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Abstract. In the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a 
new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional 
compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads 
to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium 
equation is formulated by the nonlocal elasticity theory in order to predict small-scale effects. The equation is 
solved by Navier’s approach by which critical buckling loads are obtained for simple boundary conditions. Finally, 
to approve the results of the new beam theory, some available well-known references are compared. 

Keywords: Buckling analysis; Single-walled carbon nanotubes; A new refined beam theory; nonlocal elasticity theory; 
Navier’s approach. 

1. Introduction 

   Carbon nanotubes are the first generation of the nano products discovered in 1991 [1]. The nanotubes are made of twisted 
graphite sheets with a honeycomb-like structure. These tubes are long and thin and also have high stability and resistance [2]. 
If the carbon nanotube contains only a rolled graphene, it is called a single-walled carbon nanotube (SWCNT), and if it 
includes a number of concentric tubes, it is called a multi-walled carbon nanotube (MWCNT) [3-4]. The SWCNT is 
remarkably strong and hard [5], and is an excellent conductive for the electric current [6-8], which these applications lead to 
the use of these materials in the electronics industry [9-10]. The carbon nanotube promises a bright future in cellular 
experiments because they can be used as nano-pipes to distribute very small volumes of fluid or gas into living cells or on 
surfaces [11-13]. 

To exploit the industrial amazing properties of nanostructures, it can be highly recommended that the mechanical behavior 
of them should be analyzed. In the last years, this issue has been taken into consideration by researchers around the world in 
order to identify the behavior of them under various mechanical conditions. Among these researchers, Malikan et al. [14] 
published the stability of bi-layer graphene nanoplates subjected to shear and thermal forces on the basis of a medium using 
numerical solutions. Malikan investigated the stability analysis of a micro sandwich plate with a graphene coating using a 
refined couple stress theory [15] and the buckling of graphene sheets subjected to nonuniform compression based on a four-
variable plate theory using an analytical approach [16]. Yao and Han [17] presented the buckling of double-walled carbon 
nanotubes by considering thermal influences. They obtained critical buckling loads on the basis of Donnell’s equilibrium 
equation and solved the equation for simply-supported boundary condition. Ansari et al. [18] studied the coupled natural 
frequency of post stability functionally graded micro/nanobeams on the basis of the strain gradient theory. Wang et al. [19] 
presented exact modes for post stability characteristics of nonlocal nanobeams in a longitudinal magnetic field. Wang et al. 
[20] utilized both stress and strain gradient continuum theories to consider the buckling of a nanotube which was embedded in 
an elastic foundation. Timoshenko beam theory and Navier solution method were employed in their study. They proved that 
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both stress gradient and strain gradient predict the same results if the nonlocal effect is not taken into account. Xiang et al. [21] 
used the nonlocal elasticity theory for studying the nonlinear free vibration of double-walled carbon nanotubes based on the 
Timoshenko beam theory. Ansari et al. [22] developed Rayleigh–Ritz method for the buckling of carbon nanotubes considering 
thermal effects. The classical Donnell shell theory was incorporated in conjunction with the nonlocal elasticity theory of 
Eringen. Ansari et al. [23] employed Timoshenko beam model to consider the buckling and postbuckling of nanotubes using 
the nonlocal elasticity theory. The equations were solved using the generalized differential quadrature method along with the 
pseudo arc-length technique for several boundary conditions. Ansari and Arjangpay [24] presented the meshless local Petrov–
Galerkin method to analyze carbon nanotubes under buckling and vibrations conditions. The vibration of thermally post-
buckled carbon nanotube-reinforced composite beams resting on elastic foundations was examined by Shen et al. [25]. Beni et 
al. [26] studied the vibration of shell nanotubes using the nonlocal strain gradient theory and the molecular dynamics 
simulation. Wang et al. [27] presented the nonlinear vibration of nonlocal carbon nanotubes which were placed on the visco-
Pasternak foundation under excitation frequency. Gholami et al. [28] predicted the behavior of post stability of nanotubes 
subjected to compressive mechanical and thermal loads. They used the nonlinear Euler-Bernoulli beam approach in 
conjunction with the nonlocal elasticity theory and solved the equations for different boundary conditions. Ansari et al. [29] 
analyzed the vibration of nanotubes on the basis of the strain gradient and couple stress theories and also molecular dynamic 
simulation. The generalized differential quadrature technique was applied to convert the differential equations into algebraic 
ones for several boundary conditions. Some analyses about the dynamic buckling of single and multi-walled carbon nanotubes 
placed on the elastic substrate with considering thermal stresses were presented by Ansari and Gholami [30] and Gholami et al. 
[31]. Wave characteristics of conveying fluid for nanotubes modeled as Timoshenko beams was investigated by Gholami et al. 
[32]. Liu et al. [33] particularly modeled a nanotube conveying fluid in an acoustic environment in order to consider its sound 
absorption values. Dai et al. [34] analyzed the free vibration and buckling of clamped-free Euler-Bernoulli nanotubes 
conveying fluid which was exposed to a unidirectional magnetic field. The differential quadrature method (DQM) was 
employed to solve frequency and buckling equations. In a special case, Ansari and Gholami [35] modeled the dynamic 
buckling of nanotubes in various boundary conditions on the basis of the nonlocal elasticity theory of Eringen. Yang et al. [36] 
considered the influences of quantum for free vibration of nanotubes conveying fluid in a thermal environment. The single-
walled nanotube was modeled with Euler-Bernoulli beam and the nonlocal elasticity theory was used for considering quantum 
effects. Jiang and Wang [37] analytically studied natural frequencies of nonlocal Euler beams with considering thermal effects.  

