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Abstract

This article is intended to analyze forced vibrations of a piezoelectric-piezomagnetic ceramic
nanoplate by a new refined shear deformation plate theory in conjunction with higher-order nonlocal
strain gradient theory. As both stress nonlocality and strain gradient size-dependent effects are taken
into account using the higher-order nonlocal strain gradient theory, the governing equations of the
composite nanoplate are formulated. When the nanoplate is subjected to a transverse harmonic
loading and all the edges are considered as simple boundaries, the governing equations can be solved
with a closed-form solution, from which the maximum dynamic deflections are obtained. To validate
the results of the new proposed plate theory, the comparisons between ours and the well-known
papers in the literature are presented. The influences of different nonlocal parameters and material
properties on the nanoplate’s dynamic responses are also studied.

1. Introduction

Due to their amazing features such as high temperature stability, high strength and high corrosion resistance,
special magnetic and electrical properties (piezoelectricity, superconductivity, insulating or semiconducting and
etc), the advanced nanoceramics are on the list of the crucial and strategic components in many industries. For
example, in the aerospace industry, the resistance of these materials against heat is so important, and also in the
electronic and communications industries, due to their good optical and electrical properties, they are
considered as important components [1, 2].

BaTiOj; is one of the useful nanoceramics for various applications. The experimental studies on this material
showed that it has excellent optical properties [3, 4] and also structural studies showed its amazing elastic and
heat properties [5]. It is interesting when we got the electromagnetic nanostructure by combining BaTiO; with
CoFe,0, in order to achieve novel materials. During the past decade such a material was made by routine
industrial ceramic manufacturing methods within which the new material has both magnetic and electric
reactions in its molecular structures [6—10]. Of course, considering mechanical behavior of such a new material
can have advantages for advanced industries. Although there have been a wide range of studies about assessing
mechanical behavior of nanostructures, electromagnetic nanostructures have been far from the attention of
researchers around the world yet. This might be because of complicate behavior of such materials that leads to
complex computational formulation to examine them. Ke et al [11] modeled a piezoelectric nanobeam on the
basis of nonlocal elasticity theory of Eringen. They studied natural frequencies for thick nanobeams. In another
study, Ke et al [12] investigated stability and post stability of piezoelectric nanobeams in electrical and thermal
environments. Critical bucklingloads and natural frequencies of nanoplates included piezoelectricity were
evaluated by Jiang and Yan [13]. In a special case, Fang and Zhu [14] embedded a nonhomogeneous shell in a
medium with piezoelectricity property and calculated its natural frequencies. Fang et al [15] studied the impact

©2018 IOP Publishing Ltd
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of surface energy for orthotropic tube nanoshells and its nonlinear frequencies were computed. Bidirectional
stability of natural frequencies of double-layered nanoplates rested on visco-Pasternak substrate were analyzed
in electrical and magnetic environments by Jamalpoor et al [ 16]. Their problem was modelled by classical plate
theory and nonlocal elasticity one. Post stability of a rectangular nanoplate incorporates both electrical and
magnetic properties was investigated by Gholami and Ansari [17]. They applied higher-order shear
deformations theories by using various functions such as Parabolic, Trigonometric, Hyperbolic and Exponential
for several boundary conditions. The nonlocal elasticity theory of Eringen was accompanied with the equations
and generalized differential quadrature method was employed to calculate the deflections of post buckling. Arefi
and Zenkour [18] dynamically modeled a nanocomposite plate in electrical and magnetic environments which
was placed on a visco-Pasternak medium. Natural frequencies were obtained whilst the small scale effects were
considered by nonlocal continuum theory. Barati and Shahverdi [19] presented forced vibration of a
heterogeneous nanoporous plate by combining a modified shear deformation plate theory and lower-order
strain gradient model. Galerkin’s method was considered to solve the equations. Ebrahimi and Barati [20]
studied damping vibration of graphene sheets by applying lower-order strain gradient theory on a higher-order
refined plate theory. The DQM was used to obtain numerical results for fully simply supported boundary
conditions. Also, there have been done many valuable research within which the nanostructures have been
investigated in various conditions [21-35].

This work provides and reports a new refined first-order shear deformation theory to assess excitation
frequencies for electromagnetic nanoplates. The nanoplate is exposed to a transverse dynamic harmonic load
and stayed in electrical and magnetic environments. By using nonlocal strain gradient theory the stress
nonlocality and strain gradient size-dependent effects are taken into account. Moreover, the Navier solution
technique is applied to solve the forced vibration equations considering fully simply-supported edges.
Eventually, the dynamic deflections are obtained for various conditions and some new results are presented in
this category.

2. Mathematical modeling

2.1. A new one variable shear deformation plate theory (OVFSDT)
Figure 1 illustrates a continuum nanoplate which is subjected to magnetic (1/o) and electric (¢y) fields on its
upper and lower layers. A transverse dynamic load uniformly acted on the nanoplate g(f). The three-
dimensional picture of the nanoplate shows L, for its length, L, for its width, and & represents its thickness,
respectively.

Initially, according to the first-order shear deformation theory (FSDT), the displacement field of the
nanoplate can be defined as follows [36]:

Ux, y, 2, t) ulx, y, t) + zo(x, y, t)
Vi, y, 2, t) p=3v(x p, t) + z2h(x, p, 1) e))
W, y, 2, t) w(x, y, t)

In which u, vand ware the displacement vectors of mid-surface in x, y and z directions, respectively. In
addition, for the angles of rotation of the elements of the nanoplate around y and x axis, ¢ and v are defined,
respectively. First, let us reconsider the simple first-order shear deformation theory (S-FSDT) within which it
was assumed [37-42]:

w = w(bending) + w(shear) 2)
Moreover, the ¢ and 1 angles were expressed as follows:
_Owy
2 0x
{ ¥ } N ©
dy
Substituting equations (2), (3) in equation (1) the displacement field of the S-FSDT is presented [37-42]:
u (x’ y’ t) — ZM
U, y, z, t) Ox
V(X, Y, 2, t) 'V(X, ¥, t) _z 6Wb (X, Y t) (4)

W(x, y, z, t) Oy
wp(x, ¥, t) + wi(x, y, 1)
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Figure 1. (a) Composite nanoceramics plate subjected to magnetic and electric fields in 3D Cartesian coordinate system,
(b) Distribution of the transverse dynamic load on the nanoplate.

The expression w = wj, + w; might lead to some ambiguities, since the visualization of shear deflection is

hard. That’s why, equation (5) would be refined:

ux, y, 1) — 220 E 1D
U(x, y, z, t) Ox
Vi(x, y,2 1) v, y, 1) — LOWs (%, 3, 1)
W(x, y, z, t) dy

Wb(x> )2 t) + w’

As itis clear, the bending deflection is a conceptual item to capture the parametric value of the shear
deflection. So, the bending deflection can be used to find the non-numerical value of wy:

Nix . P
AnAp, 0 0 0 0 0 O Oy
Ny
N ApnAp 00 0 0 0 0 %
i 0 0 A66 0 0 0 0 O Oxy
Mx| _| 0o 0 0 PuD2 0 0 0 th/zsz 1,
M,, 0 0 0 DuDy 0 0 0 _n2 | 9%
M, 00 0 0 0Ds 00 Oy Z
Q 0 0 0 0 0 0 AuO Oy
y
[ 000 0 0 0 0 0 Au (0%
| Qx|
Let us use the fourth equation of FSDT in order to calculate w;based on wy;:
oM. oM.
= + — Qx =0
Ox y
Imposing equation (6) into equation (7), we have:
O*wy 0wy, Oow,
Dy p + (D12 + Des) PR 0

)

(6)

)

®)

