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Abstract
The Spectral Finite Element Technique (SFEM) has Several Applications in the Sciences, Engineering, and Mathematics, 
which will be Covered in this Review Article. The Spectral Finite Element Method (SFEM) is a Variant of the Traditional 
Finite Element Method FEM that Makes use of Higher Order Basis Functions (FEM). One of the most Fundamental Numeri-
cal Techniques Employed in the Numerical Simulation is the SFEM, which Outperforms Other Techniques in Terms of Faster 
Convergence, Reduced Diffusion and Dispersion Errors, Simplicity of the Application as well as Shorter time of Computation. 
The Spectral Finite Element Technique Combines the Characteristics of Approximating Polynomials of Spectral Methods. 
The Approach to Discretizing the Examined Region Unique to the FEM is a mix of both Approaches. Combining These 
Techniques Enables Quicker (Spectral) Convergence of Solutions, Higher Approximation Polynomial Order, the Removal 
of Geometric Constraints on the Examined Areas, and much Lower Discretization Density Requirements. Spectral Element 
Methods used in Different Applications are Presented Along with a Statistical Overview of Studies During 2010–2022.

1  Introduction

1.1 � Numerical Techniques

In this section, several fundamental computational tech-
niques are discussed. These methods are used to simulate 
and analyze complex systems that are modeled by differ-
ential equations. These differential models, mainly based 
on the partial differential ones, have been widely applied in 
a different area of research, including meteorology [1–3], 
mathematics [4–7], computational biology [8–10], and 
astronomy [11, 12]. Numerous numerical methods, includ-
ing the finite element method [13, 14], the finite volume 
method [15, 16], the finite difference method [17, 18], the 
spectral method [19–22], the mesh free method [23], the 
domain decomposition method, and multigrid methods [24, 
25] are used to solve partial differential equations. Figure 1 
shows the flow chart of different numerical techniques for 
solving differential equations.

A computational method for approximately solving 
BVP’s in differential equations is the (FEM). It generates a 
stable solution by minimizing an error function using vari-
ational approaches. FEM covers all approaches for connect-
ing several basic element equations across numerous little 
subdomains to roughly reflect a more complicated equation 
across a larger domain. It is similar to how joining numer-
ous small straight lines describes a broader circle. The finite 
volume approach is a discretization strategy for partial dif-
ferential equations, especially those originating from physi-
cal conservation rules. Using a limited partitioning set of 
volumes and an integral volume approach to the issue, FVM 
discretizes the equations. It is standard practice to discretize 
equations for computational fluid dynamics using FVM.

Functions are represented by their values at certain grid 
positions for the finite difference approach, and differences 
in these values roughly define derivatives. The mesh-free 
method discretizes the domain of the issue by generating 
an analytical set of equations without the need for a pre-
set mesh. By splitting a boundary value problem down 
into smaller problems on different subdomains and iterat-
ing to coordinate the solutions across relevant subdomains, 
the domain decomposition approach may solve boundary 
value problems. To better coordinate the overall solution 
across the subdomains, a coarse problem with one or a few 
unknowns is used for each subdomain. The primary goal 
of multigrid methods is to do often global corrections that 

 *	 Muhammad Bilal Hafeez 
	 Muhammad.bilal.hafeez@pg.edu.pl

1	 Faculty of Mechanical Engineering and Ship Technology, 
Institute of Mechanics and Machine Design, Gdansk 
University of Technology, Narutowicza 11/12, 
80‑233 Gdańsk, Poland

http://orcid.org/0000-0002-9384-8582
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-023-09911-2&domain=pdf


	 M. B. Hafeez, M. Krawczuk 

1 3

speed up the convergence of the iterative approach, which 
is done by tackling the bigger problem. This notion can be 
compared to interpolation between coarser and finer grids. 
Multigrid is generally utilized in the numerical solution of 
elliptic PDEs in two or more dimensions [26].

