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A B S T R A C T   

In this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) 
domain and macroeconomic productivity. We embed recently released data on patents and publications related 
to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to 
an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern 
productivity paradox. We show that the development of AI technologies remains a niche innovation phenomenon 
with a negligible role in the officially recorded productivity growth process. This general result, i.e. a lack of a 
strong relationship between AI and registered macroeconomic productivity growth, is robust to changes in the 
country sample, in the way we quantify labour productivity and technology (including AI stock), in the speci
fication of the empirical model (control variables) and in estimation methods.   

1. Introduction 

This paper evaluates the role played by technological innovations in 
the artificial intelligence (AI)1 domain in the productivity growth pro
cess. The starting point for our analysis is the observation of a significant 
slowdown in the rate of productivity growth worldwide. This is visible in 
advanced economies such as the OECD countries (OECD, 2021a), the 
USA (Byrne et al., 2016) and the UK (Crafts and Mills, 2020) but also in 
emerging markets.2 Obviously, the very recent economic slowdown (i.e. 
since 2019) can largely be attributed to the Covid-19 pandemic, when 
real GDP declined by 3.4% worldwide in 2020 (OECD, 2022) and the 
recovery, which generated large imbalances between and within coun
tries (World Bank, 2021a), was delayed by a new set of adverse shocks 

due to the war in Ukraine (OECD, 2022). However, looking from a 
longer perspective, the tendency of weak productivity growth is sur
prising, especially if one takes into account the breakthrough in
novations and impressive pace of technological progress in recent 
decades. In particular, how is it possible that there is no acceleration in 
productivity growth given that at the same time a striking advance can 
be observed in digital technologies3 using advanced software, robots, AI, 
machine learning and cloud computing? Since the 1980s, the world’s 
technological capacity to store, communicate and compute information 
has exploded (Hilbert and López, 2011). The volume of data, processing 
power and bandwidth double every 2–3 years, while global production 
only doubles every 20–30 years (Growiec, 2022a: 1732). Acceleration in 
AI technologies has been widely documented (Tseng and Ting, 2013; 

* Corresponding author. 
E-mail addresses: aparteka@zie.pg.edu.pl (A. Parteka), Aleksandra.Kordalska@zie.pg.edu.pl (A. Kordalska).   

1 We follow the OECD Council on Artificial Intelligence’s definition of AI as a “(…) machine based system that can, for a given set of human-defined objectives, make 
predictions, recommendations, or decisions influencing real or virtual environments. AI systems are designed to operate with varying levels of autonomy” (Baruffaldi et al., 
2020: 11). AI solutions are capable of learning and improving while ICT software is typically pre-programmed.  

2 According to data reported by The Conference Board (2022), in mature economies (including the US, the EU and Japan) GDP per hour worked only grew by 1.1 
per cent a year in 2011–2019 (compared to 2.1 per cent a year in the pre-2008 crisis period, i.e. 2000-2007). Productivity growth in major emerging economies 
(including China) also slowed down, from 5.2 per cent a year in 2000–2007 to 4.8 per cent a year in 2011–2019. In 2022 output per hour worked is forecast to decline 
by 0.2 cent in mature economies and grow by 1 per cent in emerging economies (The Conference Board, 2022).  

3 We use the term ‘digital technologies’ to refer to broadly understood ADP (Advanced Digital Production) technologies defined as “technologies that combine 
hardware (advanced robots and 3D printers), software (big data analytics, cloud computing and artificial intelligence) and connectivity (the Internet of Things)” (UNIDO, 
2019, Industrial Development 2020 main report: xvi). Artificial intelligence technologies (AI) are therefore part of the ADP or technologies related to the so-called 
fourth industrial revolution (4IR), which is characterised by a fusion of technologies blurring the lines between the physical, digital and biological spheres (Schwab, 
2017). 
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WIPO, 2019; IPO, 2019; Fujii and Managi, 2018; Van Roy et al., 2020; 
OECD. AI, 2022; USPTO, 2020). In 2016, OECD countries reported 34 
times as many AI patent applications than in 1985 (for comparison, the 
total number of patents and publications had tripled (OECD, 2021c; see 
Section 3 for more detailed evidence). In the US between 2002 and 2018 
the annual number of AI patent applications increased by more than 
100% while the share of AI patent applications grew from 9% to 16% 
(USPTO, 2020). Nevertheless, pro-growth effects of “the second ma
chine age” (Brynjolfsson and McAfee, 2014; Bughin et al., 2018; Aghion 
et al., 2019) are not reflected in productivity records. 

The slowdown in the productivity growth rate registered in official 
statistics despite impressive developments in the digital sphere has 
become an intriguing theme in economic research (Brynjolfsson et al., 
2019, 2021; Byrne et al., 2016; Crafts, 2018; Gal et al., 2019; Syverson, 
2017; van Ark, 2016; Venturini, 2022). The phenomenon has been 
named the ‘modern productivity paradox’ (i.e. negligible productivity 
growth with simultaneous dramatic technological progress – Brynjolfs
son, 1993), echoing Solow’s popular claim “You can see the computer age 
everywhere but in the productivity statistics” (Solow, 1987, p. 36). Given 
the size of the AI market4 (Righi et al., 2022; OECD. AI, 2022; Dalla 
Benetta et al., 2021), its expansion in terms of AI-related patents and 
publications (Zhang et al., 2022) and expectations related to the growth 
potential of AI technologies (Purdy and Daugherty, 2016; Bughin et al., 
2018), weak productivity records are a source of disappointment. 

The key motivation for our study comes from this still unresolved 
productivity puzzle but our contribution is based on an explicit focus on 
AI technology production assessed from a broad cross-country 
perspective. Using data on AI patent applications and AI publications 
we focus strictly on the AI production effect, i.e. the effect associated 
with the development of AI technologies and related technological 
knowledge.5 We focus on AI because an overwhelming part of the 
existing evidence on the impact of modern technologies on productivity 
relies on ICT data (Jorgenson et al., 2008; van Ark et al., 2008; Inklaar 
et al., 2005; Timmer and Van Ark, 2005; Oliner et al., 2007; Acemoglu 
et al., 2014; Pieri et al., 2018) or, more recently, on automation statistics 
concerning the use of robots (Ballestar et al., 2020; Kromann et al., 
2020; Acemoglu et al., 2020; Graetz and Michaels, 2018; Koch et al., 
2021; Van Roy et al., 2020). Although it is developing, AI-focused 
research on the productivity-technology nexus is still scant, mainly 
due to methodological challenges related to the conceptualisation and 
measurement of highly intangible technological solutions such as AI. 
However, noticeable progress in this sphere (Baruffaldi et al., 2020; 
EPO, 2020; OECD. AI, 2022; USPTO, 2020; Zhang et al., 2022) has 
opened new ground for AI-productivity research. Another research gap 
which we fill is related to the incomplete international picture: the 
modern productivity paradox has been documented for well-developed 
economies such as the US, Germany and the UK (Byrne et al., 2016; van 
Ark, 2016; Elstner et al., 2018) and a sample of industrialised countries 
(Venturini, 2022). To the best of our knowledge, no studies have 

assessed the macroeconomic productivity-AI nexus in a setting which (i) 
uses both AI patent and AI bibliometric data and (ii) compares trends in 
the industrialised (here, the OECD) and non-industrialised worlds. This 
paper addresses these research gaps. 

Following other studies using patent data in a macroeconomic 
context (Frietsch, 2014; Venturini, 2022), our analysis builds on a key 
assumption that AI technology production is reflected in the number of 
AI patent applications and additionally AI scientific publications (EPO, 
2020; Tseng and Ting, 2013; USPTO, 2020). We use the latest meth
odological advances in the measurement of AI progress and employ 
information on AI-related patents (from OECD, 2021c) and AI-related 
scientific publications (from Elsevier/Scopus – Zhang et al., 2021) in 
an augmented model of productivity growth, which we estimate for 
OECD and non-OECD countries from the mid-1980s onwards. 

The remainder of the paper is structured as follows. Section 2 pro
vides a review of the literature on the role of digital technologies, 
including AI, in productivity growth. Section 3 presents the empirical 
setting – the data and key international evidence on AI technology 
production (patents and publications) and productivity developments. 
Estimates of the productivity growth model are described and discussed 
in Section 4 and the last section concludes. 