Integrating equation (8) based on x, ignoring the integral constants and then simplifying, the shear deflection

is captured as:
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(92Wb 82wb
wy=W' =A + B 9
Ox? y? ®
where A and B parameters are explained:
A:ﬂ,BZ—DU"FD“ (10)
44 Agg
Then, the new shear deformation plate theory can be obtained as follows:
u(x’ )/, t) — ZW
X
vy, 2 1) Owo(x, y, 1)
Now: wy, = wo; A VX, 1, 2, 1) p =3V p5 1) — ZT - (11)
W(x, y, z, 1)
azwo (x) Vs t) 821"/0 (x) Vs t)
wolx, y, t) + A + B
{ o7, 9 Ox? ay*
Here, the potential energy of the plate (V') would be derived according to the Hamilton’s principle as
below [43]:
t
6V:(5f S+ 90— Tydi=0 (12)
0

where 08 is the variation of strain energy and for the variation of kinetic energy 6T has been allocated, and also 6V
is the variation of works done by external forces. The strain energy by kronecker delta would be calculated:

5S = /] (0jj6eij — DxOEx — BréHp)dV = 0 (13)

In which the magnetic displacement and field are By and Hy, the electric displacement and field are Dy and
Ey, and also the stress and strain tensors are oj; and €;;, respectively as follows [16-18, 37, 44, 45].

ij = Ciien — exijEx — q;;;Hk (14)
D; = ejnen + kijEx + djiHi (15)
Bi = qyen + dijEx + n;Hk (16)

Inwhich & is the dielectric tensor, g, p shows the piezomagnetic tensor, ey ;; depicts the piezoelectric tensor,
Cij represents the elastic tensor and d;; denotes the electro-magnetic tensor, respectively. These tensors are
developed below:

u w1 P Pwo  Ow ’
Ox Ox? 20 ox Oxdy? Ox
v w1 Pwe O Iw)
?‘x Jy y? 2\ ox*0y oy? Oy
»
Yaz p = < A83W0 B 0wy > (17)
Yz Ox3 Oxdy?
Vxy A 83W0 63W0
Ox*0y dy?
2 3 3 3 3
a_u @7223W0+A8W0+38W0 Jr% A@wo JrBaWOJr%
dy  Ox Oxdy ox? Oxdy*  Ox Ox*y oy? Ay
[0 0 &,
0 0 €31
esi=|eas 0 o | ew=ex’ (18)
0 @e&s 0
[0 0 o
[0 0 gy
0 0 g .
Qij = | D5 _0 0 | 9~ dim (19)
0 495 0
0o o o]
4
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reﬂ ~ Gizess )
Css
P €15
€31 K11
515 2
E]] K33 + =22
= 33
K33
7 G333
31 q3 —
135 ’=4q G ¢ (20)
i dlS
3 11
33 q €33
7l dss + =2
n Cas
k7733, T
2
933
N33 + ——
370 )
Fi1 0 0 d; 0 0 m, 0 0
k=0 Ru 0 | dij: 0 d, 0| Ny = 0 7 O (21)
0 0 E33 0 0 6_l33 0 0 7_733
In order to define the magnetic and electric potentials, the following linear relations were presented [16—18,
37,44, 45].
— 2
D(x, y,2) = — cos(%)@(x, y) + %’SO (22)
— 2
Y(x, y,2) = — cos(%)\ll(x, y) + ZT% (23)

In which ®(x, y) and ¥(x, y) denote the electric and magnetic displacements and also ¢, and ), represent
electric and magnetic voltages, respectively. Afterwards, the electromagnetic field can be developed below:

(93 | (WZ)@CD ]
el cos| —|—
o Ox h ) ox
E = Fy = —8—@ - =< COS(E)a—Q) 3 (24)
E Oy h ]y
_ 0% I sin(lz)¢ _ 2%
Oz L h h
(7 (WZ)G\II ]
7= cos 7 ) ax
H, g% oy
Hi={H =3——¢ =1 cos(w—z)— - (25)
T Oy h ] 0y
_o¥ 7zsin(ﬂ) ~ M
L 82; L h h h 7

The kinetic energy of the plate would be expressed [19, 20, 43]:

1 h/2 Uy (av)2 (aw)2
T=— DI —| +|—=—| +|—= |dzdA =0 26
2 »[,;L[h/z plz )(( ot ) ot ot ? (26)
So the kinetic energy in variational form would be expanded as follows:
h/2 0w, 0*w, 0*w, 0w, 0w, 0w,
6T = D -y — s - S - A - B A
fAL/z Ptz )[[ “ocor T oo or ox'or | oylar . oxior

64W0 o 66W0
Oy*ot? Ox20y?0t?

— 2B

]5w0]dsz =0 27)
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In which the mass moments of inertias are presented in the following:
h/2
U b= [ pa T, 2z (28)
—h/2

If §V = 0, then the nonlinear constitutive equations of motion can be obtained below:

2 ZM ZMx 3 3 3 3
6WO:O;—8MX—8 y_za y+A3Qx Ban AaQy BaQy
Ox? dy? Oxdy ox3 Ox0y? Ox*0y ay?

+ N, [Az 86W0 86W0 8 Wo 86W0 84W0 84W0
x

+ B? + + 2AB + 24 + 2B
Ox° ox*oy*  Ox? Ox*0y? ox* Ox*0y?

%w Oy 0w, 5w, 9wy 84w0)
)

+ N,| A + B? + 4+ 2AB + 24 + 2B

y( Oxoy? oyt oy? dx20y* Ox20y? oy’
6 6 4 6 4

0 Wo + 4AB 0 Wo + 4A 0 Wo + 232 0 Wo + 4B 0 Wo Wo

Ox>0y Ox30y? Ox3dy Ox0y® Ox0y? Oxdy

[ 64W0 84‘W0 )_ I (62W0 —|—A2 86W0 + B2 66W0 84W0

— + 2A
Nox20r>  oy2or? or? Ox*or? Oy*or? o202

+ ny(ZAZ

84W0 86W0

h/2 Tz oD, ﬂ'Z) T . (772)
6d = 0; + — — |+ =D, —||ldz=0 29b
fh/z[ (h) dy Cos(h no )| (26)
h/2 Tz 6Ey Tz Ts . [Tz
5T = 0; fh/z[ ( p ) + E cos(f) + ZBZ sm(I)]dz = (29¢)

where N, M, and Q; (i = x, y, xy) are nonlocal stress resultants, respectively. The D; and B; parameters in
equation (29) are expanded below:

2 \DZ%SIH(%)) —E31882;;0 B 31662;‘;0 — X33D — Y330

) 5, COS(%) ] ’F15[A883;1;0 + ng’;’z) + Yugi) + Yzzz—ij

B,

:y = jj;//} B, cos(%) rdz = 3 FIS(A% + B%Sy ) + Ynz—;{j + Yzzg—ij ( (31)
P kB %sm(f)) | _Fﬁa;‘:t;o F31%2;VO — Y53 — YU )

The constants in equations (30), (31) can be exploded as follows:

C 3

e zz sin(zz)
31 p p

Es 25 cos(zz)
E15 - h/2 h

= 3
X j:h/z Ry cos?| Xz
X33 11 h
R (1)2 sin? (zz)
\ 3|7, )

v dz (32)
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d cosz(z)
(ey=rs

P

% B 2

» h2 d33(1) sinz(zz)
n n)

[ . («m ]
q3lzz Sin ZZ

Fs; = cos(z )

Fis :fh/2 4 45 hZ

Y2 w2 | o7
Yis 7j;, €OS hZ

n (z)zsinz(zz)
k 5| 7, )]

The stiffness matrix for tension and flexure of the electromagnetic nanoplate are as follows:

> dz (33)

>dz (34)

h h
Ag=[2Tydz Gj=1,2 46, Dy= [ Tizdz G,j=1, 20 (35)
- -
S
_ Gy — =L
Cll " C33
C12 — _ C123 L (36)
6 C12 D
44 Css
C66 C44
kCGG J

Here, it is tried to explain the in-plane loads as below:

N = [N;IF + [N;}Mas (37)
In which Nijvmg and N,f are the in-plane magnetic and electric forces as follows [ 16, 37, 44]:
h/2 2
NE, Nf = f 20 2004, (38)
—h/2 h
h/2
NMeg, NMes — f g, 20 g, (38b)
—h/2 h

2.2. Higher-order nonlocal strain gradient theory
According to this higher-order non-classical hypothesis the following equation is employed [46—48]:
(1 — VA — 12V = Ciju(l — piView — Cil2(1 — p V) Ve po(nm) = ega,
0? 0?

