-
nologies to examine defects on the surface of the printed
packaging box based on support vector machine. In order
to rapidly identify printing defects, decrease the cost of
human sorting, and increase the production effectiveness,
the study has been applied to the printing and packaging
carton pipeline sorting manipulator. Park et al. (2022) stud-
ied a deep learning-based automatic defect detection system
that can train product characteristics and determine defects
using open sources. The model was applied to the dispos-
able gas lighter manufacturing process to detect the liquefied
gas volume defect of the lighter. Paraskevoudis et al. (2020)
developed neural networks-based model for identifying 3D
printing defects during the printing (mainly stringing effect)
by analyzing video captured from the process. It can help
minimize printing costs, as the operator is notified about
possible flaws and can stop the process on early stages.More-
over, authors believe that the model can be further developed
in order to adjust the printing process. Some recent works
have also used machine learning approaches to detect cor-
rosion in metals caused by environmental factors. Atha and
Jahanshahi (2018) presented different convolutional neural
network-based approaches for corrosion assessment in steel
structures. They studied the effect of different model archi-
tectures, slidingwindow sizes and color spaces. A key benefit
of convolutional neural networks was its ability to build fea-
tures without relying on human effort or prior knowledge.
The study of Pidaparti (2007) provides an overview of the
computational methods developed for the corrosion dam-
age assessment of aerospace structures and artificial neural
network-based model for material loss and residual strength
predictions.

The existing approaches regarding AI-based product
development assists the designers in obtaining a broadpicture
of the massive volumes of data and, in some cases, reducing
NPD time. The real design process and its implementation,
however, remain in charge of the technologist and his exper-
tise. Hence, in this study a concept is presented on how past
knowledge can be formalized so that it can be transmitted
and used even by a very experienced technologist.

Aerosol stability and compatibility testing

Aerosol dispenser is any non-reusable container that con-
tains gas: compressed, liquefied, or dissolved under pressure,
with or without a liquid, powder or paste, and equipped
with a release device that allows the contents to be expelled
as solid or liquid particles suspended in a gas, as a foam,
powder, gel, paste, or in a liquid state (Council Directive
of the European Union of 20 May 1975). Aerosol prod-
ucts offer a wide range of applications from mass-market
products such as personal care, cosmetics, and household
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products, to specialized aerosol types designed for medi-
cal or industrial purposes. Next to a wide range of potential
applications, aerosols combine easiness of usage, resource
efficiency and unique performance. Thanks to many benefits
that they deliver, the worldwide market has seen a contin-
uous growth in the sales of aerosols finished goods over
the past few years (Online document. The FEA (European
Aerosol Federation) Statistics Report). Packaging which is
an integral part of the aerosol spray consists of a metal (alu-
minum or steel), plastic or glass can with a permanently
attached continuous or metering valve, and actuator (stem-
fitting button, applicator or spraycap) designed to dispense
products as spray mists or streams, gels, lotions, foam or
just gases. According to data from the European Aerosol
Federation (FEA), roughly 90% of aerosol cans are made
of metal (aluminum 49% of and steel 40%). Plastic or
glass containers are still minor, owing to legislative con-
straints on the allowed filling volumes (Online Document.
The FEA (European Aerosol Federation) Industry Stan-
dards).

In order to avoid aerosol product failure, the aerosol con-
tainer and valve system must be compatible with the product
to be filled into the aerosol dispenser. An inadvertent dis-
charge of the product or a total breakdown of the aerosol
dispenser resulting in an instantaneous rupture of the aerosol
dispenser are both possible outcomes of such a failure. Thus,
the product should be submitted to proper testing methods to
ensure that such failures of the aerosol products do not occur.

Stability and compatibilty testingmethods

One of the earliest European regulations related to prod-
uct safety applicable to aerosol goods is the Directive
75/324/EEC of the European Union of 20 May 1975 on
the approximation of the laws of the Member States relating
to aerosol dispensers. The document is commonly referred
to as the Aerosol Dispensers Directive (ADD) and its main
objective is to assure that products covered by the regulation
are safe for customers and other users in terms of pres-
sure, flammability, and inhalation hazards (Council Directive
of the European Union of 20 May 1975). Additionally,
to the restrictions specified in the directives, required rec-
ommendations are also included in FEA standards (Online
Document. The FEA (European Aerosol Federation) Indus-
try Standards). The complete set of FEA standards, which
includes testing methods as well as dimensions and per-
formance criteria, provides technical best practices created
by and for the European aerosol industry. Moreover, some
international ISO standards have been refined for several
FEA standards, and some of them have replaced previ-
ous FEA standards. They provide specific information on
each part of the packaging, which enables aerosol packaging
manufacturers, production line manufacturers, and aerosol

Table 1 Example of stability and compatibility test for aerosols accord-
ing to FEA 603 standard (Online Document. The FEA (European
Aerosol Federation) Industry Standards)

Storage
temperature

Position of
storage

Minimum
number of
samples

Minimum
storage time

20 °C Upright 6 1 year

Inverted 6

37 °C Upright 6 4 months

Inverted 6

50 °C Upright 6 2 months

Inverted 6

filling supplies to reach unified degree of efficient collabora-
tion.

