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Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an 

external electric voltage 

Abstract 

This paper aims to present the electro-thermal buckling of double-layered piezoelectric nanoplates (DLPNs) using 

modified couple stress theory. DLPNs are subjected to a uniform temperature which developed from a thermal 

environment and an external electric voltage (EEV) is applied on the plates. Due to the existing thermal buckling 

analysis in which thermal stress resultants depend on the thickness only; therefore, a comprehensive method by 

considering thermal stresses at both length and width of the plate is investigated. A simplified four-variable shear 

deformation plate theory is employed and the governing differential equations are obtained using the variational 

formulation. Modified couple stress theory is applied in order to consider size-dependent effects. Because the 

presented temperature distribution method is relatively new particularly in nanostructures and there has never been 

similar studying, so, in order to compare the results, a validation is done with the results of graphene sheets. Results 

are presented by change in some parameters such as aspect ratio, effects of boundary conditions and influence of the 

length scale parameter on the thermal stability of DLPNs. 

Keywords: Electro-thermal buckling; Double-layered piezoelectric nanoplates; External electric voltage; Modified 

couple stress theory; Simplified four-variable shear deformation plate theory   

1. Introduction

Piezoelectricity effect has been defined as a linear-electromechanical reaction between both electrical and mechanical 

states in adiabatic materials and crystals which do not have central symmetry. Indeed, piezoelectric is a material in 

which electrical field is created under mechanical pressures or stresses. This phenomenon is called direct 

piezoelectric effect which is a returnable process. Reversely, whenever a material with such a property is embedded 

in the electric field, the mechanical deformation will occur (reverse piezoelectric effect) [1]. By the help of 

piezoelectric nanomaterials, the minute produced waste oscillating energies in the noises environment, power of wind 

and the movement of water or waves can be collected and used as propulsion for directly water decomposition and 

producing of energy. Currently, the major limitation of such advanced materials is their use in the nanoscale devices. 

Scientists are cutting, fragmenting and grinding these materials in order to use them in nanodevices; however, the 

operations have low precision and are done as a trial and error method [2].  

Due to the importance of mechanical behavior forecast of piezoelectric nanomaterials and according to difficulties in 

the use of experimental methods as well as the high cost for analyzing in the laboratory, so, it can be highly 
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recommended to use the theoretical methods for investigating nanoscale materials. Therefore, many kinds of research 

have been presented over the past years for prediction of the mechanical behavior of nanomaterials which are briefly 

shown by the following studies. Ke et al. investigated the nonlinear vibration [3] and post-buckling [4] behaviors of 

nonlocal Timoshenko piezoelectric nanobeams under combined thermo-electro-mechanical loadings. Vibration and 

buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints have been 

presented by Jiang and Yan [5]. Free vibration analysis for single-layered graphene sheets in an elastic matrix via 

modified couple stress theory was studied by Civalek and Akgöz [6]. They used classical plate theory and analytical 

Fourier series approach in the research. Results presented that the effect of the material length scale parameter is 

more significant for higher modes of vibration. Dai et al. [7] investigated buckling analysis of a piezoelectric 

viscoelastic nanobeam subjected to van der Waals forces. Wang et al. [8] examined the nonlinear pull-in instability 

and free vibration of micro/nanoscale plates with surface energy using a modified couple stress model. Their results 

showed that the effect of the surface energy and the material length scale decreased if the size of the plate increased. 

Shariati et al. [9] studied post-buckling of functionally graded nanobeams based on modified couple stress theory 

under general beam theory. The obtained results indicate that the first-order beam theory has some errors in 

estimating the amplitude of buckling. He et al. [10] analyzed buckling and post-buckling analyses of piezoelectric 

hybrid microplates subject to thermo-electro-mechanical loads based on the modified couple stress theory. They used 

first-order shear deformation theory for deriving governing equations and applied Galerkin method in order to solve 

the equilibrium equations. Malikan et al. [11] published buckling of double-layered nanoplates under shear and 

thermal loads based on the elastic matrix using differential quadrature method. Moharam and Alireza Habibnejad 

Korayem [12] studied modeling of atomic force microscope (AFM) with a piezoelectric layer based on the modified 

couple stress theory with geometric discontinuities. Pan et al. [13] extended free vibration of three-dimensional 

anisotropic layered composite nanoplates based on modified couple stress theory. Their results revealed that the 

material length scale has a much larger effect on the natural frequencies in the thin plate than those in thick plate. 

Malikan [14] presented electro-mechanical shear buckling of a piezoelectric nanoplate using modified couple stress 

theory based on a simplified first-order shear deformation theory. The results showed that the effect of external 

electric voltage on the critical shear load occurring on the piezoelectric nanoplate is insignificant. 