1.1.1 � Overview of SFEM

Partial differential equations can be numerically by spectral 
finite element technique (SFEM), a variation of the (FEM). 
Its basis functions are higher-order piecewise polynomials. 
In articles released in 1984 [27–34], the spectral element 
approach was presented.

Various differential equations are numerically solved 
using spectrum techniques in applied mathematics and sci-
entific computing, usually applying the rapid Fourier trans-
form. By combining higher-order “basis functions,“ one 
may describe the differential equation’s solution by selecting 
the coefficients in the sum that best satisfy the differential 
equation.

The main distinction between spectral techniques and 
SFEM is the use of higher-order basis functions for faster 
convergence over the whole domain in spectral techniques. 
Theoretically, both approaches have a close bond. Finite ele-
ment techniques, on the other hand, only do so on a few lim-
ited subdomains. In other words, spectral approaches adopt 
a global perspective, whereas FEM adopt a local one. The 
great error features of spectral techniques, with the quick-
est possible “exponential convergence” when the solution is 
smooth, are partly due to this [35]. Figure 2. represents the 
complete formulation of the SFEM.

1.2 � Why SFEM?

The finite element approach is used more intricately with the 
spectral element technique. The solution across each element 
is described in terms of discrete values that are known in 
advance at a small number of spectral nodes.

The SFEM formulation is based on the precise solution 
of the governing (PDEs) in the spectral domain. This iden-
tical solution serves as the interpolating function for for-
mulating spectral elements. The mass and stiffness matrix 

distribution is precise because of adopting correct solutions 
in the element formulation. The element, therefore, immedi-
ately produces an accurate dynamic stiffness matrix. Regard-
ing equation construction and solution, the SFEM program 
architecture is similar to the c-FE approach. The only varia-
tion is how the temporal component is handled. It is gener-
ally regarded as the best practice to produce high-quality 
discretization and enhance the conditioning of the equation 
system. In [36] discusses the reasons for ill-conditioning in 
the context of the conventional FEM and suggests remedies 
to raise the condition number. In addition to these valuable 
factors, time and effort are put into designing specialized 
pre-conditioners for specific uses.

2 � Applications

The benefit of using spectral elements is that they may be 
used in various scenarios to produce steady computational 
solutions and high accuracy for SFEM applications [37–41]. 
The spectral methods that the authors in [42] developed 
over a protracted period beginning in 1969 include pseudo-
spectral methods for highly nonlinear problems. To execute 

Fig. 1   Flow chart of various 
numerical techniques for solv-
ing PDEs.

Fig. 2   Flow chart shows the formulation of the spectral element 
method
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the spectrum approach, either collocation or a Galerkin 
methodology is frequently utilized. The spectral technique 
is unique because it allows for the symbolic expression of 
answers to tiny problems, offering a viable alternative to 
series solutions for differential equations. Compared to finite 
element methods, spectral techniques could be cheaper and 
simpler to compute. They perform well when great preci-
sion is required in straightforward problems with easy solu-
tions. However, the matrices involved in step computation 
are dense due to their global nature, and when there are 
numerous degrees of freedom, computational performance 
will quickly decrease in the applications.

Numerous researchers have investigated the SFEM and its 
application to the solution of PDEs during the recent twelve 
years. To summarize prior research on SFEM, we retrieved 
some data from “Scopus.” Figs. 3 and 4 show the data of 

yearly publications. Moreover, Fig. 5 shows the applica-
tions of the spectral element method within specific research 
areas. In Sect. 3, work on various strategies will be analyzed 
along with a comparison of the spectrum finite techniques 
with other numerical issues. In Sect. 5, recommendations for 
more study will be made (Fig. 6).

2.1 � Computational Fluid Dynamics (CFD)

A branch of fluid mechanics known as computational fluid 
dynamics (CFD) utilizes numerical methods and analysis to 
solve and evaluate issues involving fluid flows that are rep-
resented by the widely used Navier-Stokes (NS) equations. 
Most of the spectral methods used in direct simulations of 
turbulent and transitional flows during the past few years 
have directly evaluated fluid flows [43]. In [44–51], authors 
briefly investigate CFD with different parameters.