2. Digital technologies and productivity – a literature review 

For a long time technological progress has been viewed as a key 
element in economic growth (Solow, 1956; Romer, 1990; Jones, 1995; 
Aghion and Howitt, 1992) either by improving the physical capacity and 
productivity of labour or with growth-enhancing innovations generated 
by R&D (Romer, 1990; Jones, 2005). Historically, big technological 
breakthroughs like the steam power revolution and electrification 
accompanied productivity growth (Crafts, 2004; Schurr et al., 1960) so 
similar hopes have arisen in the digital era. The widely documented rise 
in automation and digital technology, including AI (Hilbert and López, 
2011; Tseng and Ting, 2013; WIPO, 2019; IPO, 2019; Fujii and Managi, 
2018; Van Roy et al., 2020; OECD. AI, 2022; USPTO, 2020; Zhang et al., 
2022) has led to both concerns about potential negative effects on labour 
(mainly via the human replacement effect, Acemoglu and Restrepo, 
2018) and enthusiasm about its ability to boost growth (Brynjolfsson 
and McAfee, 2014; Bughin et al., 2018; Aghion et al., 2019). In the 
extreme case, “rapid growth in computation and artificial intelligence will 
cross some boundary or singularity after which economic growth will accel
erate sharply as an ever-accelerating pace of improvements cascade through 
the economy” (Nordhaus, 2021: 299). 

Table 1 
Shares of AI patents/AI scientific publications in all patents/all scientific pub
lications (%), 1985–2017.   

A. Share of AI patents 
in all patents – by 
applicants 

B. Share of AI patents 
in all patents – by 
inventors 

C. Share of AI 
publicationsa in all 
publications 

OECD non-OECD OECD non-OECD OECD non-OECD 

1985 0.18 0.00 0.17 0.00 – – 
1990 0.57 0.10 0.57 0.09 – – 
1995 0.49 0.10 0.49 0.13 0.68b 1.07b 

2000 0.89 0.40 0.89 0.51 0.71 1.16 
2005 0.94 0.45 0.93 0.53 0.94 1.80 
2010 1.14 0.88 1.12 0.99 0.87 1.98 
2017 1.80c 2.17c 1.78c 2.28c 1.38 2.16 

Note: The list of countries can be found in Appendix A(Table A1). 
Source: Authors’ elaboration using data from OECD (2021c) and Scopu
s/Elsevier data from Zhang et al. (2021). 

a Data available from 1998 onwards. 
b Data for 1998. 
c Last available data for 2016 – see footnote 7. 

4 As the OECD.AI Policy Observatory reported, worldwide venture capital 
(VC) investment in AI rose from 3220 million USD in 2012 to 194,414 million 
USD in 2021. The number of annual VC AI investments in 2021 was 10 times 
higher than a decade before, while the median AI investment size increased 
fivefold. The EU invested between €7.9 billion and €9 billion in AI in 2019 
(Dalla Benetta et al., 2021) and is likely to exceed its annual AI investment 
target of €22 billion by 2030 (Righi et al., 2022).  

5 The production effect of more broadly defined 4IR technologies has been 
analysed at the macro level by Venturini (2022) and at the micro level by 
Benassi et al. (2022). An alternative mechanism, not investigated in our study, 
deals with the adoption effect quantified by the number of installations of ro
bots (Ballestar et al., 2020; Kromann et al., 2020; Acemoglu et al., 2020; Graetz 
and Michaels, 2018) or by trade in capital goods embodying 4IR technologies 
(robots, 3D printers or numerically controlled machines) capturing technology 
diffusion and so adoption across countries (Foster-McGregor et al., 2019; Cas
tellani et al., 2022). 
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Fig. 1. Numbers of patents (AI and all) by applicants, OECD and non-OECD countries, 1985-2016 
Note: The scales in the four graphs differ. 5-period moving average for patents expressed in millions of persons employed. The list of countries can be found in 
Appendix A (Table A1). 
Source: Authors’ elaboration using data from OECD (2021c). 

Fig. 2. Numbers of scientific publications (AI and all), OECD and non-OECD countries, 1998-2017 
Note: The scales in the four graphs differ. 5-period moving average for patents expressed in millions of persons employed. The list of countries can be found in 
Appendix A (Table A1). 
Source: Authors’ elaboration using Scopus/Elsevier data from Zhang et al. (2021). 
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Models of automation6 with endogenous technological progress 
conceptualise the contribution of intangible technologies, such as AI, to 
growth. They assume that some (or even all) tasks, including R&D, can 
be automated (Zeira, 1998; Acemoglu and Restrepo, 2018; Aghion et al., 
2019; Growiec, 2020, 2022a). The importance of AI for growth can be 
modelled through reinterpretation of the knowledge production func
tion (Jones, 1995) with breakthroughs in AI enhancing discovery rates 
and boosting economic growth (Agrawal et al., 2019). However, the 
related empirical literature focuses on the puzzling mismatch between 
expectations related to the development and use of digital technologies 
and their poor reflection in productivity records (Crafts, 2018). The 
modern productivity paradox (see, among many others, Brynjolfsson 
et al., 2019, 2021; Polák, 2017; Acemoglu et al., 2014) is a redux of the 
information technology productivity paradox of the late 1980s (Bryn
jolfsson, 1993). A significant drop in the productivity growth rate 
observed in parallel with increasing spending on new digital technolo
gies and decreasing prices of them has been identified in such mature 
economies as the US, the UK and Germany (Byrne et al., 2016; van Ark, 
2016; Elstner et al., 2018) and may be part of a “secular stagnation” 
(Haskel and Westlake, 2017). 

Among the alternative explanations of the modern productivity 
paradox, we find a “mismeasurement hypothesis” (Syverson, 2017; 
Byrne et al., 2016; Elstner et al., 2018) of underestimation of real GDP, 
productivity and income growth in the technologically advanced age 
(Watanabe et al., 2018). Intangible assets are difficult to capture in 
national accounts and their omission may have led to serious underes
timation of changes in output per worker (Corrado et al., 2009, 2021). A 
similar problem relates to the magnitude of AI investment, which is also 
likely to be mismeasured (Gordon, 2018). Indeed, collection and dis
cussion of AI statistics, especially in the international context, are 
difficult as AI is a cross-cutting technology likely to be improperly 
captured by existing classifications of products and economic activities 
(Righi et al., 2022: 9). Nevertheless, while differences in AI levels are 
present in different studies, the growth in AI investment activity has 
been documented worldwide (e.g. Righi et al., 2022; EU AI investments 
report – Dalla Benetta et al., 2021; OECD. AI, 2022). 

An alternative explanation of the paradox conceptualised through 
the J-curve hypothesis (Brynjolfsson et al., 2019, 2021) relates to the 
time lag between technological progress and the commercialisation of 
new innovative ideas, often relying on complementary investments 
typical of general-purpose technologies (GPTs, Bresnahan and Trajten
berg, 1995). The productivity J-curve illustrates the productivity slow
down accompanying the advent of GPTs: “total factor productivity growth 
will initially be underestimated because capital and labor are used to accu
mulate unmeasured intangible capital stocks. Later, measured productivity 
growth overestimates true productivity growth because the capital service 

flows from those hidden intangible stocks generate measurable output” 
(Brynjolfsson et al., 2021: 334). Empirical evidence on the time pattern 
of productivity spillovers associated with digital technologies is mixed. 
It either supports the J-curve view (US: Brynjolfsson et al., 2021; Japan: 
Miyagawa et al., 2021; industrialised countries: Venturini, 2022) or 
finds arguments against it (Corrado et al., 2021 on 11 European coun
tries and the US). Technological pessimists argue that growth at the 
technological frontier has slowed down because it is harder and more 
expensive to find new good ideas (Bloom et al., 2020). 

Many studies have attempted to estimate the productivity effects of 
the digital revolution but most of them refer to digital technologies 
before AI (namely, ICT: see, among many others, Jorgenson et al., 2008; 
van Ark et al., 2008; Inklaar et al., 2005; Timmer and Van Ark, 2005; 
Oliner et al., 2007; Acemoglu et al., 2014; Ceccobelli et al., 2012). In 
general, the contribution of ICT capital to growth has been lower in the 
EU than in the US (Inklaar et al., 2005), where information technology 
played a critical role in the post-1995 productivity resurgence (Jor
genson et al., 2008) and contributed to the Atlantic divide (Van Ark 
et al., 2008, 2019; Timmer and Van Ark, 2005). In most OECD countries 
(the focus of our study) the contribution of ICT to growth was rather 
disappointing (Pilat et al., 2003) and, as Ceccobelli et al. (2012) argued, 
acted as GPT requiring complementary investments and temporal lags to 
lead to productivity benefits. The picture is more optimistic once the 
effect of ICT in OECD countries is analysed jointly with the effects of 
R&D activity accelerating technical change and generating spillovers 
within sectors (Pieri et al., 2018). 