Size effect is a subject of current increasing interest due to the fact that current applications in modern technology 

involve a variety of length scales ranging from a few centimeters down to a few nanometers [15]. Structural materials 

display a strong size-dependence when deformed non-uniformly into the inelastic range: smaller is stronger. This 

effect has important implications for an increasing number of applications in structural failure, electronics, functional 

coatings, composites, micro-electro-mechanical systems (MEMS), nanostructured materials, micro/nanometer 

fabrication technologies, etc. The mechanical behavior of these applications cannot be characterized by classical 

continuum theories because they incorporate no ‘material length scales’ and consequently predict no size effects. On 

the other hand, it is still not possible to perform quantum and atomistic simulations on realistic time and structures. It 

was therefore necessary to develop a scale-dependent continuum theory bridging the gap between the classical 

continuum theories and the atomistic simulations in order to be able to design the size-dependent structures of 

modern technology [15]. Modified couple stress theory is applied in this work for this purpose, in which a material 

length scale is implicitly and explicitly introduced into the governing equations. It is worth noting that the couple 
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stress theories are forms of strain gradient theories by taking the first strain gradient parameter of Mindlin [16]. In 

couple stress theory the potential energy-density is assumed to be a function of the strain and the curl of the strain 

instead of the strain alone [17-19]. 

This paper investigates double-layered piezoelectric nanoplates in a thermal environment in order to consider 

temperature effects on such materials. Regarding existing thermal buckling of nanoplates, we have seen thermal 

stresses differential along the thickness of nanoplates in order to obtain critical buckling temperature. As a matter of 

fact, there has never been any considering about presence of thermal stresses based on the nanoplate’s dimensions 

dependency and thermal stress resultants are only a function of thickness, which in fact, cannot be comprehensive. 

So, current research studies thermal buckling analysis with investigating thermal stresses based on the thickness as 

well as length and width of the plate. On the other hand, finding a thermal function which shows heat transfer in 

nanomaterials among atoms is so difficult, and it has not already derived. Therefore, a thermal function which was 

derived for macro materials is employed. In order to obtain governing equations, the nonlinear strains of Von-

Kármán have been considered. In addition, the small-scale effects are studied with utilizing modified couple stress 

theory. Moreover, Galerkin analytical solution is used to solve the stability equations in various boundary conditions. 

Finally, the effects of different parameters such as; changes in the length scale parameter, aspect ratio, and boundary 

effects of edges in various conditions under thermal stresses have been evaluated. 

2. Governing equations 

A double-layered rectangular piezoelectric nanosize plate is assumed as Fig. 1 in the thermal environment under an 

external electric voltage. The plate is embedded in a two-parameter Winkler-Pasternak elastic foundation thoroughly 

in the linear form. Also, van der Waals forces are assumed to be linear spring interlayers. For terminology of the plate 

sizes, Lx and Ly are used for presenting length and width of the nanoplates respectively, and h has shown the thickness 

of either of the nanoplates. 

 

Fig. 1. Schematic figure of rectangular double-layered piezoelectric nanoplates on the Winkler-Pasternak matrix 
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Not to mention that a complete plate theory cannot be easily found and compulsorily the current theories should be 

refined. Even though, over the past two decades, many researchers have studied the mechanical behavior of the 

nanostructures based on the first-order shear deformation theory (FSDT) which has the more accurate results than 

classical one. It should be noted that the FSDT has some considerable assumptions. For example, in the theory, the 

shear stress distribution will be invariable during deformation along the thickness of the plate. This assumption can 

no longer be true when the remarkable thickness to length ratio will be considered because transverse shear stress is 

significant in such a plate and should be presented in its actual distribution. In the paper, FSDT has been refined and 

simplified in a different form in order to remove minor errors in the contractual theory. Therefore, in this paper, the 

governing equations are derived based on the simplified first-order shear deformation theory (S-SFDT) [14]. 

Considering the S-FSDT, the displacement field can be presented as: 
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(1a-c) 

where wb denotes bending component of deflection and the shear component is defined with ws. Also, u and v are the 

displacement components along x and y-axis, z is a variable related to thickness of the plate.  

All continuum theories used these days have been presented for considering size-dependent influences [17, 19-20]. 

Recently, the modified couple stress theory [21-22] has been applied in which a length scale parameter has been used 

to calculate the effect of small-scale. According to this higher-order continuum theory and using Hamilton’s 

principle, the governing equations of a rectangular piezoelectric nanoplate will be derived. Hence, the equations of 

the total potential energy (V) are expressed as:  

V S                                                                                                                                                                                            (2) 

In which S and Ω are strain energy and work done by external loads, respectively. The virtual strain energy can be 

calculated as: 

    0T m total
ij ij ij ij k k ij ij ij ij ij k k

v v
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                                                                  (3) 

where , , , , ,T m
ij ij ij ij ij k   m   D    , and kE are thermal stress tensor, mechanical stress tensor, Lagrangian strain tensor, 

deviatoric part of the couple stress tensor, symmetric curvature tensor, electric displacement and electric field 

vectors, respectively [3, 23-28]. Then, the stress and electric fields are: 

ij ijkl kl k ij k=C e E   , i ikl kl ij kD =e E                                                                                                                                        (4a-b) 