FEA 603 standard entitled "Guidelines to test long-term
preservation and to measure the loss of weight" provides a
method to assess the stability and compatibility of the prod-
uct’s contents with the components of the aerosol container
and valve, as well as the weight and/or pressure loss that
may occur while storage at various temperatures and over
a specific period of time. Since the reactions of the sub-
stances contained in the aerosol product must not impair its
mechanical resistance, even when stored for a long time, the
long-term testing approach is recommended for the storage
of all aerosol products in metal, glass, and plastic contain-
ers. According to the method, the size of the test is always a
problem in all circumstances. The greater the size (in terms of
number of samples, storage conditions, and storage time), the
greater the accuracy of the results. However, in order to fulfill
the time and space constraints, compromise is required. The
test’s size example, as shown in Table 1, is intended to cover
most scenarios but should be considered as a minimal size.
Moreover, test samples must reflect the containers and valves
that will be used in the intended production. If various types
of packaging components are to be compared, they must all
be subject to the same test, with the same testing conditions,
storage temperature, and storage time. All the samples that
will be evaluatedmust be prepared so as to be as close as pos-
sible to the industrial conditions. They should be carefully
weighed and numbered before being stored and for at least
24 h after the filling. Additionally, the pressure at ambient
temperature and other parameters such as spray pattern, dis-
charge rate or organoleptic parameters can be measured and
noted.

After the specified storage time, the samplesmust be taken
out of the storage rooms and kept at room temperature. After
24 h, parameters such as weight loss and pressure can be
measured. In order to verify spray characteristics, each valve
needs to be actuated and after that, samples can be pierced
and emptied to recover the product and compare the residue
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Fig. 1 Accelerated aging test for
shelf-life validation: a shelf life
and testing time relationship,
b storage temperature and testing
time relationship
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with control samples. Finally, the inner and outer walls of the
cans and of the mounting cups in the opened samples can be
examined and their compatibility with the formulation can
be evaluated.

Despite specific guidelines, the methodology included in
the FEA standards does not allow to determine the shelf
life expiry date of the product. Test times and samples
number are only given there as an example. Therefore,
aerosol filling companies have usually their own test meth-
ods. Some laboratories, in order to gather information on
the corrosion of the aerosol packaging use electrochemical
measurements (Root & Maury, 1960; Tait & Maier, 1986).
However, most new product development teams still con-
duct accelerated aging test for shelf-life validation. The test

is based on a van’t Hoff thermodynamic temperature coeffi-
cient that indicates that the rate of a chemical reaction will
double for every 10 °C increase in temperature (Piotrowski,
2022). The time and temperature of sample storage relation-
ship on product shelf life is shown in Fig. 1. It should be
noted that for aerosol products the temperature should not
exceed 50 °C, and for some formulations even the temper-
ature of 40 °C can degrade some chemical raw materials.
Furthermore, any research that involves accelerated aging
must also include real-time aging in order to correlate the
results.
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Fig. 2 Aerosol packaging defect’s locations: a 1-piece aluminum can, b 3-pieces tinplate can

Aerosol packaging compatibilty defects

Aerosol containers are manufactured mostly from aluminum
(1-piece cans) or tinplated steel (2- or 3-pieces cans). These
metals can be either bare (not common with aluminum) or
covered with a polymer coating. In addition, various kinds of
defects can appear not only on the container, but also on the
valve, which can also be made of bare metal or covered with
various coatings. Hence, aerosol packaging defects could be
a metal corrosion, a polymer corrosion or both. Depending
on the packaging used, defects may appear in different areas
of the product. The different corrosion locations for both
aluminum and tinplated steel containers are shown in Fig. 2.