Some (fewer) studies explicitly focus on the productivity effects of 
robotisation. Graetz and Michaels (2018) analyse a panel of industries in 
seventeen countries (1993–2007) and find that increased use of robots 
contributes approximately 0.36 percentage points to annual labour 
productivity growth, while Kromann et al. (2020) document that an 
increase of one standard deviation in robot intensity is associated with 
even 6% higher total factor productivity (in a sample of nine advanced 
countries and 10 manufacturing industries, 2004–2007). In addition, 
firm-level studies (such as Koch et al., 2021 and Ballestar et al., 2020 on 
firms in Spain and Acemoglu et al., 2020 on French companies) find a 
significant impact of robot adoption on productivity. 

The literature focusing explicitly on the AI-productivity nexus is still 
in its infancy, mainly due to methodological challenges related to the 
measurement of highly intangible AI solutions and their overlap with 
ICT. Recent attempts to quantify AI-based technological progress draw 
on bibliometric or patent records (Baruffaldi et al., 2020), replicating 
the well-established use of patent data as a general indicator of inno
vation (among others, see Griliches, 1990; Archibugi and Pianta, 1992; 
Frietsch et al., 2014; Jaffe and Trajtenber, 2005). Paradoxically, the 
development of AI and advanced machine learning techniques have 
enabled more accurate quantification of patent activity in specific 
technological domains, such as AI (USPTO, 2020). Qualitative factors 
have been incorporated in time-consuming search techniques detecting 
AI-related patents via classification codes (such as Cooperative Patent 
Classification (CPC) and analogous UPC/IPC – Tseng and Ting, 2013) 

Table 2 
Correlations between AI patents/AI scientific publications and labour productivity.   

AI patents AI publicationsa AI patents per person 
employed 

AI publications per person 
employeda 

OECD OECD & non- 
OECD 

OECD OECD & non- 
OECD 

OECD OECD & non- 
OECD 

OECD OECD & non- 
OECD 

A. Labour productivity - level [PPPs in 2017 US$ 
per hour worked] 

0.147* 0.199* 0.224* 0.120* 0.334* 0.428* 0.397* 0.601* 

B. Labour productivity growth [annual rate of 
growth, in %] 

− 0.075* − 0.069* − 0.071* 0.016 − 0.055 − 0.102* − 0.093* − 0.119* 

Note: * denotes significance at the 10% level. For the list of countries, see Appendix A (Table A1). 
Source: Authors’ elaboration using data from OECD (2021c), Elsevier/Scopus (Zhang et al., 2021) and PWT 10.0. 

a Data available from 1998 onwards. 

6 Growiec (2022a) points out that the distinction between mechanisation (the 
replacement of human physical work by machines), automation (the replace
ment of human cognitive work by pre-programmed software) and AI (i.e. 
software capable of learning and improving) is crucial. 
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and/or by screening patent descriptions for AI-related keywords (EPO, 
2020). This approach has been used at the micro level by Benassi et al. 
(2022), who show a positive and significant relationship between firm 
productivity and the accumulated stock of the fourth industrial revolu
tion (4IR) technological knowledge. A similar conclusion is reached by 
Damioli et al. (2021), who confirm a positive and significant impact of 
AI patent applications on labour productivity in a worldwide sample of 
AI patenting firms. Additionally, Bassetti et al. (2020) find that firms 
that are successful at obtaining a greater number of AI patents tend to 
increase not only total factor productivity but also wages. In addition, 
the adoption of digital technologies in an industry can be associated with 
productivity gains at the firm level (Gal et al., 2019). 

Macro-level studies relying on patent data describe the global land
scape of AI technology document its impressive rise since the 1990s, 
which was accompanied by extreme geographical concentration (WIPO, 
2019; IPO, 2019; USPTO, 2020) with just a handful of players involved in 
intensive AI development (Dernis et al., 2019; Van Roy et al., 2020). 
Venturini (2022) documents that knowledge (patent stock) related to 
broadly defined “intelligent technologies” (corresponding to 4IR tech
nology areas) accounts for 3%–8% of the observed productivity change in 
a sample of 32 industrialised countries (1990–2014). In the empirical 
analysis presented in the next sections we focus exclusively on the pro
ductivity effects of AI technology and compare patent and bibliometric data 
in a wider sample (OECD and non-OECD) and a longer time perspective. 

3. The data and descriptive evidence 

3.1. Dataset(s) 

This paper compares the effect associated with the production of AI 
technologies (and the development of related technological knowledge – 
Venturini, 2022; Benassi et al., 2022) as recorded in patent applications 
(dataset 1: 35 OECD and 23 non-OECD economies, 1985–20167) and in 

scientific publication records (dataset 2: 35 OECD countries and 28 
non-OECD countries, 1998–2017) with growth in countries’ productiv
ity. In line with Righi et al. (2022:11), patent applications are used to 
address innovation capacity while AI publications serve as an additional 
proxy for involvement in frontier AI research. Information about the 
countries in particular samples is included in Appendix A, Table A1. 

In the patent analysis, the number of AI patent applications comes 
from the OECD Science, Technology and Patents database (OECD, 
2021c). The OECD provides separate data for such technology domains 
as ICT, artificial intelligence, nanotechnology, biotechnology and 
environment-related and health-related technologies. AI patents were 
identified using patent classification codes and keywords as is described 
in detail in Baruffaldi et al. (2020: 66–68).8 We selected patents filed 
with at least two intellectual property offices (which belong to IP5 
patent families9). These are presented according to the priority date.10 In 
the benchmark analysis we use patent data identified by the applicant’s 
country of residence (data by the inventor’s country of residence are used 
in the robustness checks).11 All the patent figures are based on fractional 
counts reflecting the contributions of applicants/inventors (by country) 

Table 3 
The relationship between AI technology production (AI patents by applicants) and labour productivity growth, OECD countries.  

Dependent variable: Δln 
(

Y
L

)
Number of patent applicationsa Patent stock 

OLS IV-GMMb IV-GMMc 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.055*** − 0.061*** − 0.088*** − 0.109*** − 0.099*** − 0.119*** − 0.138*** − 0.265*** 
(0.014) (0.017) (0.025) (0.030) (0.021) (0.024) (0.028) (0.046) 

Δln 
(

K
L

) 0.375*** 0.391*** 0.395*** 0.418*** 0.363*** 0.386*** 0.149 0.193* 
(0.079) (0.081) (0.100) (0.094) (0.088) (0.087) (0.112) (0.113) 

ln 
(

AI Pat
L

) 0.003 0.002       
(0.002) (0.002)       

ln 
(

AISTPat
L

) 0.001 0.001 − 0.001 − 0.001 − 0.005 0.000   
(0.003) (0.003) (0.004) (0.004) (0.004) (0.004) 

ln (GI) 0.006  0.016**  0.016***  0.030***  
(0.006)  (0.008)  (0.006)  (0.008) 

N 736 736 746 746 720 720 260 260 
N of countries 34 34 33 33 33 33 16 16 
R-squared 0.406 0.410 0.304 0.312 0.310 0.318 0.420 0.453 
K-P rk LM (p-val)     0.000 0.000 0.000 0.000 
K-P rk Wald F     550.6 270.7 121.5 86.89 
Hansen J (p-val)       0.304 0.244 

Notes: *, ** and *** denote significance at the 1%, 5% and 10% levels respectively. Robust standard errors are provided in parentheses. All specifications contain 
country and time fixed effects. K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0. 

a Estimations are based on a 5-period moving average. 
b Patents are instrumented with their first lag. 
c Patents are instrumented with the instrument described in Section 4.1 and supported by the first lag of the explanatory variable. 

7 Patent data (OECD, 2021c) are available until 2017 but we follow the OECD 
practice (Baruffaldi et al., 2020: 53) and truncate the series in 2016 because the 
2017 data are incomplete due to legal delays in publishing patent information. 

8 Given that AI can be related to the development of robotics, some of the AI- 
related keywords refer to robots (e.g. humanoid robot, human-robot interac
tion) but for the AI-patent search these words are only included in combination 
with IPC or CPC classes (Baruffaldi et al., 2020: 67) so overlaps should be 
limited. ICT is a separate category in the OECD (2021c) data.  