In this theoretical study, a new beam theory is reported by reducing the unknown variables from a regenerated shear 
deformation theory. The SWCNT is modeled as a beam which is subjected to a unidirectional in-plane load. The influence of 
stress nonlocality is examined by using the nonlocal elasticity theory of Eringen which leads to a size-dependent equation. 
Furthermore, Navier’s technique is exerted to solve the stability equation by assuming simply-supported boundary condition 
for both ends of the beam. 

2. Problem Formulation 

Fig. 1 displays a realistic model for a single-walled carbon nanotube subjected to unidirectional compressive loads
 with length L, outer diameter d, and thickness h parallel to x and z-axes of the right-hand coordinate system, respe
ctively. First, according to the first-order shear deformation theory (FSDT), the displacement field at the beam points can
 be defined as follows [14]: 
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 (1a-c) 

 

Fig. 1. Schematic picture of the SWCNT subjected to a unidirectional compressive in-plane load 

   In Eq. (1), the vector quantities of the neutral axis at directions of x and z are u and w, respectively. Furthermore, for 
defining the swirl of beam elements around the x axis, φ is used. First off, let us reconsider the simple first-order shear 
deformation theory (S-FSDT) in which it is supposed that the deflection parameter can be re-explained as follows [38-40]: 
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( ) ( ) w w bending w shear  (2) 

On the other hand, the rotation parameter is developed as follows [38-40]: 

     
 
 bdw

dx
  (3) 

By replacing Eqs. (2-3) in Eq. (1), the displacement field of the S-FSDT is rewritten [38-40] as: 
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 (4a-b) 

Using  b sw w w might not be conceptual; therefore, the S-FSDT is refined as: 
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 (5a-b) 

Therefore, we can use bending deflection to find the value of ws as follows: 

2
xx xx

xz xz

E

G

 
 
   

   
   

 (6a-b) 

After calculating Eq. (6) from Eq. (4), the stresses can be harvested and then by substituting Eq. (6) in Eq. (7), the S-FSDT 
stress resultants are presented as: 

xx

A
x xz

zM

Q
dA



  

   
   

  (7a-b) 

Let us use fourth equation of FSDT’s governing equations in order to calculate ws based on wb: 

0 x
x

dM
Q
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   (8) 

Now by imposing Eq. (8) into the stress resultants of Eq. (7), 
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By integrating from Eq. (9) based on x, simplifying, and then ignoring the integral constant terms, the shear deflection is 
obtained as follows: 
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Term B can be explained as: 
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 (11) 

where G represents the shear modulus, E is the Young’s modulus, Ic  4 64d   denotes the moment of area of the cross-

section, A is the cross-sectional area, and ν is the Poisson’s ratio for isotropic nanobeams. Afterwards, the new beam theory is 
achieved as: 
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 (12a-b) 