Moreover, two categories of defects can be observed in
aerosol packaging: general and localized. General corrosion
(Fig. 3a) occurs over relatively large areas of aerosol pack-
aging and it produces a porous layer of corrosion product
on the surface of packaging metals. The porosity and non-
uniform thickness cause non-uniform diffusion of materials,
which may lead to pitting corrosion under the general corro-
sion layer. Another example of a general defect is detinning
(Fig. 3b) of tinplated steel aerosol containers. In most cases,
the process is not considered as troublesome and does not
indicate a negative result of compatibility test. However,

sometimes with long shelf life, the removal of a layer of tin
can lead to localized corrosion. Pitting corrosion of metals
(Fig. 3c) and blistering of internal polymer coatings (Fig. 3d)
are the most common forms of localized corrosion, which
are typically very small and randomly distributed around the
aerosol packaging.

Corrosion is an issue for all types of aerosol containers and
packagingmaterials.However, in order for the process of cor-
rosion to take place, there must be at least two components
present: a material with a surface that is prone to corrosion
and an environment that contains corrosive chemicals. Any
new product development involves the risk of product and
packaging incompatibility. Figure 4 contains historical data
from 277 compatibility tests. It can be noticed that the risk
of product failure is very high as the total number of the
tests failed was 41%. However, the compatibility testing can
reduce this risk as the defects risk decreases as the testing time
increases. Corrosion or other defects in most cases appear
very quickly, and the higher risk in first month can be caused,
either by the technologist’s little experience and poor selec-
tion of components, or from the aggressiveness of the product
formulation. This risk decreases with time, but still defects
can also be observed at the end of testing.
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Fig. 3 The most common
defect’s forms in aerosol
containers: a general corrosion,
b detinning, c pitting corrosion,
d polymer coating blistering
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Fig. 4 Accelerated aging test failure risk based on historical data

Data-driven formula and packaging
compatibility predictionmodel

The current state of corrosion science is extensive but not suf-
ficient to predict whether corrosion will occur or not using
equations, data tables or chemistry fundamentals. There-
fore, compatibility testing is crucial to determine if new
and derivative formulations are corrosive to certain types
of aerosol cans (1-piece aluminum or 3-pieces tinplated
cans), to choose the most corrosion-resistant form of inter-
nal can surface treatment (thin tin metal coating or various
polymer coatings), and to assess if alternative packaging
is appropriate for established formulas. In addition, paral-
lel to factors directly related to packaging, corrosion and
other possible defects are influenced by parameters and
formula factors such as pH formula and physical form,

content of water, fragrances, corrosion inhibitors, surfac-
tants and acids. In addition, physics-based models can be
very effective in predicting some phenomena, yet they are
built on strong assumptions that may not hold true under
specific circumstances. To tackle these limitations and con-
straints, data-driven predictive modeling approaches might
be employed. They are based on machine learning or sta-
tistical methods that can increase their performance with
every new dataset. Since machine learning algorithms often
require vast amounts of training datasets, they can provide
predictions in the absence of any predetermined mechanistic
relationships or system behaviors (Piotrowski, 2022).

In this paper, a data-driven approach was employed to
predict the compatibility of a new product’s formula and its
packaging. The model showed in Fig. 5 demonstrates a clas-
sification approach which is a subset of supervised machine
learning and it draws a conclusion from the input values given
for training and generates an output that categorizes a set
of data into classes. The input data include information col-
lected from previous experimental compatibility tests as well
as details about the formula parameters, packaging factors as
well as test results (labels). The dataset consisted of 277 tests
and some examples data are presented in Table 2. Addition-
ally, the data was randomly split into two groups: training
dataset (80%) and test dataset (20%). Due to the relatively
small amount of data and many parameters the study ana-
lyzed two approaches, when the model predicts only two
classes: compatibility, incompatibility (model 1) or when
the model predicts five classes: full compatibility, detinning,
general corrosion, pitting, coating blistering (model 2). The
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Fig. 5 Supervised classification
model for product compatibility
prediction

Table 2 Examples of data obtained in experimental tests

Product Water pH Perfumes Corrosion
inhibitor

Surfactants Acids Can
type

Coating Label

Air
freshener

Yes 7 Yes No No No Alum Epoxy gold Pitting

Hair spray No 9 Yes No No No Tinplate Epoxy gold Full
compatibility

Surface
cleaner

No 11 No Yes Yes Yes Tinplate 2 × epoxy
gold

Coating
blistering

Deodorant Yes 6 Yes No No No Tinplate None General
corrosion

Biocide Yes 10 Yes Yes Yes No Tinplate Epoxy gold Full
compatibility

more complex is the model, the more it is prone to over-
fitting (Ying, 2019). Small datasets need the use of basic
classifiermodels, such as short decision trees, Support Vector
Machine (SVM) or k-Nearest Neighbors (kNN). In general,
these relatively simple models are less adept at data-driven
learning thanmore complex algorithms e.g., neural networks,
hence reducing their susceptibility to overfitting. However,
this may be also prevented by minimal tuning, employing
cross-validation, regularization, feature selection, and buck-
eting, all of which attempt to minimize complexity and boost
bias.