=eaa, V2= —— + —
p(nm) = eja o T oy

(39)

where g, f11, and [ are lower and higher-order nonlocality parameters and strain gradient length scale constant,
respectively. We can easily convert equation (39) into the other forms of size-dependent theories:

(a) Lower-order nonlocal strain gradient theory:

{,Uo = €od

po=ea " Ho=Hm=p— 0 - 12V o = Ciu(l — PV3)ey (40)

(b) Eringen’s nonlocal elasticity theory:
{l=p=0—-(01 - /u,évz)alj = Cijuen (41)

(¢) Amodel without stress nonlocality:

{o =11, =0 — 05 = Ciju(l — PV?)ey (42)
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By using higher-order nonlocal strain gradient theory and applying it on the stress resultants, we get:
(1 — VA = p VAo = Cig(l — p; Ve — CilP(1 — pg VA V2ey — exiEx — Qi Fx
(1 — 1 VHA = g V)Di = Ci(1 — 1} V¥ew — CijalP(1 — pg VA Ve + kiEx + diHy
(1 = V(A = pgVA)B; = Cija(l — p{Vew — Ciwl(1 — gV V2ey + dijEx + n;Hi

The local forms of stress resultants were defined as follows:

h/2
(No N Ny = [ | (O 0 )iz

h/2
(M, My> Mxy) = 'j:h/Z (0% Oy ny)ZdZ

h/2
(Qx Qy) = fh 5 (0xz Uyz)dz

(43a)
(43b)
(43¢)

(44a)

(44b)

(44¢)

Now, by substituting equation (17) into the equation (44) the stress resultants will be given in the form of

equation below:
r Nxx qTotal .
N, AjA, 0O 0O O 0 0 O
i 00 0 0 0 0
N. Ag1 Ay
4 0 0 A66 0 0 0 0 0
M _lo o o0 DDy, 0 0 0
M,, 0 0 0 DyDypy 0 0 0
M, 00 0 0 0 Ds 0 0
Q 0 00 0 0 0AuO
g [ 000 0 0 0 0 0 Ay
| Qx|
ou 1, wy o Pwo | Ow)
ox 2\ 0x° Oxdy? Ox
2
@ + l A 63w0 63W0 + 8W0
dy 2\ 0x%y oy? Oy
ou n v n 0wy B O*wo n Owy A Owo 0wy Owy
dy  Ox ox3 Oxdy?  Ox Ox*0y ay? Oy
_ 82W0
X Ox?
_ 3214/0
y?
. aZWQ
0x0y
83W0 83W0
Ox*dy oy?
63W0 63W0
| Ox? Ox0y? |
2531(250 N Electrical ( 2q31¢0 \ Magnetic
22319, 245,%0
0 0
B3 ® F5 ¢
% >
1 1 7y
0P ov
—Eis— —Fi5—
dy dy
0P ov
_g. 2= _F. 2=
L " ox J L P ox J

follows:

Mech

Then, equation (45) can be employed to re-formulate the stress resultants which will lead to the forms as

(45)
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2 2
(1= (2 + V2 + @2t VHM, = —[(1 — @2V?) — P(1 — uéW)W](Dn%Wf + Dlzaaw;’] (46a)
x y
2 2
(U= i+ i)V + ] VOM, = —[(1 = V2 = (1~ uévzwﬂ(Du%”? + Dzzzwj) (46b)
x y
2
(A = (g + 1)V + g VHMy = —[(1 — 57 V?) — (1 — uéVZ)VZ][D%g g‘)) (460)
x0y
O*w 0w
2 2 2,2 _ 2 2 0 0
(1 - (Mo + Ml)vz + Moﬂ’l V4)Qx - [(1 - ,U/I vz) - 12(1 - MQVZ)VZ]AM(A 63(13 + Baxa}/z) (46d)
83w0 83W0
(1= (ug + DV + iy VHQ, = [(1 — V) — (1 — u§V2>v2]A44(A o575y Ba—ﬁ) (46¢)
D,
(1 — (2 + p)V? + p2u>vHy D,
( Ow OPw 0P 8\1'\
1 — 12V — 2(1 — 2V V2 Es|A— + B— | + X, + Y —
(1 = p V) (1 = pyVHVA] 15( o vy ng i
0w Ow od ov
=200 — V3 — P — 2VHVHEs| A= + B2 | 4+ Xi— + Yi— ¢ 47
LA = p VY (1 = pgVHV] 15( ax0y oy ny n> (47)
O*w O*w,
2 2 0 0
—[Q — VY = 1 - NOVZ)VZ](Esl s + E3 e — X330 — Y330
B,
(= (g + pHV? + i V44 B,
&w 8w 9P ov |
1 — 12V?) — 21 — V)V Fs| A= + B2 | + ¥ — + Yp—
[( Hy ) ( o V4] 15( Py (9x3y2 11 Ox 22 o
Ow OPw 0P ov
=311 — p2V?) — (1 — 2V VHFs5|A—> + B=2| + ¥jj— + Y— 48
(1 = p V) (1 = pgVAHVE] 15[ o'y oy 11 a Erw q (48)
O*w 0*w,
2 2 0 0
—[( = @2V = 21— MOVZ)VZ][Fﬂ St F“W) ~ Yisd — YU

\

Eventually, by assembling equations (46)—(48) and using equation (38) and inserting them into
equation (29), the electromagnetic forced vibrations equations will be acquired.

3. Analytical approach

To solve the vibrational equations of the nanoplate with four sides of the simply-supported, the Navier solution
method is used. In the case of Navier approach, the displacement functions are considered as Fourier series
expansion, in addition to satisfying the equations, the boundary conditions of the nanoplate with fully simply-
supported are also satisfied [20]:

Z Z WOmn
Wo(X, }/; t) m;ln;1 m n
D(x, y, 1) ¢ =13 ZZ Domn ¢ x sin(w,t) x sin( wa)sin[L—ﬂy] (49)
\I’(X, ¥, t) m;m;l X y
Z Z \I/Omn
(m=1n=1 )

In which Wy, o and Wy, represent the displacement and potentials unknown variables, 2 and n denote
the half-wave numbers and w, shows the natural frequency related to intrinsic properties of the system such as
mass and stiffness. The dynamic load is distributed uniformly and harmonically on the nanoplate that was
showed in figure 1(b) and is taken in the form of the following expression [19]:

9


http://mostwiedzy.pl

10P Publishing

Mater. Res. Express 5 (2018) 075031 M Malikan et al

o0 (o)
qlx, y, t) = Z Z q,, Sin(Wect) X sin(mwx) sin[nly] (50a)
n=1m=1 Lx LJ’
4, Yot+c2/2 xo+a/2
qm:ﬂ v f T sin| 2 | sin ﬂy dxdy
mn Jy,—c/2 xo—c1/2 Lx Ly
16
= o sin m7rx0 sin| 229 \sin n—ﬂyo sin| 222 (50b)
mnm? L, L, 2 L, L,2

In which q,, is the Fourier coefficient, ¢, is the uniform load amplitude and w,, is the excitation frequency,
respectively. By substituting equation (50) into the equations of motion, the algebraic equations can be obtained:

ki ko ks My M s Womn 0
k21 k22 k23 —Wi np1 Ny M3 (b()mn =30 (51)

k31 k32 k33 M3y My 133 \Ijomﬂ 0
kll k12 k13 nmyp My MmMps WOmn
kot Koy kos [—ArH ma myy mos | S oy
k31 k32 k33 M3 M3y 133 \I/()mn
(1 - (MO + ,u' )V2 + MOMI V4)q(x) Y t)
0
Ar = Y= (52b)
Wn

where Aris the excitation to natural frequency ratio. The stiffness matrixis k;; (i, j = 1,2, 3)and m;; (i,j = 1,2,
3) denotes the mass matrix extracted in the following:

ot o* ot 0° 0°
ki, = D——ZD + D — Dy, + D A—+B +(D;, + D,
11 {[ noa (D12 66) ——— o0y 3)/ 11[ Ew; 8x48y2] (D12 66)