In which ijklC is stiffness matrix of the material, ikle  and ij  are piezoelectric and dielectric quantities respectively, 

which should be defined as: 
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                                                                                                        (5a-c) 
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The Lagrangian strain tensor will be expressed as follows: 

1

2

ji k k
ij

j i i j

uu u u
=  ; i,j,k=1,2,3

x x x x

   
  

     

                                                                                                                                     (6) 
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                                                                                                   (7a-e) 

And symmetric curvature tensor ( ij ) and also couple stress quantity ( ijm ) can be defined in the following 

equations: 

 
1 1

,
2 2

ji
ij

j i

= , i,j=1,2,3  Curl u
x x

 
  

   


                                                                                                                              (8a-b) 

2 2

2 2

2 2 2 2

2 2 2 2

2 2

2

2 2

2

1
2

2

1
2

2

1
2 2

4

1

4

1

4

b s

b s

x

y

b b s s
xy

xz

yz

w w

x y x y

w w

x y x y

w w w w

x y x y

v u

x yx

u v

x yy











   
        


  
            

         
                

  
            

   
      



















 

                                                                                                                         (9a-e) 

22ij xy ijm G l                                                                                                                                                                               (10) 

In which Gxy is shear elastic modulus and θ is the rotation vector. Also, ijklC is the elastic constant, l is a material 

internal length scale parameter that is related to size effect. The length scale parameter showed effect of small size 

and could be taken values in between zero to unspecified positive micro/nano values which have to be determined in 

laboratory for various nanomaterials under many situations. The parameter for nanomaterials has not been already 

determined and by using a nondimensional form of this parameter it can be correctly used. In order to physically 

explain the length scale parameter, it is worth defining that the parameter depends on the crystal structure and the 

nature of physics of the material. As a physical interpretation, the domain of the applicability of classical field 

theories is intimately connected to the length and time scales. If L denotes the external characteristic length (e.g., 

crack length, wave length, a length over which applied loads are smooth) and l denotes the internal characteristic 

length (e.g., granular distance, lattice parameter, distance between atoms) then the region L/l>1, classical field 

theories predict sufficiently accurate results. On the other hand, when L/l~1, classical theories fail and the non-

classical theories must be taken into account for long-range interatomic attractions [29]. 
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To confirm the Maxwell equation, the distribution of external electric potential for the present nanoplate model is 

assumed as a combination of a cosine and linear variation [28, 30-31].  
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where / h   and  (x,y) is the spatial of the electric potential in the mid-plane of the nanoplate, and also V0 is the 

external electric voltage. Then, the components of electric field can be written as: 
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                                                                                          (13a-c) 

The coefficients in Eqs. (13) can be expressed respectively. 
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                                                                                                                                            (14a-d) 

Here, to define a thermal stress function within which thermal stresses are a function of length and width of the plate, 

the following function is employed [32]: 

2 3
2

110 1 1 2 2 1 22 3

1 12 16 2 2 2 2
1 sinh sin cosh cos 1

48

2

y y x x x x
F Ly T B R R B R R  ; 

Lx Lx Lx LxLy Ly

Ly
y 0

         
                             

  



 

                                                                                                                                                                                                        (15) 

( 0 :F  stress function defining thermal stresses in an unbuckled plate) 

in which B1, B2, R1 and R2 are defined in the following: 
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The main reason for use of the above-mentioned stress function is the measurement of thermal stresses induced in a 

flat plate subjected to a known steady-state temperature gradient. This temperature distribution was validated 

experimentally [32]. Note that the function is far from the real function of heat transfer in a nanomaterial related to its 

atomic structure. Although the function was used for a local continuum material (ALa), the function is an 

approximate mathematical relation which was made based on the following assumptions to show a known and a 

comprehensive heat transfer in a plate [33]: 

1. Temperatures in the plate are constant through the thickness and distributed in a tent like manner over the 

faces (Fig. 2). 

2. No external loads are applied and the plate is free to expand in all directions so that all stresses are due to the 

uniform temperature distribution. 

3. The properties of the material do not vary with temperature and the stresses are within the elastic range. 

4. Elastic displacements are small. 

5. Shear stress due to temperature distribution is supposed to be appeared on the plate ( 0 0
T
xy  ).  

To the best of the author’s knowledge, in all of the thermal buckling studies in the literature, the thermal buckling 

relation resulted from the axial thermal strain (αΔT). For an instance, ref. [11] in which thermal buckling of double-

layered orthotropic graphene nanoplates was studied. So, as it can be seen in Eq. (51) in the ref. [11], the thermal 

buckling functions are not related to the kind of material. This means that if the mechanical properties of e.g., steel 

alloys, aluminum alloys, etc. were used in Eq. (51), it can be employed for macro materials, and also if the 

mechanical properties of nanoplates were used, it can therefore be employed for nanomaterials. Of course, the 

function should be different between macro and nanomaterials, and for either of nanomaterials a function should be 

used which shows the heat transfer between the atoms of nanostructure in a real form (because either of 

nanomaterials has a specific atomic lattice with different interatomic behavior). But, there has never been presented 

such a function for a nanomaterial and a general function has to be employed. Similar formulations can be seen in 

other references in which thermal buckling has been studied. 