9 IP5 refers to the five intellectual property offices, i.e. the European Patent 
Office, the Japan Patent Office, the Korean Intellectual Property Office, the US 
Patent and Trademark Office and the State Intellectual Property Office of the 
People’s Republic of China.  
10 The patent priority date reflects the first worldwide filing of an invention 

and is close to the invention date. IP5 patent families are only available ac
cording to priority date.  
11 The data by applicant allow us to take a closer look at the innovativeness of 

firms (legal patent application owners) in a given country regardless of the 
location of their research centres. Applicants have a legal right to exploit and 
commercialise an invention covered by a patent. Patents considered from the 
applicants’ perspective should translate into country productivity growth more 
easily. The data by inventor, in turn, capture the innovativeness of a country’s 
researchers and laboratories (OECD, 2021c). 
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in cases of multiple authorship. To complete the research conclusions 
based on AI patent data, we also analyse the number of peer-reviewed AI 
scientific publications recorded in the Elsevier/Scopus database (Zhang 
et al., 2021).12 

Apart from considering countries’ annual AI technology production 
activity, we compute AI patent stock (and AI publication stock), AIST, 
which quantifies the knowledge (ideas) accumulated in the area of AI 
technologies (similarly to Venturini, 2022 and Benassi et al., 2022, who 
focus on 4IR technology patent stock). We employ the perpetual in
ventory method (Belderbos et al., 2022; Venturini, 2022) and use the 
formula AIST

i,t = AIi,t + (1 − δ) × AIST
i,t− 1 with the initial value of AIST 

defined as AIST
i,t0 =

AIi,t0
gi+δ, where gi is the average rate of growth in a period 

analysed. Following Schankerman and Pakes (1986), we assume a 
depreciation rate δ of 15% (both for patents and publications), which is 
often used in patent research (Belderbos et al., 2022; Venturini, 2022).13 

AI technology production data are matched with labour productivity 
measured in terms of output (GDP at chained PPPs in millions of 2017 
US dollars) per hour worked, and alternatively per person employed in 
the robustness checks. The data come from Penn World Table 10.0 (PWT 
10.0, Feenstra et al., 2015), which is also a source of capital stock (at 
constant 2017 prices in millions of 2017 US dollars) and labour force 
data. 

Following the literature, we consider other country-specific factors 
that may affect productivity growth apart from AI. First, we follow 
Venturini (2022) and Damioli et al. (2021) and add a proxy for coun
tries’ general innovation incorporating overall patenting (OECD, 2021c) 
and scientific publication activity (Zhang et al., 2021). Next, given that 
regardless of country income the quality of human resources positively 
influences productivity (Miller and Upadhyay, 2000; Botev et al., 2019 
on OECD), we consider human capital measured with average years of 
schooling (Barro and Lee, 2013) and assumed rate of return to 

education, based on Mincer equation estimates around the world (PWT 
10.0, Feenstra et al., 2015). We then incorporate trade openness in the 
model (the sum of exports and imports of goods and services as a share of 
GDP from World Bank, 2021b) because productivity tends to benefit 
from countries’ outward orientation (Buccirossi et al., 2013; Miller and 
Upadhyay, 2000). Finally, we also take into account the regulatory 
quality index in World Bank (2021c), which reflects the quality of 
governance and institutions, also important in the growth process 
(Acemoglu et al., 2005; Buccirossi et al., 2013). 

3.2. Evidence of AI technology production 

The acceleration in AI technology production is reflected in the 
increasing shares of AI patents and AI publications in all patents and 
publications (Table 1). Regardless of the way patents are attributed to 
countries (by applicants/inventors – the former is used in the benchmark 
analysis), in the OECD countries there is a clear increase in the share of AI 
patents – from as little as 0.18% (0.17% by inventors) in 1985 to 1.80% 
(1.78%) in 2016. In non-OECD countries, this increase is even higher as 
they started from scratch, but at the end of the period 2.17% (2.28%) of 
their patents concerned AI. Analysis of AI scientific publications (Table 1, 
column C) reveals that their importance among all publications also 
increased and, similarly to patent data, this is more visible in non-OECD 
countries (1.09 p. p. growth) than in OECD (0.70% p. p. growth). 

Fig. 1 illustrates the boom in AI patenting activity in OECD countries 
since 1985.14 Non-OECD countries started to be active in the field of AI 
patenting later, from 1999.15 Compared to the growth rate of the total 
number of patents, the growth rate of AI patents in both OECD and non- 
OECD countries is much more intense. At the end of 2016, in OECD 
countries AI patenting activity was reflected in almost 3700 applica
tions, which is 34 times more than in 1985. In the same period, the total 
number of patents only increased 3.3 times. The increase in AI patents in 

Table 4 
The relationship between AI technology production (AI patents by applicants) and labour productivity growth, full sample (OECD and non-OECD countries).  

Dependent variable: Δln 
(

Y
L

)
Number of patent applications1 Patent stock 

OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.034*** − 0.051*** − 0.062*** − 0.089*** − 0.065*** − 0.091*** − 0.075*** − 0.124*** 
(0.011) (0.013) (0.013) (0.022) (0.017) (0.018) (0.029) (0.037) 

Δln 
(

K
L

) 0.497*** 0.506*** 0.420*** 0.442*** 0.402*** 0.429*** 0.289*** 0.266** 
(0.102) (0.099) (0.094) (0.077) (0.075) (0.072) (0.106) (0.104) 

ln 
(

AI Pat
L

) 0.003* 0.000       
(0.002) (0.002)       

ln 
(

AISTPat
L

) 0.001 − 0.002 0.001 − 0.003 0.004 0.001   
(0.003) (0.003) (0.003) (0.003) (0.005) (0.004) 

ln (GI) 0.013**  0.016*  0.017***  0.021**  
(0.007)  (0.010)  (0.005)  (0.008) 

N 1046 1046 1000 1000 956 956 361 361 
N of countries 57 57 52 52 51 51 22 22 
R-squared 0.260 0.290 0.272 0.286 0.275 0.289 0.336 0.362 
K-P rk LM (p-val)     0.000 0.000 0.000 0.000 
K-P rk Wald F     711.4 294.5 315.2 176.7 
Hansen J (p-val)       0.051 0.725 

Notes: as under Table 3. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0. 

12 AI publication activity is identified in the Elsevier/Scopus database (Zhang 
et al., 2021) using papers’ tags with keywords, publication dates, country af
filiations and other bibliographic information. Elsevier’s methodology of 
counting AI papers uses a bottom-up approach with about 800 keywords. The 
details of Elsevier’s dataset defining AI, country affiliations and AI sub
categories can be found in the 2018 AI Index Report Appendix (https://hai.sta 
nford.edu/sites/default/files/2020-10/AI_Index_2018_Annual_Report.pdf).  
13 The 15% depreciation rate set by Schankerman and Pakes (1986) is 

representative of the rate of decay in returns from patent protection. 

14 The exact numbers of AI-related patents and publications may differ across 
studies due to methodological differences in AI-patent definitions and ways of 
AI activity identification. However, the general trend of increasing AI activity 
since 1980/the 1990s has been reported in numerous sources (Baruffaldi et al., 
2020; Corrado et al., 2021; WIPO, 2019; Venturini, 2022; OECD.AI, 2022; 
USPTO, 2020).  
15 In 1999, the number of AI patents in non-OECD countries registered in the 

OECD (2021c) database exceeded 20 applications. 
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non-OECD countries is even more spectacular. In 1999, about 20 AI 
applications were filed. During the period analysed, that number 
increased 37 times and in 2016 it amounted to about 800 AI patents. The 
growing importance of these countries in AI patenting is also visible 
when we express patents as a share of employment. In non-OECD 
countries this share started growing intensively in 1999 and in 2009 it 
exceeded the analogous share recorded in OECD countries. 

To complete this description of developments in AI technology pro
duction, the increase in the number of scientific publications related to 
AI is compared to the overall trend in scientific publication activity 
(Fig. 2). Due to limited data availability, the bibliometric analysis covers 
a shorter period (1998–2017) but it is sufficient to observe a rapid 
growth of the AI phenomenon. Both for OECD and non-OECD countries 
there are periods with more than 10% year-on-year increases in the 
number of AI publications (e.g. 2014 and 2017 in OECD countries and 
2016–2017 in non-OECD countries). More importantly, the inclination 
of the lines clearly shows that while increases in the total number of 
publications are quite stable throughout the whole period, increases in 
AI scientific production became even faster after approximately 2013. 
Similarly to the absolute number of publications, the share per million 
persons employed also grew with comparative average growth rates of 
8.3% in OCED countries and 8.8% in non-OECD countries (for all pub
lications these average growth rates are 5.8% and 8.2% respectively). 

Which economies are the leaders in the production of AI technology? 
Unsurprisingly, countries with higher levels of labour productivity tend 
to be more engaged in AI patenting and publication activity. This is 
confirmed by the positive and significant correlations between the levels 
of output per hour worked and AI patenting, both for OECD countries and 
the extended group of economies reported in Table 2 (row A). This is also 
visible when the number of AI patents is considered in relative terms, per 
person employed, and in this case the correlations are even stronger. 

However, AI patenting correlates negatively with labour productiv
ity growth (Table 2, row B), which contradicts the view that AI boosts 
macroeconomic productivity growth. This correlation is weak, however, 
and even close to null regardless of which group of countries is analysed. 

Similar observations are valid when the production of AI technologies is 
proxied by AI publications (overall and per person employed). The next 
step is a more complete analysis of the relationship between produc
tivity growth and AI technology production. 