« [a—2 +B66 + (D11 + D1z + Dge)| A o + B s —(2+12)D6—6
0%yt oy H R T e oy | Caxtayt )| xS

0° 0° 08 08 08
+ 2Dy, + D + Dyy——— + Dy|A— + B + (D1> + Deg)| A——
(D12 56) ——— oDy 2 ox0y 1( o 6x68y2) (D12 66)( oDy

D,
8

+Ba—8 + (D1 + Dy; + Dgs)| A g + B 4 —(w+B|D o°
Ox20y5 H R T e Aoy oxtay 4 ok,

0° 0° 08 08
+ 2(D12 + D + Dyy—— + Dyy| A + B + (D2 + D
(D12 66) =1 o0y 22 By° 11 Dy ox0y (Dr2 56)
08 o8 o8 08 o8
x|A + B—— | + (D11 + D12 + Des)| A + B + Pu;| Di—
( Ox2y 8}/8] (Pu+ Do “)( Ox*y* aﬁaf)] [ H ox
98 Pe 910 910 910
+ 2Dy + D 4 Dp—2— 4+ Dy|laZ— + B + Dy + D
(D12 56) ——— oDy 22 iy 11( B0 6x88y2] (D12 66)( 68)/
910 910 910 98
+ B———| + (D11 + Dy, + Dge)| A + B + Ppl| Diy——— + 2(D1, + D,
8x48y6) (Dny 12 66)( o0y 6x68y4]] Mo[ " oty (D12 + Des)
98 98 910 910 910 910
X ——— 4+ Dypy—— + Dy A + B + (D1p 4+ Dgg) X | A——— + B
Ox*0y° 2 ay? 11[ Ox09y* 8x43y6] (Pro k) ( Ox*0y® 8}/10)
10 910 22 98 8
+ (D11 + Dy + Dgg)| A + B + 2 D + 2(Dyp + D
(Dny 12 56) D'y o0y 1y R 0y (D12 66) = oDy
98 910 910 910 910
+ Dypy—— + Dy| A + B + (D12 + Deg)| A + B
2 Ox%0y° H( Ox80y? Ox®0y* (Pra 66)( Ox*9y° 8x28y8)
910 910 . L 9 , 6 )
+ (D11 + D13 + Dego)| A + B + N° x |A"— + (B* + 2AB +V
(Dn 12 56) oDy Dy Ew; ( ) o0y
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To obtain the natural frequencies, the determinant of the coefficient matrix should be set to zero. After
calculating natural frequencies, we can solve the linear algebraic equations of motion in order to calculate
maximum dynamic deflections by the help of many simple methods. In this paper, the general Cramer’s explicit
rule is used as below:

[K1{x} = {q} (53)
I1<i<p<...<ix<n
1<j<p<..<jy<m (54)

Letxzybe thek X ksubmatrix of x with rows and columns in:
I =g, .. 1)
]: :(jlau-ajk) (55)

LetK,= (I,/)bethen x nmatrix formed by replacing the i; column of K by the j; column of g, forall s = 1,..., k.
Then:

det(K, (I, ]))

det = 56
T T et () (56)
ki — Arzmn ki ks
K= ko1 kn ks |5 Xj = Womns Pomns \IjOmn)T§ q= (Q(t)a 0, O)T (57)

k31 k32 k33

4. Numerical results and discussions

Initially, in order to validate the results which are developed from the new first-order shear deformation theory
(OVEFSDT) this comparison section should be presented within which several well-known references are
investigated. In the first glance, table 1 will show the results of [49—51] which are compared with the present
formulation in which molecular dynamic simulation (MD) and also first-order shear deformation theory
(FSDT) were applied. It is worth noting that with enlarging the dimensions of the nanoplate the results of the
OVESDT inclined to the MD results. Principally, table 1 represents that the results of the OVFSDT are in an
excellent agreement with other methods. To further validate the present OVESDT, table 2 is documented. This
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Table 1. Results of critical biaxial buckling loads for a square nanoplate
obtained from the present theoryand [52]. E = 1 TPa,v = 0.16,k, = 5/6,

p = 1.81 nm?, SSSS. Reprinted from [52], Copyright (2018), with permission
from Elsevier.

The critical buckling load of a biaxially loaded nanoplate (NN nm ")

FSDT- FSDT- MD

DQM DQM results Lx = Ly
OVESDT [49] [50] [51] (nm)
1.0274 1.0749 1.0809 1.0837 4.99
0.621 51 0.6523 0.6519 0.6536 8.080
0.438 32 0.4356 0.4350 0.4331 10.77
0.261 22 0.2645 0.2639 0.2609 14.65
0.170 75 0.1751 0.1748 0.1714 18.51
0.119 63 0.1239 0.1237 0.1191 22.35
0.088 56 0.0917 0.0914 0.0889 26.22
0.069 18 0.0707 0.0705 0.0691 30.04
0.055 68 0.0561 0.0560 0.0554 33.85
0.044 88 0.0453 0.0451 0.0449 37.81

Table 2. Results of critical biaxial buckling loads for a
rectangular nanoplate obtained from the present theory and
[52].E = 1 TPa,v = 0.16,k, = 5/6, 1 = 1.81 nm?, SSSS.
Reprinted from [52], Copyright (2018), with permission
from Elsevier.

The critical buckling load of a biaxially loaded nanoplate
(aN nm ™)

OVFSDT FSDT [50] MD results [51] Lx/Ly

0.524 49 0.5115 0.5101 0.5
0.562 23 0.5715 0.5693 0.75
0.642 25 0.6622 0.6595 1.25
0.755 76 0.7773 0.7741 1.5
1.0134 1.0222 1.0183 1.75
1.1703 1.1349 1.1297 2

table used the previous mentioned references in another consideration. Although the first gander will tell us the
more difference among the results of the present methodology with those obtained by [50, 51], the results can be
proportionally acceptable.

To have a contradistinctive conceptualization about the OVESDT in terms of electromagnetic nanoplates,
[17]is employed. As long as the material is chosen electromagnetic in the current work, the mechanical behavior
of this material is validated in table 3 for the present formulation. It is clearly visible that about the greater values
of small scale factor as well as thinner plates, the results obtained by this paper are more adjacent to the ones
obtained by [17]. As arule, table 3 can confirm the accuracy of the results of the proposed formulation.

The benchmarked electromagnetic nanoplate employed in this paper has simply-supported boundary
conditions and made of BaTiO;-CoFe,0, that the mechanical, electrical and magnetic properties are presented
in table 4.

Various small scale cases versus variations of the magnetic and electric fields are considered by figures 2(a)—
(©). In the first case (figure 2(a)), the higher-order nonlocality case is examined using several external electrical
voltages. It is seen that with an increase in the higher-order nonlocal parameter the dynamic deflection’s values
are reducing but the influence is not as much as the increasing effect of the external voltage on the deflections.
Second case (figure 2(b)) studies a specific condition within which the nonlocal case of Eringen is evaluated
regarding y1; = | = 0 nm. Itis interesting to state that the outcomes of this figure are greater than those
presented in the previous figure that will lead to a marked result that higher-order nonlocal strain gradient case
makes nanoplate harder. This might be because of strain gradient length scale factor, but the higher-order
nonlocality factor has a noticeable role in this category. The last case (figure 2(c)) shows the variations of the
magnetic field. The figure presents that the nanoplate will be considerably impressed by a magnetic field rather
than electric voltages. This can be observed due to the numerical gaps between the curves of figure 2(c) in
comparison with the former figures. It can be concluded that the impacts of the electric field is less on the
dynamic deflections than the magnetic field. It can be noted that increasing magnetic parameter decreased

13


http://mostwiedzy.pl

A\ MOST

10P Publishing

Mater. Res. Express5(2018) 075031

M Malikan et al

Table 3. Comparisons of the non-dimensional biaxial critical biaxial buckling loads of fully simply-supported the
electromagnetic plate computed by various plate theories (h = 10 nm, ¢y = —0.3 V, 1)y = 0.01 A, AT = 100 K,

Ty = p10/Le Py = Ny/A11) [52]. Reprinted from [52], Copyright (2018), with permission from Elsevier.