Regarding Hamilton’s principle, the potential energy in the whole domain of the beam ( ) is made available and is written in 
the variational form as follows [41]: 
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 
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In which δS is the variation of strain energy and δΩ is the variation of works, which are done by external forces (Elastic 
foundations, external forces, etc. which are ignored in this study). The strain energy by variational formulation is calculated as: 

0ij ij
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The strain tensor in Eq. (14) is expanded as follows: 
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Therefore, in order to derive the constitutive equations on the basis of the Hamilton’s principle, Eq. (16) is shown as follows: 
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Now, integrating the integrals by parts yields: 
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   As it can be observed, the last terms in the expressions of Eq. (17) are equal to the expressions of Eq. (16c). Therefore, we 
get: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory  
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 1, (2019), 103-112 

107

 
22 2

2 2 2

2

2

33 3 3 3 3 6
2 2 2 2

3 3 3 3 3 3 6

3 3

3 3


    


      


      



  

   

    
 

 
    

 



xx
xx xx

xx
xx xx xx

xx
xx xx xx

xx xx

dd d
z w z w z w

dx dx dx

ddw d d dw d w dw
w w w w

dx dx dx dx dx dxdx

dd w d d d w d w d w
B w B w B w B w

dx dx dx dx dx dx dx
S

dw d d d
B w B
dx dx dx

 

/2

3 4
0 /2

3 4

3 3 3 4

3 3 3 4

33 3

3 3 3

0


   


      


    



 
 
 
 
 
 
 
 
 
  
      

  
          
 

  
 

 
L h

xxh
xx

xx
xx xx xx

xz
xz xz

dzdx
dw dw d w

w B w B w
dx dxdx dx

dd w d d d w d w d w
B w B w B w B w

dx dx dxdx dx dx dx

dd d
B w B w B w
dx dx dx

;  dy=1  (18) 

The stress resultants in local forms are specified by the following relations: 
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Now, by substituting Eq. (15) into Eq. (19), the stress resultants in the displacement field are as follows: 
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Using Eq. (18) and (19) and some simplyifing yields: 
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Therefore, Eq. (21) can be further simplified as follows: 
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Finally, ignoring the terms xxdN

dx
 and 

3

3
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in Eq. (22), the terms in the integral section are the nonlinear governing 

equation as follows: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 Mohammad Malikan, Vol. 5, No. 1, 2019 
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 1, (2019), 103-112   

108

2 3 6 4 2
2

02 3 6 4 2
2x x

x
d M d Q d w d w d w

B N B B q
dx dx dx dx dx

 
      

 
 (23) 

and also the higher-order boundary conditions obtained from variational method (Eq. (22)) are presented as follows: 
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2 5 3
2 0x x

x
dM d Q d w d w dw

B N B B
dx dxdx dx dy

 
       

 
 (24) 

In which Mx, Qx, and Nx are nonlocal stress resultants, respectively and q0 is the transverse static load which is ignored in this 

study. Here, the quantity xN  is the resultant with respect to the axial applied compressive in-plane force. According to the 

nonlocal elasticity theory, the following equation is employed [14, 41]: 

   
2

22 2 2
0 2

1 ( ) ,NL L
ij ij ijkl kl

d
C  ;    nm e a      (NL: Nonlocal, L: Local)

dx
            (25) 

where μ  is the stress nonlocality factor and a is an interior determined length [14]. In order to apply the stress 
nonlocality on the Eq. (23), the following formulation is obtained: 
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 
2 3 6 4 2

2 2
2 3 6 4 2

1 2 0
L L

Lx x
x

d M d Q d w d w d w
B N B B

dx dx dx dx dx


 
        

 
 (26b) 

The in-plane compressive force is assumed as follows [41-42]: 

L
x CrN P   (27) 

Now, incorporating Eq. (20, 27) and inserting them into Eq. (26b) and also some manipulating, lead to the stability equation of 
OVFSDT in the displacement field as: 
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2 2 2
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   
 (28) 