The thermal stress in the plate which resulted from Eq. (15) is given by: 
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Ly
y 0    

where 11 and T are thermal modulus and temperature changes (For the current nanoplate at reference temperature 

T, the temperature rises uniformly to the final temperature T0 which ∆T=T0-T (T=300 K: Normal room temperature) 

[11]), Also, D1, D2, D3 and D4 are described as: 

 2 2
1 1 1 2 2 1 22D B k k B k k                                                                                                                                                              (23a) 

 2 2
2 2 1 2 1 1 22D B k k B k k                                                                                                                                                             (23b) 

3 1 2 2 1D B k B k                                                                                                                                                                              (23c) 

4 1 1 2 2D B k B k                                                                                                                                                                              (23d) 

The temperature Δχ is distributed similar to a tent on the faces and Δζ is the constant temperature along thickness of 

the plate (in the present study, it was assumed Δχ=Δζ=ΔT). 

 

 

 

 

 

 

                                                                    h 

 

 

Fig. 2. Tent like temperature distribution according to the Eq. (15) [32-33] 

Here, by integrating Eqs. (20-22) with respect to the x and y, the temperature differential over three dimensions of the 

plate are derived as [33]: 
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                                                                                                                                                                                                    (25a-c) 

In which: 
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Using the variational formulation the nonlinear constitutive equations are derived as follows: 
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                                                                                                                                                                                                        (29) 

The work of external forces is expressed as follows (Index 1 is used for the upper layer and index 2 for the lower 

layer, respectively) [34]: 
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where wk and Gk denote the Winkler and Pasternak stiffness coefficients of the elastic matrix, and ok represents the 

van der Waals (vdW) interaction bonds between the layers. Finally, the thermal stability equations will be derived 

using the principle of minimum total potential energy (δV=0) in the following equations: 
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                                                                                                                                                                                                              (32a-c) 

Ni, Mi, and Qi (i= x, y, xy) are axial, moment and shear stress resultants, respectively, and also Yij (i= x, y, xy) are non-

zero curvature resultants. 

On the other hand, the non-classical boundary conditions originated from the couple stress theory are obtained as: 
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In Eqs. (32) the bending moments raised from temperature are as follows: 
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Thereafter, the stress resultants and non-zero curvature resultants are expressed as: 
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                               (35a-h) 
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                                                                              (36a-e) 

The in-plane stress resultants are explained as follows: 

0. .

ij ij

Total Mech Ele T

ij ij

c
N N N N                                                                                                                                                     (37) 

where E
xN  and E

yN are the in-plane electric loads as [35-36]: 

/2
0

31
/2

2
,

h
E E
x y

h

V
N N e dz

h
                                                                                                                                                               (38) 

Also 
.Mech

ijN    are neglected in the present research and 0T

ijN   are mentioned in Eqs. 25. The stress resultants in 

displacement field by using Eqs. (35) and (37) are redefined in the following: 
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In Eqs. (39), Aij and Dij are extensional stiffness and extension-bending coupling matrix respectively, as follows: 
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ij ijij ijh hA C  dz    i j   D C z  dz     i j
 

                                                                                           
(40a-b) 
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(41a-d) 
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(42a-d) 

Inserting Eqs. (36, 39) into Eqs. (32), the thermal stability equations in the form of displacement components and 

based on S-FSDT also including couple stress effects for DLPNs are expressed which lead to Eqs. (43): 
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In which As is defined by: 

22

2

h

66s hA l C  dz  


                                                                                                                                                                         
(44) 

3. Analytical solution 

In this section, to obtain critical temperature of DLPNs with simply-supported and clamped boundary conditions 

(B.Cs) the essential and natural B.Cs are presented in the following [14, 37]: 

Simply-supported (S): 

Ф = wb = ws = Mx = 0; at x = 0, Lx                                                                                                                                                                    (45a) 

Ф = wb = ws = My = 0; at y = 0, Ly                                                                                                                                             (45b) 

Clamped (C): 

Ф = wb = ws = 0; at x = 0, Lx and y = 0, Ly                                                                                                                                 (46) 

In order to solve the stability equations the Galerkin variational method has been used. In the method, the responses 

are assumed to be as follows: 

   ,

1 1

. ,s mn m n

m n

w i x, y A i  X  x, y  i=1,2
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                                                                                                                                   (47a) 

   ,

1 1

. ,b mn m n

m n

w i x, y B i  X  x, y  i=1,2
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   ,

1 1

. ,mn m n

m n

i x, y C i  X  x, y  i=1,2
 

 

                                                                                                                                     (47c) 

In which  ,m nX  x, y  are shape functions on the basis of x and y which satisfy the boundary conditions in Eqs. (45) 

and (46). And Amn, Bmn and Cmn are the constant coefficients which should be calculated. The admissible shape 

functions are listed in Table. 1. 