Non-dimensional biaxial buckling load (Py)

Non-dimensional nonlocal parameter (')

L./h References Theory 0 0.01 0.02 0.03 0.04
8 Present, ENET™* OVESDT 21.4653 21.4586 21.3995 21.2211 20.9757
[17]-ENET*™ KPT*" 23.9006 23.8593 23.7365 23.5349 23.2592
MPT* 21.8250 21.7877 21.6768 21.4948 21.2459
RPT* 21.8447 21.8074 21.6963 21.5141 21.2648
PSDPT™¢ 21.8393 21.8020 21.6910 21.5088 21.2596
TSDPT™ 21.8489 21.8116 21.7006 21.5183 21.2690
HSDPT*® 21.8666 21.8294 21.7187 21.5370 21.2885
ESDPT*" 21.8589 21.8216 21.7105 21.5282 21.2787
12 Present OVESDT 26.7203 26.6820 26.5618 26.3590 26.1315
[17] KPT 27.6888 27.6475 27.5245 27.3228 27.0469
MPT 26.6753 26.6360 26.5191 26.3273 26.0650
RPT 26.6842 26.6449 26.5280 26.3361 26.0737
PSDPT 26.6817 26.6425 26.5255 26.3337 26.0712
TSDPT 26.6862 26.6469 26.5299 26.3380 26.0756
HSDPT 26.6946 26.6553 26.5384 26.3466 26.0843
ESDPT 26.6908 26.6515 26.5346 26.3426 26.0801
20 Present OVESDT 39.7291 39.5684 39.4276 39.1298 38.8589
[17] KPT 39.8097 39.7683 39.6450 39.4427 39.1661
MPT 39.3684 39.3280 39.2078 39.0106 38.7408
RPT 39.3719 39.3315 39.2112 39.0140 38.7441
PSDPT 39.3709 39.3305 39.2103 39.0130 38.7432
TSDPT 39.3726 39.3322 39.2120 39.0147 38.7449
HSDPT 39.3787 39.3389 39.2213 39.7208 38.7752
ESDPT 39.3744 39.3340 39.2138 39.0165 38.7466
30 Present OVESDT 44.8205 44.7622 44.6527 44.5038 44.2281
[17] KPT 45.9379 44.8576 44.7635 44.5699 44.4315
MPT 44,9031 44.8627 44,7425 44.5453 44.2755
RPT 44.9067 44.8663 44.7460 44.5488 44.2790
PSDPT 44.9057 44.8653 44.7451 44.5478 44.2780
TSDPT 44.9074 44.8670 44.7468 44.5496 44.2797
HSDPT 449137 44.8741 44.7577 44.5599 44.2949
ESDPT 44.9093 44.8689 44.7487 44.5514 44.2816

* Eringen’s nonlocal elasticity theory (I'y = 0,I'; = 0,1 = 0).

® Kirchhoff’s plate theory.
¢ Mindlin’s plate theory.
4 Reddy’s plate theory.

¢ Parabolic shear deformable plate theory.

f Trigonometric shear deformable plate theory.

& Hyperbolic shear deformable plate theory.

" Exponential shear deformable plate theory.

deflections that this is reversed about variations of the electric field. On the other hand, diminishing influence of
nonlocality factors over these figures will lead to an interesting result that the impact of electric potential is more
profound on the nonlocality than the magnetic one.

Figures 3(a) and (b) depict the lower-order nonlocal strain gradient condition versus variations of electric and
magnetic fields. By looking at figures 2(c) and (b), it is seen that the magnetic field has more impacted on the strain

gradient theory condition (1y = 141 = p, I = 0.5 h) in comparison with Eringen’s nonlocal elasticity theory condition
(11 = I = 0 nm). In other words, the more changes in dynamic deflections of figure 3(b) than those in figure 2(c) lead
to a significant conclusion that the decrease in deflections by nonlocal factor in the strain gradient case is more
significant than the decrease in deflections by nonlocal factor in the Eringen’s case. Figure 3(a) also demonstrates the
changes in electric field for nonlocal strain gradient case in which the derived conclusions could be confirmed.

A general study on the excitation frequency of the electromagnetic nanoplate by change in some factors in
the higher-order condition has been shown by figure 4. From all the figures, it can be vividly seen that when
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Figure 2. (a) Different values of the higher-order nonlocal parameter versus several external electric voltage (110 = 0.2 nm,[ = 0.5 h,
o =0.05A,m =n=1,Ar = 0.1,qp = 0.05 GPa,xy = yy = 0.5L,,c; = ¢, = L,). (b) Different values of the nonlocal parameter
versus several external electric voltage (1; = I = 0 nm, ¢y = 0.05A,m = n = 1, Ar = 0.1,qy = 0.05 GPa,xy = y, = 0.5L,,

¢; = ¢ = L,).(c) Different values of the lower-order nonlocal parameter versus several external magnetic potential (¢; = I = 0 nm,
wo=10.05V,m=n=1,Ar=0.1,q0 = 0.05 GPa,xg = yo = 0.5L,,¢c; = ¢ = L,).
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Figure 3. (a). Various nonlocal parameter versus different external electric voltage (110 = p; = 1,1 = 0.5 h,1hy = 0.05 A,
m=mn=1,Ar=0.1,q90 = 0.05 GPa,xy = yo = 0.5L,, ¢c; = ¢; = L,). (b) Various nonlocal parameter versus different external
magnetic potential (y1o = 1y = p1,1 = 0.5 h, 9 = 0.05V,m = n = 1,Ar = 0.1,4o = 0.05 GPa,xy = yo = 0.5L,¢c; = ¢; = L,).

Table 4. Properties of BaTiO3-CoFe,O,4 nanoplate [52-56].

Elastic properties (GPa)

Cy1 = Gy = 226,Cyp = 125,Cy3 = Cy3 = 124, C55 = 216, Cyy = Cs5 = 44.2, Cs6 = 50.5
Piezoelectric quantities (C m ™~ 2)
e31 = €3 = —2.2,e15 = €4 = 5.8,e33 = 9.3
Dielectric quantities (C/V.m)
K11 = Ky = 5.64e-9, k33 = 6.35¢-9
Piezomagnetic quantities (N/A.m)
31 = q32 = 290.1, q33 = 349.9, 915 = 275
Magnetoelectric quantities (N.s/V.C)
dyy = dy, = 5.367e-12,ds3 = 2737.5e-12
Magnetic quantities (N.s?/C?)
M1 = Ny = —297e-6,133 = 83.5e-6
Other quantities
= 4nm,Lx = Ly = 60 nm, p = 5.55¢ + 3(kgm )

Ar = 1the plate passes through resonance conditions. It can also be seen that the dynamic deflections after
resonance area are less than previous values and they become smaller and smaller when frequency ratio is further
away from 1. Obviously, by assessing infinite values of excitation frequencies, the deflection values are very small
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Figure 4. (a) Several frequency ratio versus various distributed loads (149 = 0.2 nm, yt; = 0.4 nm,/ = 0.5 h, oy = 0.05V,