3. Navier’s solution method 

   The Navier analytical solution [42] is considered to implement the simply-supported boundary condition according to Eq. 
(29). 
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where m is the half-wave number as a integer one [42], Wm and Φm are the unknown terms which should be determined and 
also ω is the natural frequency in the vibrational analysis. Substituting Eq. (29) into Eq. (28), the algebraic equation is 
obtained from which the equation of critical buckling load is calculated as follows: 
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 (30) 

4. Numerical results 

   At first glance, it is required to consider the accuracy of the numerical results originated from the proposed beam theory 
with other theories. Therefore, as can be seen in Tables 1 and 2, references [43-44] are employed. In [43] a nano rod was based 
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on both Euler (Table 1) and Timoshenko (Table 2) beam theories and the equations were solved by using an explicit analytical 
method. On the other hand, in ref. [44] Euler nano rod was modeled and a differential transform method was utilized in order 
to obtain numerical results. In fact, both thin and moderately thick beams are compared and carried out with both ends simple 
boundaries. It is worth noting that by increasing the length to diameter ratio of the nano rod, the results in both Tables are 
becoming closer to one another. This means that for thin beams the proposed beam theory makes same predictions with Euler 
beam theory which is an acceptable conclusion. Because thin beam theories like Euler can predict appropriate results only for 
thin beams due to lack of considering shear strain influences in such a theory. This strain is fundamentally required for the 
response of moderately thick beams which is embedded in the proposed theory. It can be seen that for lower values of length to 
diameter ratio which the rod goes into moderately thick and thick cases, the results of Euler beam theory are in a major 
difference with the current formulation. Furthermore, increasing the small-scale parameter decreases the gap between the 
results of the current beam theory and others. From Table 2 which compares the new beam theory with Timoshenko beam, it is 
observed that the difference is further than the first Table. Note that the shear correction factor used in Timoshenko theory can 
be a serious defect in light of the approximate quantity of ks=5/6. Although this value has been applied for moderately thick 
models, it cannot be an exact value to analyze several cases, in particular nanostructures. But in the proposed beam theory, this 
extra factor is vanished from the governing equation that leads to further accurate results. Generally, Tables 1 and 2 show the 
close numerical favorable results between the present theory and others from which the theory can be approved. Although the 
new theory of beam which is used cannot be a complete theory, by carrying out the errors and refining them, the more 
appropriate numerical results are obtained. 

Table 1. Results of critical buckling load (nN) developed from several theories for a rod. 
E=1TPa,  υ=  0.19,  d=1nm, m=1. 

PCr (nN) 

L (nm) 
µ=0 nm2 µ=1 nm2  µ=2 nm2 

[43], EB*, Explicit [44], EB, DTM** Present, Navier [43] [44] Present [43] [44] Present 
10 4.8447 4.8447 4.9169 4.4095 4.4095 4.4752 3.4735 3.4735 3.5252 
12 3.3644 3.3644 3.3991 3.1486 3.1486 3.181 2.6405 2.6405 2.6677 
14 2.4718 2.4718 2.4905 2.3533 2.3533 2.3711 2.0574 2.0574 2.0729 
16 1.8925 1.8925 1.9034 1.8222 1.8222 1.8327 1.6396 1.6396 1.6491 
18 1.4953 1.4953 1.5021 1.4511 1.4511 1.4577 1.3329 1.3329 1.3389 
20 1.2112 1.2112 1.2156 1.182 1.182 1.1864 1.1024 1.1024 1.1064 

 
* Euler beam (EB) 
** Differential Transform Method (DTM) 

Table 2. Results of critical buckling load (nN) developed from several theories for a rod. 
E=1TPa,  υ=  0.19,  d=1nm, m=1. 