Table 1. Shape functions  

Boundary conditions mX  (x)  nY  (y)  

SSSS  Sin x   Sin y  

CCCC  2Sin x   2Sin y  

where m
Lx

  and n
Ly

  , m and n are the half-waves numbers. Substituting Eqs. (47) into Eqs. (43), a residual 

in the algebraic form will be obtained, based on the Galerkin approach, the residual must be perpendicular on the 

shape functions, which will be presented by: 

   ,. 0,m nR x, y  X  x, y dxdy  m,n=1,2,3,...                                                                                                                                (48) 

On the basis of Eq. (48), the homogenous algebraic equations system will be obtained as: 
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                                                                                                                                        (49) 

where  1 1 1 2 2 2,A  B , C , A , B , C  are the unknown variables. Also ijK    are coefficients of unknown variables as follows: 

   0 0 0

22 2 2 2
,

31 3111 0 02 2 2 20 0

4 4 4
,

2 2

4

4

4

4

2 2 2

3 1 1

4 8 8

Lx Ly
m nT T Tm n m n

n m x n y m xy o m n

m n m n
s n m m n

XX X X X
K X X e V N X e V N X N k X X

x y x y x y

X X X
A X X X X dy

A

dx
x y x y

     
          

      

   
         

 

   0 0 0

22 2
,

31 3112 0 02 20 0

4 4 4
,

2 2 4 4

2 2 2

3 1 1

2 4 4

Lx Ly
m nT T Tm n

x n y m xy o m n

m n m n
s n m m n

XX X
K e V N X e V N X N k X X

x y x y

X X X
A X X X X dydx

x y x y

      
                     

   
         

 
 

2 2

13 15 2 20 0

Lx Ly
m n

n m m n

X X
K E X X X X dydx

x y

  
   

  
   

2 2

14
0 0

Lx Ly

o m nK k X X dydx    

2 2

15
0 0

Lx Ly

o m nK k X X dydx    

16 0K   

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


   0 0 0

22 2
,

31 3121 0 02 20 0

4 4 4
,

2 2 4 4

2 2 2

3 1 1

2 4 4

Lx Ly
m nT T Tm n

x n y m o m n xy

m n m n
s n m m n

XX X
e V N X e V N X k X X N

x y x y

X X X
A X X X X dydx

y

K

x x y

  
      

   

   
         

 
 

     0 0

0

44 4 2 2
,

31 3122 0 04 4 2 2 2 20 0

2 4 4 4
, ,

2

11 22 12 66

2 4 4

2 2 2

1 1
2 3

2 2

Lx Ly
m n T Tm n m n

n m x n y m

m n m nT m n
o m n xy s n m m n

XX X X X
X X e V N X e V N X

x y x y x y

X X X X
k X X N A X X X X dydx

x

K D D 2D D

y x y x y

    
        

     

    
             

 
 

2 2

23 31 2 20 0

Lx Ly
m n

n m m n

X X
E X X X X dydx

x y
K

  
  

  
   

2 2

24
0 0

Lx Ly

o m nk X X y xK d d    

2 2

25
0 0

Lx Ly

o m nk X X y xK d d    

26 0K   

2 2

31 15 2 20 0

Lx Ly
m n

n m m n

X X
K E X X X X dydx

x y

  
  

  
   

2 2

32 31 2 20 0

Lx Ly
m n

n m m n

X X
K E X X X X dydx

x y

  
   

  
   

2 2

33 11 332 20 0

Lx Ly
m n

n m m n m n

X X
K X X X X X X X X dydx

x y

   
    

   
   

34 35 36 0K K K    

2 2

0 0

Lx Ly

4 o n1 mK =k X X dydx   

2 2

0 0

Lx Ly

4 o n2 mK =k X X dydx   

43 0K   

   

 

0 0 0

22 2 2 2
,

31 310 02 2 2 20 0

4 4 4
,2

, 2 2 4

4

4

4 2 2 2

3 1 1

4 8 8

Lx Ly
m nT T Tm n m n

n m x n y m xy

m n m n
o m

4

n w m n G m n s n m m n

4

XX X X X
X X e V N X e V N X N

x y x y x y

X X X
k X X k X X k X A X X X X dydx

x y

K = A

x y

     
        

      

   
             

 
 

     0 0 0

22 2
, 2

31 310 0 ,2 20 0

4 4 4
,

2 2 4 4

2 2 2

3 1 1

2 4 4

Lx Ly
m nT T Tm n

x n y m xy45 o m n w m n G m n

m n m n
s n m m n

XX X
e V N X e V N X N k X X k X X k X

x y x y

X X X
A X X X X dydx

x y x y

K =
  

       
   

   
          

 
 

