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Abstract: This work is based on a literature review (191). It mainly refers to two diagnostic methods
based on artificial intelligence. This review presents new possibilities for using genetic algorithms
(GAs) for diagnostic purposes in power plants transitioning to cooperation with renewable energy
sources (RESs). The genetic method is rarely used directly in the modeling of thermal-flow analysis.
However, this assignment proves that the method can be successfully used for diagnostic purposes.
The GA method was presented in this work for thermal-flow studies of steam turbines controlled
from the central power system to obtain the stability of RESs. It should be remembered that the
development of software using genetic algorithms to locate one-off degradations is necessary for
a turbine that works sustainably with RESs. In this paper, against the background of the review,
diagnostic procedures create an inverse model of a thermal power plant. Algorithms were used to
detect fast global extremes through the convergence of simulated signatures with signs explaining
degradation. In addition, statistical dependencies are used in the selection phase to accelerate fault
detection. The created procedure allows obtaining a diagnosis in the form of a single degradation.
This procedure turns out to be quite effective for the above example.

Keywords: conventional power plant; diagnosis; thermal-flow diagnostics; genetic algorithm;
renewable energy source

1. Introduction

The continuous development of society has led to increased demand for electricity
produced from various raw materials and resources [1,2]. Nonetheless, a mere fraction of
electricity is produced from non-renewables, such as hard coal or nuclear fuel [3–5], which
cooperate with renewable energy sources. However, the worldwide trends directed toward
reducing carbon footprints promote sustainable development [6–8]. This development
makes it necessary to reduce the emission of CO2 [9,10] and other greenhouse gases, e.g.,
NOx and SOx [11]. This is important in meeting the climate requirements imposed by
governments or global organizations [12,13]. As a result, the Paris Agreement [14] was
created, the main goal of which is to prevent global warming [15,16]. Thus, power plants
producing energy must operate at the highest possible and constant efficiency [17,18],
taking into account green energy production [19] from nonstable wind and photovoltaic
farms [20]. To achieve this, an appropriate diagnostic system is necessary [21], which will
not only reveal failures [22,23] but also enable a high level of efficiency to be maintained
when changing power [24,25].

This study focuses on conventional power plants, which should cooperate with re-
newable energy sources to achieve the work fluency of grid power systems. Most countries
aim to significantly increase the share of renewables in electricity generation by 2050. Some
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works report even 100% [26,27]. This approach leads to an increase in the installed ca-
pacity of renewable energy sources but also to an expansion of energy storage of various
types [28]. However, given the scale of the power needed to be produced from RESs and
stored, such a solution leads to unsustainable development. A better perspective is given
by the gradual combination of classical cycles with renewable energy sources [29] or the
creation of systems in which classical units support RES, as proposed in this work. From
the point of view of sustainable development, it becomes reasonable to introduce exergy
analyses [29,30] and biofuels for electricity production using optimization tools for the
thermodynamic process [31,32].

In addition, an essential element in the sustainable use of energy technologies is
the proper operation of existing machinery [33,34] without excessive damage and with
adaptation to work with RESs. Power units possess a highly complex structure as they
contain complicated facilities, particularly a steam turbine that experiences enhancement
fatigue due to the rapid change of work regime. The costs of constructing and maintaining
power units are costly, yet it is profitable to invest in these units due to earnings from energy
sales [35,36]. Usually, engineers look for efficiency raised by cycle retrofit or construction
modernization, e.g., improvement of maintained rotors in non-linear conditions [37,38] and
more precise analysis of hydrodynamic bearing operation [39,40]. This procedure makes
maintaining existing units at a high, stable level possible [41]. Minor efficiency changes,
fluctuating within a hundredth percent, result in vast financial losses for power plants
stemming from increased expenses for production, etc. [42]. The authors encountered this
situation during their experimental investigations into power stations [43]. Diagnostic is
used to maintain the steam power unit at a stable level, operating and generating power
continuously [44]. In the case discussed, it is thermal-flow diagnostics. In the relevant
literature, one can find scientific papers referring to and dealing with the topic of diagnostics
of flow machines [45]. One of these is [44], showing the possibility of predicting the value of
symptoms occurring in an automated diagnostic process, which was achieved by creating
models using the theory of gray systems. Some authors of this study took part in the
creation of a model enabling the heating process of the turbine shaft [46] so as not to exceed
permissible stresses; in this case, genetic algorithms were used. These works show that
the diagnostic process is very complicated, and research concerns a select few elements;
it is only the most important components of the steam turbine and the entire cycle that
are considered in this work. Again, for this purpose, genetic algorithms were used. The
diagnostic process is also applied to low-power turbines with an organic Rankine Cycle
(ORC) [47], where hybrids of the genetic algorithm were also used to improve the efficiency
of the thermal object tested. In other papers, one can observe the use of the connection
of the SVM (support vector machine) with the adaptive neuro-fuzzy inference system for
diagnostic purposes. This shows that the topic of thermal-flow diagnostics is discussed in
scientific works, but the diagnostic process of steam turbines using genetic algorithm-based
methods has not been performed as of yet. In addition, the development of an assessment
for turbomachinery is necessary alongside creating cooperation renewable energy sources
with conventional power plants.