In this study MATLAB Machine Learning Toolbox and
Classifier tool were used to predict the compatibility test
results. The built-in classification learner was used to auto-
matically train a selection of different classification models
on the experimental data. The choice of classifier type
dependsmainly on the dataset, but also the trade-off in speed,
flexibility, and interpretability must be made. In the first

stage, the selection assumedonly simplemodels such as deci-
sion trees or discriminant analysis with lower flexibility that
provide sufficient accuracy and avoid overfitting. Moreover,
the algorithms that were not suitable with both categori-
cal and numeric data (e.g. discriminant analysis or nearest
neighbors) were rejected at the very beginning. In addi-
tion, automated training allowed to quickly try all selected
classifiers (decision trees, support vector machines, logistic
regression, naive Bayes, kernel approximation, ensembles
and neural networks) and then explore only the promising
models interactively. When the training was finished, the
corresponding plots and results were explored and com-
pared. Three models with the highest predicted accuracy
score namely decision trees, Support VectorMachine (SVM)
and Artificial Neural Networks (ANN) were chosen to fitting
step and further analysis. For each model, the performance
was compared by inspecting the results in the plots and try-
ing to include and exclude different features in the model.
To improve the model further, the classifier hyperparameter
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Table 3 Overall accuracy of
tested ML tools for two
predictions models

Model No of classes Decision tree SVM Neural networks

1 2 86.8% 76.3% 90.2%

2 5 82.6% 71.9% 84.8%

options were changed and then all models were trained with
the new options.

The first model that was further analyzed was decision
trees, which is one of the most popular approaches for repre-
senting classifiers. It classifies instances by arranging them
according to their feature values. Each node in a decision tree
represents a feature of a classifiable instance, and each branch
represents a possible value for that node. Beginning with
the root node, instances are classified and ordered depend-
ing on their feature values (Kotsiantis, 2007). Decision trees
are generally easy to interpret, quick for fitting, prediction
and memory efficient, but their predictive accuracy might
be sometimes poor. To avoid overfitting a simple decision
trees should be grown, and the maximum number of splits
must be adjusted to control their depth. The study initially
tested all three model options i.e., coarse tree, medium tree
and fine trees, but the best accuracy score was obtained with
medium trees for finer distinctions between classes, when the
maximum number of splits is 20 and when the split criterion
options was set by default to Gini’s diversity index. Second
chosen algorithm was SVM, which was initially developed
by Vapnik (Vapnik, 1995) and has since attracted consid-
erable interest in machine learning research. According to
several studies, SVMs can be very accurate when it comes to
classification performance. However, the performance of the
methods is quite sensitive to how the cost and kernel param-
eters are chosen for certain datasets (Srivastava & Lekha,
2010).Aswith the first algorithm, each of the nonoptimizable
support vector machine options was trained first (i.e., Linear
SVM,Quadratic SVM,Cubic SVM,Coarse,Mediumor Fine
Gaussian SVM). Then the model was improved by feature
selection and by changing some advanced options. The high-
est score of accuracy was achieved with fine gaussian kernel
function and when auto scale mode was used in the tested
model. The third chosen model, which was analyzed further
in the study, was artificial neural networks. ANN is a deep
learning method which arose from the concept of the human
brain and which consists of large number of units (neurons)
joined in a pattern of connections (Zhang et al., 2019). Units
in a net are usually segregated in three layers: input layer, hid-
den layer and output layer. If artificial neural networks are
thought of as systems, the structural parameters are the num-
ber of hidden layers, the number of neurons in each hidden
layer, the parameter in the activated function of each neuron,
theweight on the edge, and the parameter bias associatedwith

each neuron (Wu et al., 2016). The predicted accuracy of neu-
ral network models is often high, and they may be employed
for multi-class classification, however they are not easy to
interpret. The size and number of fully connected layers in
the neural network boost the model’s flexibility. As the data
in the study is less complex and is having fewer dimensions,
the MATLAB classifier tool allowed to use one fully con-
nected layer which multiplies the input by a weight matrix
and then adds a bias vector. Different neural network model
hyperparameter options were tested and the best accuracy
was obtained with the first layer size set to 10 units and when
default rectified linear unit activation (ReLU) function was
applied.