2 2

15 2 20 0

Lx Ly
m n

n m m6 n4

X X
E X X X X dydx

x
K =

y

  
  

  
   

2 2

0 0

Lx Ly

5 o n1 mK =k X X dydx   

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2 2

0 0

Lx Ly

5 o n2 mK =k X X dydx   

53 0K   

     0 0 0

2 2 2
,2

31 31, 0 02 20 0

4 4 4
,

2 2 4 4

2 2 2

3 1 1

2 4 4

Lx Ly
m nT T Tm n

o m n w m n G m n xy x n y m

m n m n
s n m m n

54

X X X
k X X k X X k X N e V N X e V N X

x y x y

X X X
A X X X X dydx

x

K

y y

=

x

   
         

   

   
         

 
 

   

   

0

0 0

2 44 4
, ,2

, 4 4 2 20 0

42 2 4 4
,

31 310 02 2 2 2 4 4

11 22 12 662 2

1 1
2 2 3

2 2

Lx Ly
m n m nT m n

o m n w m n G m n xy n m

m nT Tm n m n
x n y m s n

5

m

5

m

K = D D 2D
X XX X

k X X k X X k X N + X X
x y x y x y

XX X X X
e V N X e V N X A X X X X

x y x y x y

D
   
       

     

    
                

 

ndydx

 

2 2

31 2 20 0

Lx Ly
m n

n6 m5 m n

X X
E X X X X dydx

x y
K =

  
 

  
   

61 62 63 0K K K    

2 2

64 15 2 20 0

Lx Ly
m n

n m m n

X X
K E X X X X dydx

x y

  
  

  
   

2 2

65 31 2 20 0

Lx Ly
m n

n m m n

X X
K E X X X X dydx

x y

  
   

  
   

2 2

66 11 332 20 0

Lx Ly
m n

n m m n m n

X X
K X X X X X X X X dydx

x y

   
    

   
   

                                                                                                                                                                                                              (50a-f) 

So, to have a non-zero response, the determinant of [Kij] must be set to zero and then with solving the obtained 

equation, the critical buckling temperature would be harvested. 

4. Results and discussions 

In this section, based on the graphene sheets and nonlocal elasticity theory the accuracy and precision of the current 

formulation would be validated. Therefore, in order to compare the outcomes, some well-known available references 

are employed. Hence, Table 2 is used in which the results are verified with refs. [37-38]. The Table is given for the 

critical buckling temperature of single-layered graphene sheets in which FSDT and nonlocal theory of Eringen have 

been applied. From Table 2, a high correspondence of the results in the presented study with the results in refs. [37-

38] can be seen. Due to using nonlocal FSDT in ref. [37], and nonlocal new first-order shear deformation theory 

(NFSDT) in ref. [38], it can be concluded that by the application of the simplified first-order deformation theory by 

which the shear correction factor has been removed, so, the results with a satisfying accuracy are obtained and that 

the values of the critical buckling temperature are a slightly lower in comparison with the nonlocal FSDT. 

Furthermore, it is obvious that whatever the plate sizes are bigger, the critical buckling temperature will be noticeably 

reduced. The lower results might be due to a longitudinal and lateral distribution considered in the present work 

which lead to the weaker plate; however, the value of the length scale parameter is so impressive. Another 

comparison has been presented by Table 3 for showing the difference between current function of temperature with 
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those developed from ref. [38]. As can be seen, the values of results at lower aspect ratios (β) are much more than the 

higher ones. These differences can be acceptable when the results of classical plate theory (CLPT) are taken into 

consideration. In addition, whatever the aspect ratio is getting further, the results of current thermal function would 

be in an excellent agreement. For further verification of thermal buckling obtained here, other comparative examples 

are shown in Table 4 by which non-dimensional critical buckling temperature subjected to uniform temperature in 

local condition is investigated. To achieve this aim, refs. [39-41] are used within which the refined plate theory 

(RPT), the sinusoidal shear deformation theory (SPT) and the four-variable hyperbolic plate theory (FHPT) were 

applied.  As it is observed, by an increase in the length to thickness ratio the dimensionless critical buckling forces 

have become closer to the other research results. However with increasing the aspect ratio the closeness of the 

outcomes will be in an excellent agreement which can be noticeable. 

Table 2 E=1.06TPa, υ=0.25, h=0.34nm, μ=1.81nm2, l=0.6h*, α =1.110-6K-1, ks=5/6, NT
xy=0, SSSS [37-38] 

Table 3 E=1.06TPa, υ=0.25, h=0.34nm, μ=0 nm2, l=0 nm, α =1.110-6K-1, ks=5/6, NT
xy=0, SSSS [38] 

Table 4 
E=1.06TPa, υ=0.25, Lx=Ly=10nm, h=0.34nm, μ=0nm2, l=0nm, α =1.110-6K-1, T*= 1000αΔT, NT

xy=0, 

SSSS [39-41] 

* The value has been freely chosen and at such a value the results were compared with the other research results. Note that the value 

might not be the exact value of the current model which means that such a value should be obtained in an experimental work. 