Thermal and flow diagnostics utilize information and knowledge stemming from the
prognostics of industrial processes [48]. This knowledge consists of three fields:

• Operation [42,43];
• Technical Diagnostics [49];
• Automatics and Control [50].

Technical diagnostics in the power sector can be found in systems ensuring safety in a
power plant [51]. It is also helpful in validating mathematical models for turbines used in
electrical energy-generating systems [52,53] and cogeneration units [54]. Facilities in which
technical diagnostics is applied include power plants, which can be found in techniques
used for vibration analysis [55–57].

The use of diagnostics aims at the conduct of the diagnostic process with the appropri-
ate accuracy. This process is carried out in three stages:
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• Fault detection: detection or observation of a fault occurring in the object and determi-
nation of the detection time [58];

• Fault isolation: isolation, determination of type, size, and time of the fault’s occur-
rence [59];

• Fault identification: determination of the size and character of the fault’s variability in
time [43].

However, diagnostic processes can be used to calibrate mathematical models of ejec-
tors [60], turbines [61], and boilers [62], as well as entire energy systems [63,64]. In thermal
and flow diagnostics, the diagnostic procedure depends on calculating the deviation of
the measured value from the model value, resulting in a symptom being obtained [65]. A
symptom is a relative deviation between measurement values, which is correct and corre-
sponds to degradation. It is a measure of the quality of energy transformations and is used
in thermal and flow diagnostics as well as other types of diagnostics. Power units consist
of numerous complicated elements. Thus, the number of symptoms occurring there is very
high. To accelerate calculations, symptoms are grouped in signatures. The correct operation
signature and degradation signature have been distinguished [66]. The signatures can be
treated as vectors explaining the reactions of the cycle to operational degradations. They
constitute the input data processed by diagnostic relationships to obtain a diagnosis. If the
performed diagnosis is satisfactory, one may accept it and apply the appropriate changes
to operations [67].

There are various studies in the relevant literature on the diagnostic process of the com-
bined system, but there are no studies on thermal-flow diagnostics of steam turbines using
genetic algorithms. In other articles, methods of artificial neural networks prevail [68,69].
This work shows that genetic algorithms can be used for thermal-flow diagnostics, which
is currently new to the authors’ knowledge. In this literature, genetic algorithms are also
used for optimization purposes in various aspects of energy. Chang [70] used a combina-
tion of neural networks and genetic algorithms to create a method of managing energy
demand with a classical genetic algorithm. In the work [71], an extraterritorial genetic
algorithm was used to evaluate water vapor injection. In the following paper with GA [72],
the genetic algorithm of sustainability function was used to find the objective function
for the optimization of multiple connected steam turbines and utility network systems.
In the work [73], a study was carried out on the full overload of the Besat power plant.
Genetic algorithms were used for single-criteria and multi-criteria optimization of the
techno-economic characteristics occurring in the re-supply cycle of the power plant in
question. In another work [74] using genetic algorithms for the multi-criteria optimization
of energy systems, the Pareto front was used, although this was not included in this article.
A proprietary version of the multi-objective genetic algorithm MOGA was created here,
and the optimization process was confirmed for a simple cooling cycle that can be found in
refrigerators or coolers. Genetic algorithms are also being developed to optimize individual
devices (heat recovery steam generators) to ensure sustainable electricity production [75].
Genetic algorithms are also used in nuclear power plants. In the work [76], they were
used in the optimization model and the failure physics model to describe the crack growth
process of the steam generator pipe. The study by Panowski et al. [77] investigates con-
verting a steam power plant into a cogeneration unit using absorption heat pump (AHP)
technology. Two scenarios are compared: one with a dedicated heat exchanger (DHX) and
the other using an AHP for heat production and recovery. Despite a small decrease in
electricity production, the AHP scenario offers improved efficiency and a potential increase
in total electricity generated by over 0.4%. The study performed by Diaz-Ramirez et al. [78]
used a life-cycle assessment approach based on the exergy allocation factor, considering all
life-cycle stages from construction to dismantling. The results showed that most of the envi-
ronmental impact was attributed to electricity production, and the construction stage was
the most impactful. Rusin et al. [79] discuss an online control system for managing stress
in the pressure elements of a power unit, considering the variable heat transfer conditions.
Cheng et al. [80] present a physics-informed domain adaptation network, called Adaptive
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Fault Attention Residual Network (AFARN), for diagnosing faults in nuclear circulating
water pump bearings. The AFARN refines features guided by bearing fault characteristics
and minimizes the discrepancy of features’ marginal and conditional distributions, aiding
in generalizing the model from the source to target domain. Experiments on public and
circulating water pump datasets demonstrate that AFARN enhances fault feature learning
and diagnosis accuracy, offering an interpretable knowledge transfer between domains.