The accuracy of spectrum approaches and the geo-
metric adaptability of finite elements are combined in 
the spectral element approach, which utilizes high-order 
finite elements. It has been successfully used to model 
and simulate technical difficulties in the automotive, oil 
& gas, and aerospace/aeronautics domains. The spectral 
element approach has much potential for CFD because 
of the advent of previously unheard-of supercomputer 
capability. In [52], the authors present the applications 
of SFEM in the laminar f luid f low channel. A one-
dimensional inflow-outflow advection-diffusion equa-
tion is used to validate the approach before it is used to 
study laminar two-dimensional (separated) circulation 
in a channel expansion. Comparisons are made using 
an experiment as well as prior numerical work. The Fig. 3   Number of articles published on SEM (2010–2022)

Fig. 4   The line graph shows the 
number of articles published on 
SEM (2010–2022)
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Navier-Stokes and transport equations could be solved 
using spectral element methods and high-order weighted 
residual techniques based on the spectral expansions of 
variables and geometries provided in [53]. Results for lin-
ear and secondary spatial stability of flat Poiseuille flow, 
as well as steady and unstable separated channel flow at 
Reynolds numbers of several thousand, are shown in [54] 
using a time-splitting method to solve the Navier-Stokes 
equations. Recent studies have looked at spectral element 
techniques in fluid dynamics and materials science [55].

2.2 � Dynamic Analysis

The Spectral Element Method is used in [56] to compare 
planar frame designs considering soil-structure interaction 
(SFEM). It covers the creation of spectral element matri-
ces based on higher-order element theories as well as the 
combining of members with various geometries. It is dem-
onstrated that, particularly at high frequencies, SFEM pro-
vides better accurate findings at a substantially lower com-
putational cost. As the authors show in [57], the purpose of 
this study is to use a spectral element approach to evaluate 
the dynamic behavior of periodic plate structures. For the 
plate components with two parallel supported sides, spec-
tral equations were constructed. Consider using the lumped 
mass Chebyshev spectral element method described in [58] 
(frequency domain) to address problems with dynamic 
structures. A spectral domain-modified spectral element 
approach (SEM) is expanded in the study [59] from single-
span beams to multi-span beams subject to dynamic point 
forces. In order to create the multi-layer smart composite 
structure shown in [60], wafer-type piezoelectric transducers 
are frequently placed on the surface of laminated composite 
structures. This structure is used to stimulate or monitor the 
dynamic responses of the structure for the active control of 
vibrations or sounds. The dynamic study of soil structure 
interaction using the spectral element approach is shown in 
[61]. The spectral finite element method and cubic spline 
layer-wise theory are used in [62, 63] to analyze low-veloc-
ity impacts on composite sandwich plates. An effective com-
putational approach for simulating low energy impacts on 
composite laminated plate structures is provided in [64] by 
combining a contact law with a unique time domain spectral 

Fig. 5   Number of publications on SFEM that have been published in 
that particular field

Fig. 6   Number of articles pub-
lished in SEM on the particular 
topic
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shear plate finite element. A modified Fourier spectral ele-
ment technique (SEM) is created to analyze the vibrational 
behaviors of these structures. Based on the type of funda-
mental structure that is present in [65]. In [66] introduces the 
spectral element technique as a precise and practical design 
tool for static and dynamic simulations of cantilever-based 
MEMS devices. Using the spectral element approach, the 
microcantilever is discretized while accounting for the fring-
ing field and the nonlinearity brought on by the electrostatic 
driving force. A Timoshenko beam is used to simulate the 
microcantilever. Several articles have explored the spectral 
element approach for dynamic analysis, including [67–72].