Table 2. Validation of the results of critical buckling temperature for single-layered graphene sheets obtained from 

[37-38]. 

Lx (nm) Ly (nm) 
[37] (K)-

NFSDT 

[38] (K)-

FSDT 

Present study (K)-

S-FSDT 

10 10 1010.7 1013.0 1011.0 

20 10 702.43 703.99 701.01 

20 15 424.44 426.33 422.15 

20 20 315.32 316.92 313.50 

25 10 661.12 662.18 658.04 

25 15 375.02 376.56 373.00 

25 20 262.50 263.84 260.18 

25 25 207.99 209.11 205.33 

30 10 638.30 638.98 636.55 

30 15 347.63 348.90 345.27 

30 20 233.19 234.32 231.0 

30 30 146.89 147.70 144.0 

Table 3. Comparison of critical buckling temperature for single-layered graphene sheets developed from ref. [38] 

(The data in the Table are calculated by using Eqs. 8 and 18 in ref. [38]). 
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Lx / Ly 
[38] (K) Present study (K), 

S-FSDT CLPT FSDT 

0.5 3457.4 3405.5 3390.6 

1 1382.9 1374.6 1357.2 

1.5 998.79 994.42 991.41 

2 864.33 861.06 860.41 

2.5 802.10 799.28 790.74 

3 768.30 765.71 758.23 

3.5 747.91 745.46 733.31 

4 734.68 732.32 728.55 

4.5 725.61 723.30 717.23 

5 719.12 716.86 715.15 

5.5 714.32 712.09 710.4 

6 710.68 708.46 707.68 

6.5 707.83 705.63 705.23 

7 705.58 703.39 702.96 

Table 4. Comparison of dimensionless critical buckling temperature for single-layered graphene sheets with refs. 

[39-41] 

Ly / Lx Plate theory 
Lx/h 

5 10 15 20 25 

1 

[39]-RPT 41.31747 11.97825 5.48623 2.00643 0.50499 

[40]-SPT 41.33314 11.97928 5.48645 2.00646 0.50502 

[41]-FHPT 41.31705 11.97825 5.48623 2.00643 0.50499 

Present, S-FSDT 40.15970 9.33687 4.09660 1.90833 0.46243 

2 

[39] 27.73011 7.63918 3.46061 1.25824 0.31589 

[40] 27.73639 7.63958 3.46070 1.25826 0.31591 

[41] 27.73004 7.63918 3.46061 1.25824 0.31589 

Present  26.3310 6.27304 2.76394 1.18566 0.29915 

3 

[39] 24.99110 6.81615 3.08138 1.11913 0.28083 

[40] 24.99608 6.81646 3.08145 1.11915 0.28085 

[41] 24.99106 6.81615 3.08138 1.11913 0.28083 

Present  23.39520 5.60301 2.4710 1.02185 0.26886 

Table 5. Mechanical and Electrical properties of a piezoelectric nanoplate [14, 24] 

A 

piezoelectric 

nanoplate 

C11=132GPa, C12=71GPa, C13=73GPa,  

C33=115GPa, C44=26GPa, C66=30.5GPa, 

 e31=-4.1 C/m2, e15=10.5 C/m2, e33=14.1 C/m2,  

κ11=5.841e-9 C/V.m, κ 33=7.124e-9 C/V.m,  

λ11=4.738e+5 N/m2K, λ33=4.529e+5 N/m2K 
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Fig. 3a displays the changes of the length scale parameter in both SSSS and CCCC boundary conditions in the 

presence and absence of the elastic foundation. It can be clearly seen that in the l=0, the outcomes of critical buckling 

temperature in simple boundary condition are higher than clamped ones. However, with an increase in the length 

scale parameter, the trend will be steady. As a matter of fact, the outcomes demonstrate the effects of flexible 

boundary conditions and show that whatever the boundary conditions are more flexible, the results are further than 

others. Additionally, Fig. 3b shows the changes in the length scale parameter versus various EEV in CCCC. It is 

found that by increasing EEV, the critical buckling temperature is decreased. Using low values of EEV proves the 

major influence of EEV on the thermal buckling problems. This means that the use of greater EEV can ineffective the 

high resistance of nanoplates for occurring thermal buckling and at this situation, plates will buckle under low 

temperatures. 

 

Fig. 3a. The length scale parameter versus different boundary conditions (V0=0 V, m=n=1, Lx=Ly=30h, l*=l/h, ko=1GPa/nm) 

 

Fig. 3b. The length scale parameter versus different external electric voltage (CCCC, m=n=1, Lx=Ly=30h, l*=l/h, 

ko=10GPa/nm) 
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In order to examine the van der Waals (vdW) forces between layers, Fig. 4a and 4b are drawn. As shown in the Fig. 