Finally, all three chosen models with optimal options
were trained and evaluated ten times and, subsequently, the
average accuracy was calculated (Table 3). Neural networks
showed the best overall accuracy: 90.2% for model 1 and
84.8% for model 2. Furthermore, the multi-class confusion
matrices were shown in Figs. 6 and 7 to further examine the
performance of developed models. The number of observa-
tion values from the classification model that were correctly
and incorrectly categorized is summarized in the confusion
matrices. The actual label of classification is represented
on the confusionmatrix’s coordinate axis,while the predicted
class is representedby thematrix’s horizontal axis.Moreover,
to comprehend how the presently chosen classifier succeeded
in each category the True Positive Rates (TPR), which is the
ration of correctly classified observations to true class and
False Negative Rates (FNR), which is the ratio of misclassi-
fied observations to true class, were calculated. It can be seen
in Fig. 7 that the classifiers did worst in predicting coating
blistering, while they did best in detinning.

Conclusion

Time is a crucial parameter in any new product development.
Multiple sample prototypes are made during the designing
process and it is inefficient and unreasonable to test the sta-
bility and compatibility of all samples. However, the research
results presented in the article indicate that more than 40%
of the compatibility tests performed with a negative result. A
negative test requires a change in technology, reformulation
or change in packaging and additional testing, which also
involves additional time. As any new product development
involves the risk of product and packaging incompatibility,
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Fig. 6 Confusion matrices
summarizing the performance for
model 1 of different classifiers:
a decision tree, b SVM, c neural
networks
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Fig. 7 Confusion matrices
summarizing the performance for
model 1 of different classifiers:
a decision tree, b SVM, c neural
networks
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this kind of testing is mandatory to different kind of fin-
ished goods such as cosmetics or all aerosol products. In
the paper, most common compatibility testing methods for
aerosol products were discussed. Accelerated testing at ele-
vated temperatures was presented to show how finished good
shelf-time affects the testing time in different temperatures.
In addition, basic compatibility observations ofmetal aerosol
packaging (i.e. general corrosion, pitting corrosion, coating
blistering or detinning), the defect’s locations in the container
and valve, as well as several compatibility factors (e.g. for-
mula ingredients, water contamination, pH, packagematerial
and coatings) were discussed.

The paper preset a data-driven model to predict the com-
patibility of formula and packaging. As the current state of
corrosion science is extensive, but not sufficient to predict
whether corrosionwill occur or not on themetal aerosol pack-
aging, classification model which considers various factors
can apply here. The input data included information col-
lected from previous compatibility tests of different aerosol
products and their formulations. The study analyzed two
approaches, when the model predicts two classes (model 1):
compatibility, incompatibility or when the model predicts
five classes (model 2): full compatibility, detinning, gen-
eral corrosion, pitting, coating blistering. The effectiveness
of three selected machine-learning algorithms were com-
pered for those two models. Neural networks showed the
best overall accuracy in the prediction of the compatibility
class: accuracy 90.2% for model 1 and 84.8% for model 2.
Very similar resultswere obtainedwith the decision tree algo-
rithm: 86.8% for model 1 and 82.6% for model 2. The worse
result was obtained for SVM algorithm: accuracy 76.3% for
model 1 and 71.9% for model 2. All the accuracy results
obtained were still higher than the risk of test failure calcu-
lated from the experimental data, and for which only 59%
pass the tests. It was also noted that the classifiers had the
biggest problem in predicting coating blistering, while they
did very well in predicting detinning and general compatibil-
ity.Moreover, it can be noticed that TPRparameterwasmuch
higher with samples describing compatibility compared with
the incompatibility, which may be due to the fact that there
were more positive tests in the dataset and it is much harder
for the algorithm to guess the type of incompatibility than to
determine whether the material will be compatible at all.

Although the model does not give full confidence in the
success of the test, artificial intelligence applied in the new
product development process can reduce lengthy compati-
bility testing time and developing costs by reducing the risk
of failure of the tests carried out. Since for most products the
shelf life follows a minimum of 2 years, this means that after
3 months the probability that there will be no need to retest
which can double at best scenario the developing time will
equals about 90%. Based on a historical data this probability
equaled only 59% and was very dependent on the knowledge

of the technologist. This overall can increase development
capacity while reducing product developing costs through
shorteningproject lead times and faster sales of finishedprod-
ucts. While machine learning algorithms generally need a lot
of data for training and testing, much more data is needed to
demonstrate statistically and verify that the algorithms are
effective. Therefore, future work should address collecting
more data from tests, expanding the model with additional
factors and considering different locations of defects, with a
breakdown of the aerosol container and valve. The additional
machine learning algorithms can be applied to not only pre-
dict the class of compatibility, but also to estimate the length
of a product’s shelf life.
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