2.3 � Wave Propagation

Any method of wave transmission is considered wave propa-
gation. Either the first-order one-way wave equation or the 
standing wavefield wave equation can be used to determine 
the propagation of a single wave. It is shown that spectral 
and finite element techniques are particularly useful for the 
numerical modeling of seismic body wave propagation prob-
lems. In [73–75] describe how a three-dimensional Piezo-
Enabled Spectral Element Analysis tool was developed to 
simulate piezo-induced ultrasonic wave propagation in com-
posite structures. Piezo-Enabled Spectral Element Analysis 
solves the associated electromechanical governing equations 
for a given arbitrary voltage input to a piezoelectric actuator 
and outputs the voltage response of the piezoelectric sensors. 
One-dimensional (1D) elastic wave propagation issues are 
addressed using spectral finite elements (SFEM). In [76–78], 
investigations have been done on the waves that move 
through an isotropic rod and a Timoshenko beam. A 1D SFE 
was used to represent the rod, and a 1D and 2D SFEM were 
used to simulate the beam. In comparison to the outcomes of 
the traditional FEM, numerical results have been achieved. 
Authors in [79, 80] provide an overview of the spectral ele-
ment technique, which offers a novel numerical method for 
synthetic computing seismograms in 3-D earth models. The 
technique combines spectral precision with the adaptability 
of a finite element approach. In [81–83], the authors present 
the simulation and validation of the spectral finite element 
method through the global transmission of seismic waves. 
An example of a high-order finite element program that does 
numerical simulations of seismic wave propagation, such as 
that caused by active seismic acquisition operations in the 
oil sector or earthquakes on a continental scale, is presented 
in [84].

2.4 � Fractional Calculus

Several researchers employ various numerical techniques 
to solve fractional differential equations. The application of 
fractional calculus to the heat equation recently created an 

issue brought on by a non-local operator [85]. A class of 
fractional variational problems with a generic finite element 
formulation is presented in [86].

Compared to other numerical approaches, using SFEM to 
solve fractional differential equations sets effective stability 
requirements and offers greater flexibility when address-
ing inhomogeneity and complicated geometries. SEM is 
a numerical technique to obtain approximative solutions 
to differential equations in which the domain of interest is 
divided into different elements. It is effective for resolving 
complicated physical events, especially those that display 
geometrical and material non-linearities (such as those that 
are often seen in engineering and the sciences) [87, 88].

The nonlinear fractional evolution problems stability and 
convergence utilizing the spectral element approach are ana-
lyzed in [89]. The main goal of this work [90] is to present a 
novel numerical method for solving the neutrality duration 
distributed-order fractional damped diffusion-wave prob-
lem. By using the spectral finite element approach, several 
additional scholars are creating scientific breakthroughs in 
fractional calculus, including [91–95] (Fig. 7).

3 � Comparison

3.1 � A comparative Study of Spectral Elements 
with Different Problems

In [96], the authors used three numerical algorithms: the 
spectral Quasi linearization technique, spectral local line-
arization method, and spectral relaxation methods are con-
trasted for precision and convergence rate. Researching the 
linearization method’s effects on convergence and accuracy 
is crucial. The techniques are used on various differential 
equations describing engineering-relevant fluid flow, and 
their linearization schemes are thoroughly explored. The 
authors of [97] contrast and compare the direct numerical 
modeling of artificial jets using spectral-element and finite-
volume solvers. A comparative analysis of the Lattice Boltz-
mann and SEM for the numerical modeling of restricted 
flows past barriers describe in [98]. Accurate solutions to 
wave propagation issues under impact loading using high-
order finite elements of the conventional, spectral, and geo-
metric types and discusses a contrast between the Spectral-
Element and Pseudo-Spectral Methods. Table 1 in [99] 
contrasts the finite element and spectral element approaches 
using various orders of polynomials.

3.1.1 � Accuracy

In real-world circumstances, we prefer to use high-order 
expansions, where the solution is expected to exhibit dra-
matic spatial variations, and low-order expansions, like 
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c-FEM, where the solution is supposed to fluctuate gradu-
ally. We also want the best accuracy for a given number of 
interpolation nodes. In the case of linear and homogene-
ous differential equations, the node distribution merely 

influences the structure and standing of the global matrix 
as assessed by the condition number. It has no impact on 
the numerical solution. For non - homogeneous or com-
plex linear equations, the node distribution may have a 

Fig. 7   Number of articles pub-
lished in s-EM on the particular 
topic

Table 1   The distribution of the 
reference elements interpolant 
points for various polynomial 
orders [100]
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significant influence on the precision and convergence of 
the solution.