4. AI and productivity growth – empirical analysis 

4.1. The model and the estimation strategy 

To derive the empirical equation linking AI activity with produc
tivity growth, we use the basic country-level aggregate production 
function Y = AF(K, L) as the point of departure. Output Y depends on 
total factor productivity A, and is a function F of capital K and labour L. 
Capital can be both physical (tangible, directly measurable) and intan
gible. Technological solutions derived from AI are difficult to measure 
(Corrado et al., 2009, 2021), so in line with Brynjolfsson et al. (2021), 
unmeasured intangible capital investments are considered, which once 
implemented provide inputs into the production function. In the setting 
presented, U mirrors the production of AI knowledge and is quantified in 
two ways – based on AI patent activity and AI scientific activity (see 
Section 3). The extended aggregate production function, Y′

= A′F′

(K,U,

L), which includes the intangible input U, serves to derive the empirical 
model. After dividing both sides of the formula by L, log-linearising it, 
and assuming that productivity growth tends to depend on past pro
ductivity levels (a beta convergence-type mechanism: Sala-i-Martin, 
1996), we obtain the empirical model of labour productivity growth: 

Δln
(

Y
L

)

it
=β0 +β1ln

(
Y
L

)

i,t− 1
+β2Δln

(
K
L

)

it
+β3ln

(
AI
L

)

it
+β4 ln Zit +μi+υt

+εit

(1) 

The productivity growth Δln 
(

Y
L

)
for countries i and time periods t 

depends on lagged productivity levels ln 
(

Y
L

)
, growth of the capital to 

labour ratio Δln 
(

K
L

)
, AI technology production ln 

(
AI
L

)
resulting in the 

Table 5 
The relationship between AI technology production (AI patents) and labour productivity growth, OECD countries and full sample (OECD and non-OECD countries) – 
estimations with control variables.  

Dependent variable: Δln 
(

Y
L

)
OECD countries OECD & non-OECD countries 

Number of patent 
applications1 

Patent stock Number of patent 
applications1 

Patent stock 

OLS IV-GMM2 IV-GMM3 OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.075*** − 0.168*** − 0.206*** − 0.313*** − 0.064*** − 0.133*** − 0.141*** − 0.171*** 
(0.014) (0.026) (0.041) (0.064) (0.014) (0.031) (0.029) (0.043) 

Δln 
(

K
L

) 0.326*** 0.421*** 0.388*** 0.242* 0.310*** 0.411*** 0.365*** 0.213** 
(0.108) (0.091) (0.119) (0.124) (0.103) (0.086) (0.097) (0.095) 

ln 
(

AI Pat
L

) 0.002    0.001    
(0.003)    (0.003)    

ln 
(

AISTPat
L

) 0.005 0.008 0.002  0.002 0.005 0.006  
(0.005) (0.007) (0.007)  (0.004) (0.005) (0.006) 

ln (GI)
0.012* 0.025** 0.028** 0.047*** 0.021*** 0.027*** 0.022** 0.029** 
(0.007) (0.010) (0.012) (0.013) (0.006) (0.009) (0.010) (0.011) 

HC − 0.022 − 0.032 − 0.059 0.001 − 0.019 − 0.043* − 0.043 − 0.080** 
(0.037) (0.038) (0.043) (0.053) (0.022) (0.024) (0.028) (0.034) 

Trade 0.000** 0.001** 0.001*** − 0.000 − 0.000 0.000 0.000 − 0.001 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

RQ 
− 0.004 0.003 0.004 0.025** − 0.012 − 0.009 − 0.008 0.027** 
(0.010) (0.015) (0.012) (0.012) (0.009) (0.015) (0.013) (0.013) 

N 511 512 499 196 743 699 674 269 
N of countries 34 33 33 16 55 50 49 21 
R-squared 0.399 0.324 0.349 0.480 0.310 0.321 0.316 0.447 
K-P rk LM (p-val)   0.000 0.000   0.000 0.000 
K-P rk Wald F   75.41 37.95   81.15 59.56 
Hansen J (p-val)    0.701    0.357 

Notes: as under Table 3. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0. 
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creation of intangible input U and a set of other country-time specific 
characteristics (Z). Possible effects of new technology on productivity 
need time to materialise but we do not introduce a lagged AI variable 
due to significant delays in publication and patenting activity. The AI 
patents and publications observed in the data at time t actually corre
spond to earlier AI technology production. 

In a benchmark estimation of equation (1), to measure 
( Y

L
)

we 
consider labour productivity per hour worked (while productivity per 
person employed, is used in a robustness check). 

( AI
L
)

is based on alter
native indicators: the number of patents related to AI as a ratio with 

employment 
( AI Pat

L
)
, AI patent stock related to employment 

(
AIST Pat

L

)
, 

the number of AI publications and AI publication stock both measured in 

relative terms, i.e. per million persons employed 
(

AI Pub
L and AIST Pub

L

)
. In 

the regressions containing the numbers of patents and the numbers of 
publications related to employment, the data series are smoothed with 
the aid of 5-period moving averages. The set of control variables Z 
consists of: the general innovativeness (GI) of countries (measured with 
the overall number of patents/publications related to employment),16 

human capital (HC), trade openness (Trade) and the institutional mea
sure of regulatory quality (RQ) (described in Section 3.1); μi and νt 
control for all the remaining country- and time-specific fixed effects, and 
εit is a random term. A correlation matrix of all the explanatory variables 
is included in Table A2 in Appendix A while Table A3 contains summary 
statistics of the variables used in (1). 

To confirm the benchmark results, we employ numerous robustness 
checks concerning five areas – the dependent variable, explanatory 
variables, the cross-sectional dimension (OECD countries and the 
extended sample including a set of non-OECD countries), the time 
dimension and estimation techniques. Concerning the estimation 
method, basic OLS is the starting point. Then we address the problem of 
endogeneity in AI technology production (potential reverse causality) 
and switch to instrumental variable (IV) estimation. It is difficult to find 

suitable instruments for AI and the related innovation literature instead 
offers by-passing solutions to this problem.17 In a first step, we follow 
Damioli et al. (2021) and employ (i) first lags of patents and publica
tions. In a second step we consider (ii) an external instrument based on 
the share of R&D expenditure in the engineering and technology fields, 
which are presumably the ones most related to AI (from OECD, 2021c), 
matched with total R&D expenses over GDP (from OECD, 2021d). R&D 
data by field is limited so this approach, unfortunately, significantly 
limits the sample size. In a third approach (iii) we use the average 
number of patent applications by countries belonging to the same in
come group, excluding the number of patent applications from a country 
of interest. Additionally (iv), we use an IV estimation with 
heteroskedasticity-based instruments proposed by Lewbel (2012). This 
method allows us to identify the structural parameters in a model with 
endogenous regressors if traditional identifying information, such as 
external instruments or repeated measurements, are absent. We test this 
kind of instrument, as well as (v) heteroskedasticity-based instruments 
supported by the first lags of patent applications/publications, and (vi) 
heteroskedasticity-based instruments supported by instrument built 
according to the third approach described above. 

4.2. Results and discussion 

According to the basic estimates of eq. (1) (reported in Table 3), in 
OECD countries the rate of labour productivity growth is negatively 
related to lagged levels of productivity (consistently with the beta 
convergence hypothesis) and positively related to capital deepening 

Table 6 
The relationship between AI technology production (AI scientific publications) and labour productivity growth, OECD countries.  

Dependent variable: Δln 
(

Y
L

)
Number of scientific publicationsa Publication stock 

OLS IV-GMMb IV-GMMc 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.055*** − 0.059*** − 0.119*** − 0.125*** − 0.143*** − 0.149*** − 0.145*** − 0.144*** 
(0.015) (0.018) (0.015) (0.016) (0.024) (0.024) (0.029) (0.030) 

Δln 
(

K
L

) 0.355** 0.351** 0.411*** 0.414*** 0.454*** 0.456*** 0.411*** 0.411*** 
(0.139) (0.141) (0.090) (0.088) (0.076) (0.075) (0.084) (0.084) 

ln 
(

AI Pub
L

) 0.007*** 0.003       
(0.002) (0.006)       

ln 
(

AISTPub
L

) 0.024*** 0.014* 0.026*** 0.013 0.024*** 0.020**   
(0.005) (0.007) (0.008) (0.009) (0.008) (0.008) 

ln (GI) 0.010  0.027*  0.031***  0.014  
(0.015)  (0.015)  (0.011)  (0.013) 

N 560 560 695 695 660 660 318 318 
N of countries 35 35 35 35 35 35 18 18 
R-squared 0.349 0.351 0.333 0.339 0.357 0.360 0.456 0.457 
K-P rk LM (p-val)     0.000 0.000 0.000 0.000 
K-P rk Wald F     400.7 180.8 531.9 214.3 
Hansen J (p-val)       0.721 0.860 

Notes: *, ** and *** denote significance at the 1%, 5% and 10% levels respectively. Robust standard errors are provided in parentheses. All specifications contain 
country and time fixed effects. K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. 
Source: Authors’ elaboration using data from Elsevier/Scopus (Zhang et al., 2021) and PWT 10.0. 

a Estimations are based on a 5-period moving average. 
b Publications are instrumented with their first lag. 
c Publications are instrumented with the instrument described in Section 4.1 and supported by the first lag of the explanatory variable. 