0 = 0.05 A, go = 0.05 GPa). (b) Several frequency ratio versus various distributed loads (140 = 0.2 nm, yt; = 0.4 nm,/ = 0.5 h,
o = 0.05 V, 1)y = 0.05 A, go = 0.05 GPa). (c) Several frequency ratio versus various load value (110 = 0.2 nm, y; = 0.4 nm,
I=0.5h,¢y = 0.05V,9y = 0.05A,xy = yo = 0.5L,, c; = ¢; = L,). (d) Several frequency ratio versus various electric voltages
(o = 0.2 nm, p1; = 0.4 nm, ! = 0.5 h, ¢y = 0.05 A, go = 0.05 GPa,xy = yo = 0.5L,,¢c; = ¢, = L,). (e) Several frequency ratio
versus various magnetic potentials (1p = 0.2 nm, p; = 0.4 nm,! = 0.5 h, ¢, = 0.05 V, gy = 0.05 GPa, xy = y, = 0.5L,,
a=¢c =1Ly

which means that the plate does not have a vibrational behavior. From figure 4(a), it is shown that whatever the
distribution area of the harmonic load is smaller the deflections are smaller. Moreover, by comparing

figures 4(a) and (b), it is vivid that whatever the centroid of the load distribution is getting farther from the center
of the plate, the dynamic deflection values have become smaller. The influence of the transverse load is
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Figure 5. Different values of the strain gradient length scale parameter versus higher and lower-order nonlocal parameters (I* = I/,
o = 0.05V, 1y = 0.05A,m =n = 1,Ar = 0.1,qy = 0.05 GPa,xo = yy = 0.5L,,c; = ¢ = Ly).

considered by figure 4(c). It is shown that increase of the transverse load increases dynamic deflections and this
will be more intensified after Ar = 0.4 for bigger loads. It can be stated that with increase in the transverse load,
the effect of excitation frequency will be greater on the deflections. Additionally, figures 4(d) and (e) studied the
effects of magnetic and electric fields by the variations of the frequency ratio. It is simply seen that the magnetic
field has further impact on the vibrational behavior of the nanoplate than the electric one. It was concluded from
the last figure and here this conclusion is more confirmed.

A study in terms of higher-order nonlocal conditions is presented in figure 5. As a matter of fact the
parameters fi, [, and l are compared in a special case. It is worth noting that when the case of 12y = 0.5 nm,
= I nmand pp = 1 nm, y; = 0.5 nm are taken into consideration, increasing the value of the strain gradient
length scale factor makes the results of two nearby cases closer to one another. It can be concluded that whenever
the nanoplate’s stiffness is greater, the use of higher-order nonlocal strain gradient conditions cannot be
important. It can be also seen that in condition of pip = 0 nm, r; = 0 nm where the stress nonlocality is ignored,
the deflections are largest values.

5. Conclusions

This research has discussed forced vibrations of a piezoelectric-piezomagnetic nanoplate under external electric
and magnetic fields whilst a new first-order shear deformation theory was proposed. The higher-order nonlocal
strain gradient theory was evaluated to consider the effects of quantum in a small scale. Moreover, an analytical
solution was employed to present the numerical results. By comparing the results obtained from the present
theory for various benchmarked nanoplates with those obtained from several well-known theories in literature,
the accuracy of the present theory was justified. Finally, with regard to the notable results, the following phrases
are addressed as significant outcomes in the current article:

+ The effects of magnetic field are remarkably further on the vibrational behavior of the nanoplate than the
electric field influences.

+ Increasing magnetic field decreases dynamic deflections and vice versa with an increase in the electric
potential the deflections will be increased.

+ Theimpact of electric potential on the nonlocality is more profound than the magnetic one.

+ Strain gradient length scale parameter increases the stiffness of the nanoplate and decreases the maximum
dynamic deflections.

+ It is interesting to declare that by increasing stiffness of the nanoplate the results of higher and lower-order
nonlocal parameters will be similar to each other.

18


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

10P Publishing

Mater. Res. Express 5 (2018) 075031 M Malikan et al

Acknowledgments

The authors would like to thank both reviewers for their insightful comments on the paper, as the comments led
to an improvement in the work.

ORCID iDs

Mohammad Malikan @ https://orcid.org/0000-0001-7356-2168
Francesco Tornabene @ https: //orcid.org/0000-0002-5968-3382

References

[1] Estevez] M G 2014 Nanomagnetism (Altrincham, Cheshire, UK: One Central Press (OCP))
[2] Himpsel F] et al 1998 Magnetic nanostructures Adv. in phys. 47 511-97
[3] CardonaM 1965 Optical properties and band structure of SrTiO5 and BaTiO; Phys. Rev. A140 651
[4] Bauerle D, Braun W, Sprussel G and Koch E E 1978 Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO; Phys. B 29
179-84
[5] Mitsui T and Westphal W B 1961 Dielectric and x-ray studies of Ca,Ba; _, TiO3 and Ca,Sr; _ TiO; Phys. Rev. 124 1354
[6] Avellaneda M and Harshe G 1994 Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites, ] of Intelligent
Mater. Syst. and Struct. 550113
[7] Srinivasan G, Rasmussen E T, Gallegos J and Srinivasan R 2001 Magnetoelectric bilayer and multilayer structures of magnetostrictive
and piezoelectric oxides Phys. Review B 64 1-6
[8] Lopatina$, Lopatina I and Lisnevskaya S I 1994 Magnetoelectric PZT /ferrite composite material Ferroelectrics 162 63—8
[9] Nan C-W 1994 Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases Phys. Review B 50 6082—8
[10] DeJonghie L Cand Rahman M N 2003 Sintering of Ceramics Handbook of Advanced Ceramicsvol I (Cambridge, MA: Academic Press)
ch4pp 187-264
[11] KeLL,WangY Sand WangZ D 2012 Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory Compos. Struct.
942038-47
[12] LiuC,KeLL, WangY S, Yang] and Kitipornchai S 2014 Buckling and post-buckling of size-dependent piezoelectric Timoshenko
nanobeams subject to thermo-electro-mechanical loadings Int. J. Struct. Stab. Dy. 14 1350067
[13] Jiang LY and Yan Z 2012 Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane
constraints Proc. R. Soc. A 468 3458-75
[14] FangX-Qand Zhu C-S 2017 Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based
on surface/interface theory Compos. Struct. 160 1191-7
[15] Zhu C-S, Fang X-Q, LiuJ-X and Li H-Y 2017 Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric
cylindrical nano-shells Euro. J. of Mech. A/Solids 66 42332
[16] Jamalpoor A, Ahmadi-Savadkoohi A, Hossein M and Hosseini-Hashemi S 2017 Free vibration and biaxial buckling analysis of double
magneto-electro-elastic nanoplate-systems coupled by a Visco-Pasternak medium via nonlocal elasticity theory Euro. ] of Mech./A
Solids 63 84-98
[17] GholamiR and Ansari R 2017 A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of
piezoelectric-piezomagnetic rectangular nanoplates with various edge supports Compos. Struct. 166 202—18
[18] Arefi M and Zenkour A M 2017 Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates
resting on viscoelastic foundation Physica B: Physics of Condensed Matter 521 188-97
[19] Barati M R and Shahverdi H 2018 A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous
nanoporous plates Euro. J of Mech./A Solids 67 215-30
[20] Ebrahimi F and Barati M R 2018 Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal
effects employing nonlocal strain gradient theory Compos. Struct. 185 241-53
[21] Kamarian S, Salim M, Dimitri R and Tornabene F 2016 Free vibration analysis of conical shells reinforced with agglomerated carbon
nanotubes Int. J. Mech. Sci. 108-109 157-65
[22] TornabeneF, Fantuzzi N and Bacciocchi M 2014 Free vibrations of free-form doubly-curved shells made of functionally graded
materials using higher-order equivalent single layer theories Compos. Part B-Eng. 67 490-509
[23] TornabeneF, Fantuzzi N, Bacciocchi M and Viola E 2016 Effect of agglomeration on the natural frequencies of functionally graded
carbon nanotube-reinforced laminated composite doubly-curved shells Compos. Part B-Eng. 89 187-218
[24] Banié D, Bacciocchi M, Tornabene F and Ferreira A J M 2017 Influence of winkler-pasternak foundation on the vibrational behavior of
plates and shells reinforced by agglomerated carbon nanotubes Appl. Sci. 7 1228
[25] Fantuzzi N, Tornabene F, Bacciocchi M and Dimitri R 2017 Free vibration analysis of arbitrarily shaped functionally graded carbon
nanotube-reinforced plates Compos. Part B-Eng. 115 384—408
[26] Nejati M, Asanjarani A, Dimitri R and Tornabene F 2017 Static and free vibration analysis of functionally graded conical shells
reinforced by carbon nanotubes Int. J. Mech. Sci. 130 383-98
[27] Nejati M, Dimitri R, Tornabene F and Hossein Y M 2017 Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by
functionally graded wavy carbon nano-tubes with temperature-dependent properties Appl. Sci. 7 1223
[28] TornabeneF, Fantuzzi N and Bacciocchi M 2017 Linear static response of nanocomposite plates and shells reinforced by agglomerated
carbon nanotubes Compos. Part B-Eng. 115 449-76
[29] Tornabene F, Bacciocchi M, Fantuzzi N and Reddy J N 2017 Multiscale approach for three-phase CNT /polymer/fiber laminated
nanocomposite structures Polym. Composite Accepted (https://doi.org/10.1002/pc.24520)
[30] She GL, ShuXandRenY R 2016 Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear
deformation theory J. Therm. Stresses 40 783-97
[31] She GL,Yuan FGand RenY R 2017 Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes
by using a refined beam theory Compos. Struct. 165 74—82