4a, by an increase in vdW forces the critical buckling temperature outputs after ko=4GPa/nm will be gradually 

converged. Before that, the slope of the diagrams tends to steeply upward. Indeed, in lower values of vdW, 

nanoplates have separated behaviors, and we can see asynchronous buckling in which each plate has isolated 

buckling. On the other hand, when the vdW forces are raised the plates will be simultaneously buckled. So, it is 

reasonable if we say in synchronic buckling the critical temperature must be bigger than another one [11]. Moreover, 

it can be observed that whatever the sizes of plates are smaller, the critical buckling temperature values will be 

greater. In addition, by focusing on the graph, it is vivid that the impact of the plate’s dimensions is more than 

boundary conditions effects on the vdW differential. From the second figure which considers the vdW differential 

versus EEV, it can be found that the greater vdW forces have not a noticeable impressed by the EEV. 

 

Fig. 4a. The Van der Waals coefficient versus different size of plate (V0=0 V, m=n=1, l=2h) 

 

Fig. 4b. The Van der Waals coefficient versus different external electric voltage (SSSS, Lx=Ly=30h, m=n=1, l=4h) 

 

Fig. 5 is plotted to show the EEV changes in the several half-waves for both CCCC and SSSS boundary conditions. 

As can be seen, in the first half-wave number the increase of the EEV leads to decreasing critical buckling 
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temperature. However, after evaluating the second half-wave number the trend is getting slower, which means that 

the second half-wave decreases the impact of EEV. It can be importantly noted that by investigating every boundary 

condition while EEV is removed, the results of CCCC in both half-waves are remarkably closer to each other against 

SSSS. After applying EEV on the DLPNs, EEV has a tremendous impacted on the CCCC outputs and made the far 

more difference between the results of half-waves. The result is seen with lesser intensity in SSSS. 

 

Fig. 5. The effect of different external electric voltage on different half-waves (Lx=Ly=30h, l=h, ko=1GPa/nm) 

The several aspect ratios (β) in various EEV are illustrated in Figs. 6. Initially, Fig. 6a is shown over which Ly is 

constant and Lx is changeable, and also SSSS boundary condition is used. It can be clearly seen that an increase in β 

parameter leads to a remarkable decrease in critical buckling temperature results. In other words, the kind of 

distribution of temperature might be directly caused. This means that while temperature other than thickness is raised 

in both longitudinal and lateral dimensions, the impact of dimensions of the plate is fundamentally grown. Moreover, 

increasing dimensions of the plate has a considerable influence on the EEV which leads to proximity of results in 

various EEV. As a rule, it can be concluded that by increasing length of the plate the effects of EEV are declined. 

From Fig. 6b in which Lx is constant and Ly is variable the conclusion of previous figure is not seen and decreasing of 

the critical forces has slower trend against Fig. 6a. 
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Fig. 6a. The effect of external electric voltages on aspect ratio changes (SSSS, m=n=1, Ly=30h, l=h, ko=4GPa/nm) 

 

Fig. 6b. The effect of external electric voltages on aspect ratio changes (SSSS, m=n=1, Lx=30h, l=h, ko=4GPa/nm) 

 

Fig. 7a studies the effects of elastic foundation on the EEV changes by taking into account simple boundary 

condition. It can be easily found that by increasing the strength of the matrix the critical buckling temperature has 

been monotonously increased. The considerable slope has been made whenever the foundation is ignored. Moreover, 

the elastic foundation changes do not have a significant impact on the results of any EEV. Moreover, several in-plane 

thermal stress resultants are shown to investigate the effects of the temperature function in various directions by 

changing the elastic foundation in Fig. 7b. According to the figure, the strongest condition for the DLPNs system is 

when NT
xy is neglected and the weakest condition is when NT

yy is set to zero. In other words, it can be noted that the 

most impressive stress resultants are NT
xx> NT

xy> NT
yy, respectively. 
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Fig. 7a. The effect of elastic foundation on external electric voltage results (SSSS, m=n=1, Lx=Ly=30h, l=h, ko=5GPa/nm) 

 

Fig. 7b. In-plane thermal stress resultants versus elastic foundation (SSSS, V0=0.05 V, Lx=Ly=30h, m=n=1, l=h, ko=5GPa/nm) 

 

6. Conclusions 

This study analyzed the electro-thermal buckling of double-layered piezoelectric nanoplates under external electric 

voltage in the thermal environment. To achieve this aim, a simplified first-order shear deformation theory was 

employed to obtain the governing equations by taking into account the Von-Kármán assumption. The effect of the 

small-scale was investigated by using modified couple stress theory. Moreover, an analytical solution was used to 

extract the results by changing various parameters. In conclusion, some of the important results achieved from the 

present study are as follows: 

● EEV has a considerable impacted on the results of various half-waves in all boundary conditions. 

● By increasing EEV, the reduction of critical buckling temperature in higher half-waves is remarkably slower than 

lower half-waves. 

● By considering long lengths, the effect of EEV on the critical temperature will be markedly decreased. 
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