16 Alternatively, we have used the measure based on non-AI technologies 
instead of overall innovation. The estimation results are strongly robust and are 
available upon request. 

17 Firm-level studies often use lags. Benassi et al. (2022) exclude contempo
raneous variables (using lags of patent-based explanatory variables) to reduce 
the problem of reverse causality. Bassetti et al. (2020) and Damioli et al. (2021) 
use lags of AI patent applications in a GMM model. Venturini (2022) relies on 
cointegration estimators and argues that reverse causality between digital 
technologies and macro level productivity is a minor concern as “intelligent” 
(4IR) technologies are produced by few global players/companies (see also the 
evidence in: EPO, 2020; WIPO, 2019; IPO, 2019; USPTO, 2020; Dernis et al., 
2019; Van Roy et al., 2020), whose patenting activity is determined internally 
rather than by external (country-level) conditions. 
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(growth in K
L). Obviously, our key interest is in the potential growth- 

enhancing effects of AI knowledge production. According to basic OLS 
estimates (reported here just for comparison), productivity growth in 
OECD countries is linked in a statistically significant way neither to AI 
patenting level nor to AI patent stock, both of which are related to 
employment (columns 1–4). In the IV setting (columns 5–8; the quality 
of instruments is confirmed by weak identification tests, under
identification tests and overidentification tests of all instruments),18 a 
lack of a significant relationship between AI patent stock and produc
tivity growth is confirmed regardless of how we consider AI patents, 
separately or controlling for them with the aid of a measure of countries’ 
overall innovation. Similar conclusions are obtained for the wider 
sample of OECD and non-OECD countries (Table 4). The results are 
robust to particular changes in the method of IV estimation. 

Table 5 reports estimates of model (1) with additional control vari
ables corresponding to factors that are likely to influence the produc
tivity growth process: human capital (HC), country trade openness 
(Trade) and regulatory quality (RQ). Including them does not affect the 
key coefficients: the relationship between AI patenting activity and 
productivity growth is negligible. Once the production of AI technolo
gies is quantified using AI-related bibliometric records we observe a 
positive and significant relationship between AI publications and pro
ductivity growth in both OECD and non-OECD countries (Table 6 and 
Table 7), which indicates that bibliometric data can capture other wider 
types of AI innovation than patents can. 

Table B1 and Table B2 (in Appendix B) show the results of further 
robustness checks. Country-level indicators of AI patenting activity by 
employment are obtained using the identification of inventors instead of 
applicants. For OECD countries the results confirm the conclusions 
presented in Table 3. For non-OECD countries the slightly positive co
efficient associated with AI patents disappears once we control for 

countries’ overall innovativeness. Next, in Table B3 we consider an 
alternative measure of labour productivity (per million persons 
employed). Finally, we check the results with the period of the analysis 
split in two sub-periods (1985–2000 and 2001–2016, Table B4), and 
with the same time frame for both types of data (sticking to 1996–2016, 
as in the AI publications models, Table B5). We also consider different 
instruments for scientific activity as described in section 4.1 (Table B6). 
None of these modifications alter the general conclusion: despite the 
undeniable growth in the production of AI knowledge reflected in patent 
and bibliometric records, we do not find strong support for the view that 
knowledge accumulated in AI patent stocks plays a role in the produc
tivity growth process, either in OECD countries or in a wider sample. 

However, other mechanisms can be at play at the micro and sectoral 
level. Patents associated with the 4IR, including AI patents, can have a 
positive effect on companies’ labour productivity (Benassi et al., 2022; 
Damioli et al., 2021); AI innovation in firms produces strong learning 
effects (Igna and Venturini, 2023) while adoption of digital technologies 
in an industry can be associated with productivity gains at the firm level 
(Gal et al., 2019). Our results can also differ from estimates using 
broader patent stock data in which AI patents are combined with other 
technological fields attributed to the 4IR (Venturini, 2022; Benassi et al., 
2022). 

5. Conclusions 

An increasing body of empirical literature documents the puzzling 
mismatch between expectations related to the production and diffusion 
of modern digital technologies on the one hand and the poor reflection 
of them in official productivity records of many countries on the other. 
Evidence on the modern productivity paradox referring explicitly to the 
effects of AI technologies is still scant. Our study has differed from other 
works on the productivity-digital technology nexus in that (i) it explic
itly focuses on AI technologies (while the cross-country literature on the 
‘modern productivity paradox’ refers mainly to an earlier wave of 
technological progress, namely ICT); (ii) it quantifies the importance of 
highly intangible AI solutions using both patent and publication data; 
and (iii) it provides a complete international picture of the AI 
innovation-productivity nexus comparing developments in the OECD 
countries with a wider non-OECD sample from the mid-1980s onwards 
(while the related literature is country-specific and/or only focuses on 
industrialised countries). 

Table 7 
The relationship between AI technology production (AI scientific publications) and labour productivity growth, full sample – OECD and non-OECD countries.  

Dependent variable: Δln 
(

Y
L

)
Number of scientific publications1 Publication stock 

OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.052*** − 0.053*** − 0.105*** − 0.109*** − 0.110*** − 0.111*** − 0.108*** − 0.112*** 
(0.009) (0.010) (0.015) (0.015) (0.014) (0.015) (0.022) (0.023) 

Δln 
(

K
L

) 0.409*** 0.410*** 0.494*** 0.491*** 0.471*** 0.470*** 0.390*** 0.392*** 
(0.091) (0.091) (0.068) (0.068) (0.057) (0.057) (0.074) (0.075) 

ln 
(

AI Pub
L

) 0.006 0.004       
(0.003) (0.005)       

ln 
(

AISTPub
L

) 0.020*** 0.015* 0.019*** 0.016*** 0.022*** 0.017**   
(0.005) (0.008) (0.005) (0.006) (0.008) (0.008) 

ln (GI) 0.003  0.013  0.007  0.014  
(0.009)  (0.011)  (0.009)  (0.013) 

N 969 969 1216 1216 1154 1154 445 445 
N of countries 63 63 63 63 63 63 25 25 
R-squared 0.313 0.314 0.319 0.321 0.322 0.322 0.393 0.394 
K-P rk LM (p-val)     0.000 0.000 0.000 0.000 
K-P rk Wald F     1266 406.1 623.6 243.1 
Hansen J (p-val)     . . 0.934 0.887 

Notes: as under Table 6. 
Source: Authors’ elaboration using data from Elsevier/Scopus (Zhang et al., 2021) and PWT 10.0. 

18 For the external instrument ((iii) approach to build instruments) used in IV 
regression, for IV method with heteroskedasticity-based instruments in its basic 
form, and for IV method with heteroskedasticity-based instruments supported 
with the external instrument (iii), the post-estimation tests for under- 
identification and weak identification fail to reject the null hypothesis. The 
results are available upon request. The estimation results based on (vi) 
approach that uses heteroskedasticity-based instruments supported by external 
instrument built according to (iii) are presented in the Appendix, Table B6 and 
are treated as a robustness check. 
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By comparing AI data with productivity records we have shown that 
an increase in patenting and scientific activity can indeed be observed in 
the AI domain. However, this activity is at odds with evidence on pro
ductivity growth. Our results point towards negligible macro-level ef
fects of AI technology production, especially of that reflected in patent 
records. This result characterises OECD countries but they do not differ 
from the rest of the world, as is shown by our wider estimates also taking 
into account non-OECD countries. 

Our results, confirming the niche character of AI, enrich the findings 
assessing the long-run productivity effects of broader 4IR technologies 
encompassing AI among other domains (Benassi et al., 2022; Venturini, 
2022). We need to be aware, though, that the way we can measure the 
impact of AI technologies is still imperfect and potentially under
estimating the fully global digital economy (Growiec, 2022b: 118). 
Moreover, our study needs to be read in the context of related 
micro-level evidence. Even if the engagement of countries in the pro
duction of knowledge leading to AI technological innovation is not 

(yet?) reflected in their aggregate productivity growth records, as this 
study has shown, productivity gains and learning effects from AI can be 
manifested within firms (Benassi et al., 2022; Damioli et al., 2021; Gal 
et al., 2019; Igna and Venturini, 2023). At the microeconomic level 
digital technologies can even accelerate the recovery of production to 
pre-COVID-19 levels (Cugno et al., 2022). 