Theoretical analysis of the interpolation error, which 
depends on how many interpolation nodes should be distrib-
uted over an element, demonstrates that the interior nodes 
should be distributed at locations that correspond to spe-
cific families of orthogonal polynomials’ zeros to achieve 
the highest interpolation accuracy. As a result, we will have 
an extended spectral element and a method for extending 
spectral elements.

The spatial resolution SEM is determined by the standard 
element size and the degree of the polynomial used to rep-
resent functions on an element, with each element holding a 
point in each direction. In this sense, SEMs are analogous to 
the “h-p version of FEM” or c-FEMs with high polynomial 
degrees.

4 � The Spectral Element System

4.1 � Element Nodal Sets in Spectral Finite Element 
Method SFEM

Consider the case when we have chosen to map the answer 
over the lth element as a rough estimate mediated by the 
function:

 where, x(l)
1

 is the first element end-node and x(l)
2

 is the second 
element end-mode by increasing the � from − 1 to 1. Fig-
ure 8 The element nodes are developed at the positions �i for 
i = 1,2, 3… ,m + 1 along the� − axis.

4.2 � Shape Functions in the Spectral Finite Element 
Method

Shape functions that describe the area of the desired physi-
cal qualities must ensure that they are continuous inside the 
elements and adhere to the borders of the elements up to an 
order lower than the maximum derivative found in the DEq’s 
describing the phenomena.

(1)x(�) =
1

2

(
x
(l)

2
+ x

(l)

1

)
+

1

2

(
x
(l)

2
− x

(l)

1

)
�,

Shape functions must be capable of representing constant 
values of the necessary physical features or their deriva-
tives within the component to an order lower than the largest 
derivative found in the differential equation describing the 
phenomena.

The approximate approximation of a continuous function 
is a classic example of such a process, and differentiable 
function f (x) in the range x ∈ [a, b] by n initial terms of its 
expansion into a Taylor series is:

Error of this approximation Rn(x, a) can be expressed in 
the other form of the Lagrange residual:

When a further circumstance is:

4.3 � Lagrange Interpolation

The Lagrange interpolating polynomial is the only polyno-
mial of the lowest degree that interpolates a specific set of 
information in numerical analysis. The element interpolation 
can be conveniently identified with the mth-degree Lagrange 
interpolating polynomials.

 and,

For stiffness matrix K , and diagonal mass matrix M.

4.4 � Numerical quadrature for calculating the mass 
and stiffness matrices

Quadrature node points = GLL points.

(2)
f (x) ≈ f (a) +

x − a

1!
f (1)(a) +

(x − a)2

2!
f (2)(a) +⋯ +

(x − a)n

n!
f (n)(a).

(3)Rn(x, a) =
(x − a)n+1

(n + 1)!
f (n+1)(�),

(4)lim
x→a

Rn(x, a)

(x − a)n
= 0

(5)
N+1∑

i=1

M
(e)

ji
ü
(e)

i
(t) +

N+1∑

i=1

K
(e)

ji
u
(e)

i
(t), e = 1, 2,… , ne

(6)M
(e)

ji
= wj�

�(�)
dx

d�
�ij|�=�j ,

(7)K
(e)

ji
=

N+1∑

k=1

wku
�(𝜉)l�

j
(𝜉)l̇i(𝜉)

(
d𝜉

dx

)2
dx

d𝜉
|𝜉=𝜉k ,

(8)f
(e)

j
(t) = wjf

�(�, t)
dx

d�
|
�=�j

.

Fig. 8   Mapping of an element from the x − axis to the standard inter-
val [− 1,1] parametric �-axis
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Since the mass matrix is diagonal, inverting it is simple. 
The advantages of using the spectral element technique is 
this.