19


https://orcid.org/0000-0001-7356-2168
https://orcid.org/0000-0001-7356-2168
https://orcid.org/0000-0001-7356-2168
https://orcid.org/0000-0001-7356-2168
https://orcid.org/0000-0002-5968-3382
https://orcid.org/0000-0002-5968-3382
https://orcid.org/0000-0002-5968-3382
https://orcid.org/0000-0002-5968-3382
https://doi.org/10.1080/000187398243519
https://doi.org/10.1080/000187398243519
https://doi.org/10.1080/000187398243519
https://doi.org/10.1103/PhysRev.140.A651
https://doi.org/10.1103/PhysRev.124.1354
https://doi.org/10.1177/1045389X9400500406
https://doi.org/10.1177/1045389X9400500406
https://doi.org/10.1177/1045389X9400500406
https://doi.org/10.1103/PhysRevB.64.214408
https://doi.org/10.1103/PhysRevB.64.214408
https://doi.org/10.1103/PhysRevB.64.214408
https://doi.org/10.1080/00150199408245091
https://doi.org/10.1080/00150199408245091
https://doi.org/10.1080/00150199408245091
https://doi.org/10.1103/PhysRevB.50.6082
https://doi.org/10.1103/PhysRevB.50.6082
https://doi.org/10.1103/PhysRevB.50.6082
https://doi.org/10.1016/B978-012654640-8/50006-7
https://doi.org/10.1016/B978-012654640-8/50006-7
https://doi.org/10.1016/B978-012654640-8/50006-7
https://doi.org/10.1016/j.compstruct.2012.01.023
https://doi.org/10.1016/j.compstruct.2012.01.023
https://doi.org/10.1016/j.compstruct.2012.01.023
https://doi.org/10.1142/S0219455413500673
https://doi.org/10.1098/rspa.2012.0214
https://doi.org/10.1098/rspa.2012.0214
https://doi.org/10.1098/rspa.2012.0214
https://doi.org/10.1016/j.compstruct.2016.11.008
https://doi.org/10.1016/j.compstruct.2016.11.008
https://doi.org/10.1016/j.compstruct.2016.11.008
https://doi.org/10.1016/j.euromechsol.2017.08.001
https://doi.org/10.1016/j.euromechsol.2017.08.001
https://doi.org/10.1016/j.euromechsol.2017.08.001
https://doi.org/10.1016/j.euromechsol.2016.12.002
https://doi.org/10.1016/j.euromechsol.2016.12.002
https://doi.org/10.1016/j.euromechsol.2016.12.002
https://doi.org/10.1016/j.compstruct.2017.01.045
https://doi.org/10.1016/j.compstruct.2017.01.045
https://doi.org/10.1016/j.compstruct.2017.01.045
https://doi.org/10.1016/j.physb.2017.06.066
https://doi.org/10.1016/j.physb.2017.06.066
https://doi.org/10.1016/j.physb.2017.06.066
https://doi.org/10.1016/j.euromechsol.2017.09.001
https://doi.org/10.1016/j.euromechsol.2017.09.001
https://doi.org/10.1016/j.euromechsol.2017.09.001
https://doi.org/10.1016/j.compstruct.2017.10.021
https://doi.org/10.1016/j.compstruct.2017.10.021
https://doi.org/10.1016/j.compstruct.2017.10.021
https://doi.org/10.1016/j.ijmecsci.2016.02.006
https://doi.org/10.1016/j.ijmecsci.2016.02.006
https://doi.org/10.1016/j.ijmecsci.2016.02.006
https://doi.org/10.1016/j.ijmecsci.2016.02.006
https://doi.org/10.1016/j.ijmecsci.2016.02.006
https://doi.org/10.1016/j.compositesb.2014.08.012
https://doi.org/10.1016/j.compositesb.2014.08.012
https://doi.org/10.1016/j.compositesb.2014.08.012
https://doi.org/10.1016/j.compositesb.2015.11.016
https://doi.org/10.1016/j.compositesb.2015.11.016
https://doi.org/10.1016/j.compositesb.2015.11.016
https://doi.org/10.3390/app7121228
https://doi.org/10.1016/j.compositesb.2016.09.021
https://doi.org/10.1016/j.compositesb.2016.09.021
https://doi.org/10.1016/j.compositesb.2016.09.021
https://doi.org/10.1016/j.ijmecsci.2017.06.024
https://doi.org/10.1016/j.ijmecsci.2017.06.024
https://doi.org/10.1016/j.ijmecsci.2017.06.024
https://doi.org/10.3390/app7121223
https://doi.org/10.1016/j.compositesb.2016.07.011
https://doi.org/10.1016/j.compositesb.2016.07.011
https://doi.org/10.1016/j.compositesb.2016.07.011
https://doi.org/10.1002/pc.24520
https://doi.org/10.1080/01495739.2016.1261009
https://doi.org/10.1080/01495739.2016.1261009
https://doi.org/10.1080/01495739.2016.1261009
https://doi.org/10.1016/j.compstruct.2017.01.013
https://doi.org/10.1016/j.compstruct.2017.01.013
https://doi.org/10.1016/j.compstruct.2017.01.013
http://mostwiedzy.pl

A\ MOST

10P Publishing

Mater. Res. Express 5 (2018) 075031 M Malikan et al

[32] She GL, Yuan FGand RenY R2017 Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on
elastic foundations in thermal environments Compos. Struct. 170 111-21

[33] She GL, Yuan F Gand RenY R 2017 Thermal buckling and post-buckling analysis of functionally graded beams based on a general
higher-order shear deformation theory Appl. Math. Modell. 47 340-57

[34] SheGL,YuanFG,RenY Rand Xiao W § 2017 On buckling and postbuckling behavior of nanotubes Int. J. of Eng. Sci. 121 13042

[35] She GL,RenYR, Yuan F G and Xiao W S 2018 On vibrations of porous nanotubes Int. J. of Eng. Sci. 125 23-35

[36] Malikan M, Jabbarzadeh M and Dastjerdi S 2017 Non-linear Static stability of bi-layer carbon nanosheets resting on an elastic matrix
under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum Microsyst. Tech. 23 2973-91

[37] Malikan M 2017 Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified
first order shear deformation theory Appl. Math. Modell. 48 196-207

[38] Malikan M 2017 Analytical predictions for the buckling of a nanoplate subjected to nonuniform compression based on the four-
variable plate theory J. of Appl. and Comput. Mech. 3 218-28

[39] Malikan M 2018 Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory J. of Appl.
and Comput. Mech. 4 1-15

[40] ShimpiR P 2002 Refined plate theory and its variants AIAA Journal 40 137-46

[41] Malikan M 2018 Temperature influences on shear stability of a nanosize plate with piezoelectricity effect Multidiscip. Model. Mater.
Struct. 14 125-42