Data availability 

The data along with the codes will be available through the institu
tional data repository (https://doi.org/10.34808/rjk6-ry03). 
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Appendix A  

Table A.1 
List of countries  

Group of countries (number of 
countries) 

Countries 

OECD (35)1) Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, 
Israel, Italy, Japan, Republic of Korea, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, Slovenia, 
Spain, Sweden, Switzerland, Turkey, United Kingdom, United States 

non-OECD (28)2) Argentina, Brazil, Bulgaria, China (People’s Republic of), China Hong Kong SAR3), Colombia, Costa Rica, Croatia, Cyprus, Ecuador, India, 
Indonesia, Jamaica, Lithuania, Malaysia, Malta, Pakistan, Peru, Philippines, Romania, Russian Federation, Singapore, South Africa, Sri Lanka, 
Taiwan3), Thailand, Uruguay, Venezuela 

Note: 1) The OECD group includes countries that were OECD members at the end of the research period, i.e. at the end of 2017, thus it does not classify Colombia, Costa 
Rica, and Lithuania as OECD economies; 2) the analysis based on AI scientific publications uses all listed non-OECD countries. Due to data limitations, the analysis using 
AI patent data includes only countries that are underlined 3) original data sources (OECD, Penn World Table) report separate statistics for these territories despite their 
complex political status and/or relationship with China. The patent data in the OECD (2021c) is reported separately for China (People’s Republic of), Hong Kong - 
Special Administrative Region of China, and Chinese Taipei (TWN). Penn World Table (PWT 10.0, Feenstra et al., 2015) reports separate productivity statistics for 
China; China Hong Kong SAR, and Taiwan (TWN).  

Table A.2 
Pairwise correlations between explanatory variables   

ln 
(

K
L

)

ln 
(

AI Pat
L

)

APP ln 
(

AI Pat
L

)

INV ln 
(

AI Pub
L

)

ln 
(

AIST Pat
L

)

APP ln 
(

AIST Pat
L

)

INV 

ln 
(

K
L

)
1      

ln 
(

AI Pat
L

)

APP 
0.2359* 1     

ln 
(

AI Pat
L

)

INV 
0.2928* 0.9610* 1    

ln 
(

AI Pub
L

)
0.6012* 0.2575* 0.3764* 1   

ln 
(

AIST Pat
L

)

APP 
0.2896* 0.9217* 0.9080* 0.3381* 1  

ln 
(

AIST Pat
L

)

INV 
0.3720* 0.8968* 0.9354* 0.4302* 0.9125* 1 

ln 
(

AIST Pub
L

) 0.5896* 0.2797* 0.4132* 0.9730* 0.3398* 0.4693* 

ln (GI Pat) 0.6768* 0.7673* 0.7875* 0.5983* 0.7995* 0.7900* 
ln (GI Pub) 0.6449* 0.4628* 0.6031* 0.8448* 0.5231* 0.6486* 
HC 0.2781* 0.5310* 0.5652* 0.3933* 0.4798* 0.6191* 
Trade 0.3042* 0.1918* 0.0980* 0.2283* 0.1499* 0.0798* 
RQ 0.3925* 0.4765* 0.5381* 0.3692* 0.5545* 0.6033*   

ln 
(

AIST Pub
L

) ln (GI Pat) ln (GI Pub) HC Trade RQ 

ln 
(AIST Pub

L

) 1      

ln (GI Pat) 0.6120* 1     
ln (GI Pub) 0.8665* 0.7655* 1    

(continued on next page) 
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Table A.2 (continued )  

ln 
(

AIST Pub
L

) ln (GI Pat) ln (GI Pub) HC Trade RQ 

HC 0.4178* 0.6404* 0.5868* 1   
Trade 0.1528* 0.1669* 0.0663* 0.1547* 1  
RQ 0.3342* 0.6113* 0.5672* 0.5064* 0.1799* 1 

Note: * correlations significant at the 10% level. Correlations were calculated using a sample of OECD countries. APP refers to patents by applicants, INV refers to 
patents by inventors.  

Table A.3 
Summary statistics for the variables employed in the empirical model (eq. (1))   

Sample: OECD countries 

Variable Obs Mean Std. Dev. Min Max 

Δln 
(

Y
L

)

per mil hours worked 
1067 0.0252 0.0396 − 0.1788 0.2341 

Δln 
(

Y
L

)

per mil persons employed 
1095 0.0223 0.0420 − 0.2776 0.2371 

ln 
(

K
L

)
1102 5.3641 0.5425 3.3437 6.1937 

ln 
(

AI Pat
L

)

APP 
661 − 7.4707 1.5255 − 13.4920 − 4.3902 

ln 
(

AI Pat
L

)

INV 
713 − 7.5629 1.5035 − 13.3582 − 4.6190 

ln 
(

AI Pub
L

)
693 − 4.1367 0.8907 − 7.5803 − 2.4903 

ln 
(

AIST Pat
L

)

APP 
753 − 6.1734 1.6691 − 12.2431 − 2.9458 

ln 
(

AIST Pat
L

)

INV 
825 − 6.3283 1.6382 − 12.8581 − 2.9814 

ln 
(

AIST Pub
L

) 695 − 2.6775 0.9851 − 6.3222 − 1.0777 

ln (GI Pat) 1066 − 1.5892 2.1103 − 9.3829 1.2106 
ln (GI Pub) 700 2.0932 0.9251 − 1.1019 3.6010 
HC 1130 3.0913 0.4173 1.7016 3.8071 
Trade 1089 81.826 50.742 15.810 408.36 
RQ 665 1.2786 0.4477 0.0351 2.0980  

Sample: OECD & non-OECD countries 
Variable Obs Mean Std. Dev. Min Max 

Δln 
(

Y
L

)

per mil hours worked 
1844 0.0270 0.0489 − 0.2660 0.2699 

Δln 
(

Y
L

)

per mil persons employed 
2909 0.0198 0.1195 − 2.6832 1.9689 

ln 
(

K
L

)
1910 4.7776 1.0025 1.8120 6.1937 

ln 
(

AI Pat
L

)

APP 
861 − 7.9732 1.9569 − 14.5201 − 4.3902 

ln 
(

AI Pat
L

)

INV 
953 − 8.1393 1.9404 − 15.2881 − 4.6190 

ln 
(

AI Pub
L

)
1198 − 4.9412 1.7210 − 11.3604 − 2.2619 

ln 
(

AIST Pat
L

)

APP 
1010 − 6.8452 2.2017 − 14.3949 − 2.9458 

ln 
(

AIST Pat
L

)

INV 
1169 − 7.1415 2.1583 − 13.6259 − 2.9814 

ln 
(

AIST Pub
L

) 1219 − 3.5962 1.9023 − 10.6454 − 0.8520 

ln (GI Pat) 1829 − 3.2134 2.9628 − 11.0590 1.2106 
ln (GI Pub) 1234 1.1076 1.7140 − 4.7007 3.6010 
HC 2712 2.6855 0.5819 1.2079 3.9742 
Trade 2773 85.273 60.845 9.1358 442.62 
RQ 1767 0.4888 0.9264 − 2.2362 2.2605 

Note: For the list of countries, see Appendix A(Table A1). APP refers to patents by applicants, INV refers to patents by inventors. 
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Appendix B. Robustness checks  

Table B.1 
The relationship between AI technology production stock (measured by AI patents by inventors) and labour productivity growth, OECD countries  

Dependent variable: Δln 
(

Y
L

)
Patent stock 

OLS IV-GMM1) IV-GMM2) 

(1) (2) (3) (4) (5) (6) 

ln 
(

Y
L

)

t− 1 

− 0.079*** − 0.098*** − 0.080*** − 0.097*** − 0.110*** − 0.193*** 
(0.022) (0.026) (0.019) (0.022) (0.029) (0.038) 

Δln 
(

K
L

) 0.467*** 0.483*** 0.440*** 0.456*** 0.350*** 0.361*** 
(0.103) (0.099) (0.079) (0.079) (0.108) (0.105) 

ln 
(

AISTPat
L

) 0.001 − 0.001 − 0.001 − 0.002 0.004 0.005 
(0.003) (0.003) (0.003) (0.003) (0.005) (0.004) 

ln (GI Pat)
0.014*  0.013**  0.026***  
(0.008)  (0.006)  (0.008) 

N 818 818 791 791 309 309 
N of countries 34 34 34 34 17 17 
R-squared 0.317 0.325 0.301 0.309 0.384 0.422 
K-P rk LM (p-val)   0.000 0.000 0.000 0.000 
K-P rk Wald F   823.3 365.3 102.2 87.30 
Hansen J (p-val)   . . 0.093 0.997 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; all specifications contain country and 
time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. 1) Patents are instrumented with the aid of 
their first lag, 2) Patents are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory variable. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0.  