4.5 � Time extrapolation

Representation in terms of polynomials

l
(N)

i
(x) : N -degree Lagrange polynomials
When the polynomial coefficients are solved for the PDEs 

may be transformed into an ODEs

 where,Mki ∶Mass matrix and Kki ∶Stiffness matrix.

4.6 � Hexahedral Components are used to Divide 
the Computational Domain

  In this section, different hexahedral elements are repre-
sented from [101] in Fig. 9a–c. An overview of the mesh 
at the surface reveals that there are 150 total slices, with 

(9)u ≈
u(t + 𝛥t) − 2ü(t) + u(t − 𝛥t)

𝛥t2
,

(10)
�(t + �t) = 2u(t) − u(t − �t) + �t2M−1

[
f (t) − k − Ku(t)

]
,

(11)u(x, t) ≈
∑N

i=0
ui(t)l

(N)

i
(x)

(12)Mkiüi − Kkiui = fk

25 slices on each of the six sides of the cubed sphere, each 
representing a distinct color. The calculation of the wave 
field in each of these slices is carried out by one of the 150 
needed processors.

4.6.1 � Mapping to the unit cube

Mapping to unit cube is shown in Fig. 10a–d, [101].

4.6.2 � Collocation Points Chosen

Interpolation of Runge’s function R(x) using Sixth -order 
polynomials and equidistant collocation points.

We are choosing interpolant as

We should use the GLL points as collocation points in 
above Fig. 11a and b for the Lagrange polynomials.

So we have interpolation of Runge‘s function R(x) using 
Sixth -order polynomials and Gauss-Lobatto-Legendre 
collocation points.

[ roots of(1 − x2)LoN − 1 = completed Lobatto polyno-
mial ]

Example : GLL Lagrange polynomials of degree 6 pre-
sented in Fig. 12.

Global maximum at the collocation points equals colloca-
tion points for GLL points.

R(x) =
1

1 + ax2
,

Fig. 9   Different hexahedral ele-
ments. a Layer boundaries are 
respected by the 2D, b Subdivi-
sion of the globe, c Subdivision 
with topography [101]
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5 � Future Work

•	 For future work, we will use the spectral element meth-
ods in the heat transfer problems, such as heat trans-
fer enhancement in nanoparticle vis Spectral element 
method.

•	 We already have many scientific publications on numer-
ical studies in nanoparticle heat transfer enhancement 
using the (c-FEM). So, for future recommendations, we 

will focus on a comparative study of the classical FEM 
(c-FEM) with the (SFEM) for heat transfer problems.

•	 We will investigate which numerical method is more suit-
able for our problems, showing temperature, velocity, and 
concentrations profile.

6 � Conclusion

A more comprehensive description of the SFEM is provided 
in this advance review. We were able to draw the following 
findings, understandings, and suggestions for further study 
as a result.

Statistics over the previous 12 years (2010–2022) support 
the widespread application of spectral element approaches to 
a range of scientific issues. The above data clearly shows that 
there is no more research work on this numerical technique.

•	 Spectral techniques are discretization strategies for the 
weakly expressed approximation of partial differential 
equations. They are founded on specific quadrature cri-
teria and high-order Lagrangian interpolants. A collec-
tion of polynomial basis functions that, as the polynomial 
degree approaches infinity, can perfectly approximate the 
solution in some norm might be used to represent the 
solution using spectral techniques. The finite element 
method is particularly used for spectral elements SFEM.

•	 As a result, there is no need to carry out a (sparse) 
matrix inverse inversion, leading to a completely explicit 
approach.

•	 Every location inside the elements has a different set of 
material properties.

Fig. 10   Mapping to the unit cube (mapping like in isoparametric 
FEM—in SFEM we have more nodes we can applied subparametric 
mapping)

Fig. 11   GLL points as collocation points
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Fig. 12   GLL Lagrange polyno-
mials of degree 6
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•	 SFEM typically utilizes hexahedral grids.
•	 The mass matrix diagonal is built using Lagrange poly-

nomials with Gauss-Lobato-Legendre (GLL) collocation 
points.
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