[42] Golmakani M E, Malikan M, Sadraee Far M N and Majidi H R 2018 Bending and buckling formulation of graphene sheets based on
nonlocal simple first order shear deformation theory Mater. Res. Express 5 065010

[43] Malikan M and Sadraee Far M N 2018 Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic
medium using neperian frequency based on nonlocal elasticity theory J. of Appl. and Comput. Mech. 4 147-60

[44] LiuC,KeLL, Yang], Kitipornchai S and Wang Y S 2016 Buckling and post-buckling analysis of size-dependent piezoelectric
nanoplates Theo. & Appl. Mech. Lett. 6 253—67

[45] Zhang D P, LeiY J and Shen Z B 2017 Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic
foundation with various boundary conditions Inter. ] of Mech. Sci. 131-132 100115

[46] Lim CW, Zhang G and Reddy]J N 2015 A Higher-order nonlocal elasticity and strain gradient theory and its applications in wave
propagation J of the Mech. and Phys. of Solids 78 298-313

[47] Nematollahi M S, Mohammadi H and Nematollahi M A 2017 Thermal vibration analysis of nanoplates based on the higher-order
nonlocal strain gradient theory by an analytical approach Superlattices and Microstruct. 111 944-59

[48] Farajpour A, Haeri Yazdi M R, Rastgoo A and Mohammadi M 2016 A higher-order nonlocal strain gradient plate model for buckling of
orthotropic nanoplates in thermal environment Acta Mech. 227 184967

[49] Golmakani M E and Rezatalab J 2015 Nonuniform biaxial buckling of orthotropic Nano plates embedded in an elastic medium based
on nonlocal Mindlin plate theory Compos. Struct. 119 238-50

[50] Golmakani M E and Far M N S 2017 Buckling analysis of biaxially compressed double-layered graphene sheets with various boundary
conditions based on nonlocal elasticity theory Microsyst. Technol. 23 2145-61

[51] AnsariR and Sahmani S 2013 Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models
and molecular dynamics simulations Appl. Math. Modell. 37 7338-51

[52] Malikan M and Nguyen V B 2018 Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a
novel one variable plate theory combining with higher-order nonlocal strain gradient theory Phys. E: Low-dimens. Syst. and Nanostruct.
102 8-28

[53] KeLL,WangY S, Yang] and Kitipornchai S 2014 Free vibration of size-dependent magneto-electro-elastic nanoplates based on the
nonlocal theory Acta Mech. Sin. 30 516-25

[54] Farajpour A, Rastgoo A and Farajpour M R 2017 Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells
based on the nonlocal continuum mechanics Compos. Struct. 180 179-91

[55] Zenkour A M and Sobhy M 2018 Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin—Voigt
viscoelastic nanoplate embedded in a viscoelastic medium Acta Mech. 229 3—19

[56] Farajpour M, Hairi Yazdi M R, Rastgoo A, Loghmani M and Mohammadi M 2016 Nonlocal nonlinear plate model for large amplitude
vibration of magneto-electro-elastic nanoplates Compos. Struct. 140 323-36

20


https://doi.org/10.1016/j.compstruct.2017.03.010
https://doi.org/10.1016/j.compstruct.2017.03.010
https://doi.org/10.1016/j.compstruct.2017.03.010
https://doi.org/10.1016/j.apm.2017.03.014
https://doi.org/10.1016/j.apm.2017.03.014
https://doi.org/10.1016/j.apm.2017.03.014
https://doi.org/10.1016/j.ijengsci.2017.09.005
https://doi.org/10.1016/j.ijengsci.2017.09.005
https://doi.org/10.1016/j.ijengsci.2017.09.005
https://doi.org/10.1016/j.ijengsci.2017.12.009
https://doi.org/10.1016/j.ijengsci.2017.12.009
https://doi.org/10.1016/j.ijengsci.2017.12.009
https://doi.org/10.1007/s00542-016-3079-9
https://doi.org/10.1007/s00542-016-3079-9
https://doi.org/10.1007/s00542-016-3079-9
https://doi.org/10.1016/j.apm.2017.03.065
https://doi.org/10.1016/j.apm.2017.03.065
https://doi.org/10.1016/j.apm.2017.03.065
https://doi.org/10.22055/jacm.2017.21757.1115
https://doi.org/10.22055/jacm.2017.21757.1115
https://doi.org/10.22055/jacm.2017.21757.1115
https://doi.org/10.22055/JACM.2017.21820.1117
https://doi.org/10.22055/JACM.2017.21820.1117
https://doi.org/10.22055/JACM.2017.21820.1117
https://doi.org/10.2514/2.1622
https://doi.org/10.2514/2.1622
https://doi.org/10.2514/2.1622
https://doi.org/10.1108/MMMS-09-2017-0105
https://doi.org/10.1108/MMMS-09-2017-0105
https://doi.org/10.1108/MMMS-09-2017-0105
https://doi.org/10.1088/2053-1591/aac660
https://doi.org/10.22055/JACM.2017.22661.1138
https://doi.org/10.22055/JACM.2017.22661.1138
https://doi.org/10.22055/JACM.2017.22661.1138
https://doi.org/10.1016/j.taml.2016.10.003
https://doi.org/10.1016/j.taml.2016.10.003
https://doi.org/10.1016/j.taml.2016.10.003
https://doi.org/10.1016/j.ijmecsci.2017.08.031
https://doi.org/10.1016/j.ijmecsci.2017.08.031
https://doi.org/10.1016/j.ijmecsci.2017.08.031
https://doi.org/10.1016/j.ijmecsci.2017.08.031
https://doi.org/10.1016/j.ijmecsci.2017.08.031
https://doi.org/10.1016/j.jmps.2015.02.001
https://doi.org/10.1016/j.jmps.2015.02.001
https://doi.org/10.1016/j.jmps.2015.02.001
https://doi.org/10.1016/j.spmi.2017.07.055
https://doi.org/10.1016/j.spmi.2017.07.055
https://doi.org/10.1016/j.spmi.2017.07.055
https://doi.org/10.1007/s00707-016-1605-6
https://doi.org/10.1007/s00707-016-1605-6
https://doi.org/10.1007/s00707-016-1605-6
https://doi.org/10.1016/j.compstruct.2014.08.037
https://doi.org/10.1016/j.compstruct.2014.08.037
https://doi.org/10.1016/j.compstruct.2014.08.037
https://doi.org/10.1007/s00542-016-3053-6
https://doi.org/10.1007/s00542-016-3053-6
https://doi.org/10.1007/s00542-016-3053-6
https://doi.org/10.1016/j.apm.2013.03.004
https://doi.org/10.1016/j.apm.2013.03.004
https://doi.org/10.1016/j.apm.2013.03.004
https://doi.org/10.1016/j.physe.2018.04.018
https://doi.org/10.1016/j.physe.2018.04.018
https://doi.org/10.1016/j.physe.2018.04.018
https://doi.org/10.1007/s10409-014-0072-3
https://doi.org/10.1007/s10409-014-0072-3
https://doi.org/10.1007/s10409-014-0072-3
https://doi.org/10.1016/j.compstruct.2017.07.100
https://doi.org/10.1016/j.compstruct.2017.07.100
https://doi.org/10.1016/j.compstruct.2017.07.100
https://doi.org/10.1007/s00707-017-1920-6
https://doi.org/10.1007/s00707-017-1920-6
https://doi.org/10.1007/s00707-017-1920-6
https://doi.org/10.1016/j.compstruct.2015.12.039
https://doi.org/10.1016/j.compstruct.2015.12.039
https://doi.org/10.1016/j.compstruct.2015.12.039
http://mostwiedzy.pl

	1. Introduction
	2. Mathematical modeling
	2.1. A new one variable shear deformation plate theory (OVFSDT)
	2.2. Higher-order nonlocal strain gradient theory

	3. Analytical approach
	4. Numerical results and discussions
	5. Conclusions
	Acknowledgments
	References