Table B.2 
The relationship between AI technology production stock (measured by AI patents by inventors) and labour productivity growth, full sample OECD and non-OECD 
countries  

Dependent variable: Δln 
(

Y
L

)
Patent stock 

OLS IV-GMM1) IV-GMM2) 

(1) (2) (3) (4) (5) (6) 

ln 
(

Y
L

)

t− 1 

− 0.064*** − 0.090*** − 0.064*** − 0.091*** − 0.080*** − 0.114*** 
(0.014) (0.017) (0.013) (0.016) (0.023) (0.027) 

Δln 
(

K
L

) 0.508*** 0.508*** 0.487*** 0.493*** 0.384*** 0.368*** 
(0.079) (0.075) (0.062) (0.061) (0.087) (0.085) 

ln 
(

AISTPat
L

) 0.003 − 0.000 0.004* 0.000 0.010** 0.006 
(0.003) (0.002) (0.002) (0.003) (0.004) (0.004) 

ln (GI Pat)
0.016**  0.017***  0.017**  
(0.006)  (0.004)  (0.007) 

N 1159 1159 1111 1111 427 427 
N of countries 56 56 55 55 23 23 
R-squared 0.282 0.295 0.274 0.288 0.332 0.347 
K-P rk LM (p-val)   0.000 0.000 0.000 0.000 
K-P rk Wald F   1127 445.8 290.8 124.8 
Hansen J (p-val)     0.118 0.949 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; all specifications contain country and 
time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. 1) Patents are instrumented with the aid of 
their first lag, 2) Patents are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory variable. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0.  

Table B.3 
The impact of AI technology production (measured by AI patents stock by applicants and by AI scientific publications stock) on labour productivity (output per number 
of persons employed) for OECD countries and full sample OECD and non-OECD countries  

Dependent variable: Δln 
(

Y
L

)
Patent stock Publication stock 

OECD countries OECD & non-OECD countries OECD countries OECD & non-OECD countries 

IV-GMM1) IV-GMM2) IV-GMM1) IV-GMM2) IV-GMM1) IV-GMM2) IV-GMM1) IV-GMM2) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.113*** − 0.211*** − 0.008 − 0.062** − 0.150*** − 0.150*** − 0.023 − 0.105*** 
(0.023) (0.033) (0.054) (0.027) (0.024) (0.029) (0.066) (0.021) 

Δln 
(

K
L

) 0.358*** 0.150 0.426*** 0.340*** 0.379*** 0.311*** 0.491*** 0.372*** 
(0.112) (0.136) (0.101) (0.122) (0.098) (0.101) (0.069) (0.090) 

ln 
(

AISTPat
L

) − 0.002 − 0.008* 0.007 0.003     
(0.004) (0.004) (0.005) (0.005)     

(continued on next page) 
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Table B.3 (continued ) 

Dependent variable: Δln 
(

Y
L

)
Patent stock Publication stock 

OECD countries OECD & non-OECD countries OECD countries OECD & non-OECD countries 

IV-GMM1) IV-GMM2) IV-GMM1) IV-GMM2) IV-GMM1) IV-GMM2) IV-GMM1) IV-GMM2) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

AISTPub
L

) 0.025*** 0.023*** 0.009 0.021***     
(0.008) (0.007) (0.007) (0.008) 

N 720 260 1035 363 660 318 1641 448 
N of countries 33 16 57 22 35 18 90 25 
R-squared 0.334 0.446 0.203 0.348 0.371 0.462 0.152 0.420 
K-P rk LM (p-val) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
K-P rk Wald F 567.3 122.9 1092 318.1 398.9 514.9 2941 618.2 
Hansen J (p-val) . 0.208 . 0.043 . 0.766 . 0.828 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; all specifications contain country and 
time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per number of persons employed. 1) Publications are 
instrumented with the aid of their first lag, 2) Publications are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory 
variable. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0.  

Table B.4 
The relationship between AI technology production (measured by AI patents) and labour productivity growth, two sub-periods: 1985–2000 and 2001–2016.  

Dependent variable: Δln 
(

Y
L

)
Patent stock 

Time period: 1985–2000 Time period: 2001–2016 

OECD countries OECD & non-OECD countries OECD countries OECD & non-OECD countries 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln 
(

Y
L

)

t− 1 

− 0.162*** − 0.266*** − 0.184*** − 0.280*** − 0.196*** − 0.220*** − 0.126*** − 0.143*** 
(0.025) (0.056) (0.028) (0.086) (0.037) (0.053) (0.024) (0.037) 

Δln 
(

K
L

) 0.104 0.034 0.205 0.122 0.440*** 0.367*** 0.352*** 0.274** 
(0.144) (0.199) (0.140) (0.211) (0.101) (0.114) (0.089) (0.118) 

ln 
(

AISTPat
L

) − 0.001 0.008 − 0.007 0.005 0.001 − 0.002 0.002 0.006 
(0.004) (0.008) (0.005) (0.010) (0.007) (0.007) (0.005) (0.007) 

N 260 76 299 99 460 184 656 262 
N of countries 23 7 27 10 33 16 51 22 
R-squared 0.282 0.435 0.259 0.339 0.339 0.465 0.319 0.421 
K-P rk LM (p-val) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
K-P rk Wald F 717.0 147.1 702.9 103.9 102.4 47.47 166.6 117.6 
Hansen J (p-val)  0.135  0.195  0.322  0.818 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; all specifications contain country and 
time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. Columns (1,3,5,7) – patents are instrumented 
with the aid of their first lag, Columns (2,4,6,8) – patents are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory 
variable. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0.  

Table B.5 
The relationship between AI technology production (measured by AI patents) and labour productivity growth, sub-period: 1998–2016.  

Dependent variable: Δln 
(

Y
L

)
Patent stock Time period: 1998–2016 

OECD countries OECD & non-OECD countries 

(1) (2) (3) (4) 

ln 
(

Y
L

)

t− 1 

− 0.133*** − 0.139*** − 0.093*** − 0.106*** 
(0.032) (0.045) (0.022) (0.034) 

Δln 
(

K
L

) 0.353*** 0.133 0.379*** 0.271** 
(0.115) (0.135) (0.090) (0.120) 

ln 
(

AISTPat
L

) 0.001 − 0.007 0.005 0.009 
(0.006) (0.006) (0.004) (0.005) 

N 566 215 783 308 
N of countries 33 16 51 22 
R-squared 0.303 0.400 0.285 0.366 
K-P rk LM (p-val) 0.000 0.000 0.000 0.000 
K-P rk Wald F 223.5 79.11 378.4 242.3 
Hansen J (p-val)  0.096  0.221 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; all specifications 
contain country and time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. 
Columns (1,3) – patents are instrumented with the aid of their first lag. Columns (2,4) – patents are instrumented with the aid of instrument described 
in Section 4.1 and supported by first lag of explanatory variable. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0.  
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Table B6 
The relationship between AI technology production (AI patents) and labour productivity growth, OECD countries and full sample (OECD and non-OECD countries) – 
estimation with an alternative instrument   

OECD countries OECD & non-OECD countries 

(1) (2) (3) (4) (5) (6) 

ln 
(

Y
L

)

t− 1 

− 0.113*** − 0.118*** − 0.359*** − 0.050*** − 0.068*** − 0.294*** 
(0.016) (0.014) (0.047) (0.013) (0.013) (0.043) 

Δln 
(

K
L

) 0.379*** 0.444*** 0.470*** 0.392*** 0.408*** 0.306*** 
(0.078) (0.070) (0.094) (0.071) (0.061) (0.087) 

ln 
(

AISTPat
L

) − 0.002 − 0.001 0.005 − 0.001 − 0.003 0.003 
(0.003) (0.002) (0.006) (0.002) (0.002) (0.004) 

ln (GI Pat)
0.009** 0.033**  0.009** 0.043***  
(0.004) (0.014)  (0.003) (0.012) 

HC   
0.008   0.001   
(0.007)   (0.007) 

Trade   
0.001**   0.000   
(0.000)   (0.000) 

RQ   
− 0.004   0.001   
(0.012)   (0.014) 

N 720 720 283 956 956 370 
N of countries 33 33 30 51 51 40 
R-squared 0.303 0.307 0.474 0.270 0.280 0.458 
K-P rk LM (p-val) 0.000 0.000 0.005 0.000 0.000 0.001 
K-P rk Wald F 62.23 45.04 22.53 74.96 51.95 17.37 
Hansen J (p-val) 0.730 0.236 0.910 0.948 0.539 0.551 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; all specifications contain country and 
time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based on productivity per hour worked. Patents are instrumented with 
heteroskedasticity-based instruments supported by first lag of patent applications. 
Source: Authors’ elaboration using data from OECD (2021c), World Bank (2023), and PWT 10.0. 
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