PCr (nN) 

L (nm) 
µ=0 nm2 µ=0.5 nm2  µ=1 nm2 µ=1.5 nm2  µ=2 nm2 

[43], TB Present [43], TB Present [43], TB Present [43], TB Present [43], TB Present 
10 4.7670 4.9169 4.654 4.7985 4.3450 4.4752 3.9121 4.0234 3.4333 3.5252 
12 3.3267 3.3991 3.2713 3.3418 3.1156 3.181 2.8865 2.9449 2.6172 2.6677 
14 2.4514 2.4905 2.4212 2.4595 2.3348 2.3711 2.2038 2.237 2.0432 2.0729 
16 1.8805 1.9034 1.8626 1.8852 1.8111 1.8327 1.7313 1.7515 1.6306 1.6491 
18 1.4878 1.5021 1.4766 1.4907 1.4440 1.4577 1.3928 1.4057 1.3269 1.3389 
20 1.2063 1.2156 1.1989 1.2082 1.1773 1.1864 1.1431 1.1517 1.0983 1.1064 

* Timoshenko beam (TB), ks=5/6. 

The elastic properties and dimensions amounts of the SWCNT to consider the current formulation are used with regard to 
Table 3. 

Table 3. Mechanical properties of the nanotube [26, 45-49] 

 

 

In order to investigate the behavior of half-wave numbers, Fig. 2 is taken into consideration when different length to diameter 
ratios are employed. From the diagram, it can be seen that the increase of half-wave increased the critical buckling loads. 
These curves are the response of the Navier’s solution method in case of ignoring sine series in this technique. These results 
are magnified by using lower deals of half-waves in Fig. 2. It can be concluded that lower values of half-wave numbers 
noticeably affect the outcomes of lower-dimension ratios. 

SWCNT 

Elastic properties 
E=1TPa,  ν=0.25 

Dimensions 
h=0.34nm,  d=0.7nm   D
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Fig. 2. Several length to diameter ratios versus lower values of 

half-wave numbers (e0a=1nm) 
Fig. 3. Nonlocal parameter versus several length to diameter 

ratios (m=1) 

The variation of length to diameter ratio is studied in Fig. 3 whilst the nonlocal parameter is chosen differently. It is observed 
that when the ratio becomes larger, the impact of nonlocal parameter decreased remarkably. In fact, for considerable values of 
dimension ratio, the critical buckling loads are independent of small-scale influences. This harvest needs further 
considerations. Therefore, Fig. 4 indicates the growing of nonlocal parameter versus different length to diameter ratios. As can 
be observed, the critical buckling load decreases regarding various dimension ratios which then lead to same predictions for 
critical buckling loads. This reducing slope of curves for lower quantities of dimensionless dimensional coefficient is much 
more than higher ones. From another aspect, it can be seen that in the local case the dimension ratio is an impressive factor. 
This means that the variation of dimensions in macro conditions is further important than micro ones. 

  
Fig. 4. Different length to diameter ratios versus variations of 

nonlocal parameter (m=1) 
Fig. 5. Nonlocal to local coefficient versus several length to 

diameter ratios (m=1) 

Figure 5 considers the ratio of nonlocal to local parameters versus the increase of length to diameter coefficient. According to 
this figure’s results, with an increase in dimension ratio, the quantum effects of the nanotube are decreasing, which can be a 
reasonable achievement; Because the quantum influences like nonlocality which has been defined by the nonlocal parameter 
would not be appeared in macro scales. In macro models the results of local and nonlocal analyses are the same as identical 
values. An urgent necessity to use a small-scale parameter in a nanoscale is shown in Fig. 5. 

5. Conclusions 

The present study investigated the buckling of single-walled carbon nanotubes subjected to the axial in-plane loads. To 
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achieve this aim, a novel beam theory was formulated to derive the governing equation. The influences of nanoscale were 
evaluated utilizing the nonlocal elasticity theory of Eringen. Furthermore, Navier’s approach was used to calculate the 
numerical results. The impressive outcomes proved that the Euler beam theory does not include satisfactory results for 
moderately thick and thick beams. On the other hand, although the Timoshenko beam theory took the impacts of transverse 
shear strains into account, the used shear correction factor deviated outcomes of this beam approach. The appropriate amount 
of this factor for nanostructures was not calculated, therefore, the used value could not be appropriate at all. Moreover, the 
results showed that in the local case, the dimension ratio is an effective factor because the quantum effects do not exist in the 
macro analysis. 
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