A novelty in this work is the presentation of various methods of diagnostic processes
found in the literature. The diagnostic method of steam turbines based on the operation
of genetic algorithms is in detail presented here. Genetic algorithms have so far not
been widely used to obtain the diagnostic process of steam turbines, which is shown in
this review.

1.1. Literature Gap

One of the most popular methods of obtaining diagnostic relationships of power
units is artificial neural networks [81]. Apart from these, analytical and statistical methods
are also used [82]. Analytical methods mainly relate to design calculations in nominal
and partial load conditions to determine power, efficiency, and parameters in nominal
conditions to compare with measurements, whether given by the turbine manufacturer or
for operational measurements [83]. In addition, the analytical approach enables reference
to the second law of thermodynamics. It indicates where losses occur in individual devices,
such as a coal boiler or the entire cycle [84]. The methods shown make it possible to find the
optimum efficiency while maintaining upper thermodynamic parameters and change the
configuration of the whole cycle [85], rebuild the system to a different type of medium [86],
or add a new system element [87]. Later, it can be verified after an experiment and using
fuzzy logic [88] or artificial neural networks [89]. Although these methods help obtain
satisfactory results, both have advantages and disadvantages.

Obtaining a diagnosis in the case of ANN enables all three phases of a diagnostic
procedure to be found. ANN shows 97% efficiency and almost 100% identification accuracy
in identifying degradation locations [42,49]. These results correspond with the site model
with a multilayer perceptron, and a linear model of the unidirectional network should
also be used for identification purposes. Despite the above advantages, ANN has some
disadvantages: it necessitates network training, which is a long network learning process;
lacks universality; has a large amount of data, learning the network each time after making
changes in the tested facility; and always gives the result, which is a threat to novice
researchers. A network training session can be conducted with or without a teacher
(supervised/unsupervised learning) [68].

In the above case [90], data from numerical degradation simulation were used for ANN
learning purposes [91,92]. The time-consuming process of organizing ANN for diagnostic
relations is the main disadvantage of this approach [93,94]. Each long network training
is burdensome. Thus, in the search for a more rapid preparation of diagnostic relations,
attention has been paid to genetic algorithms. This method was comprehensively analyzed
as a simulation study using data tuned to the experimental data of the thermal cycle model
of the selected turbine [91]. Preparing data to train ANN took a few months of calculations,
and in some cases, one training session lasted more than one day. Unfortunately, the ANN
training was only suitable for the nearest turbine repair. Any other repair required new
training data to be created. Moreover, ANN has other major disadvantages: preparing
data for fifteen ANN training sessions [42,91] and the training sessions themselves are very
time-consuming [48,49,95].

Additionally, new training is always necessary for any change in data in technical
objects, for example, retrofit and repair [67]. The authors regard the new genetic algorithm
(GA) method described in the paper as a possible means of eliminating at least some of the
above weaknesses of the ANN method. GA has a shorter working time than ANN due to
its neural network learning time.
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The genetic method has rarely been used directly in thermal-flow diagnostic models.
Here, it creates an opportunity to perform all three mentioned phases of diagnosis (fault
detection, isolation, and identification). In this work, GA-based diagnostic procedures
create an inverse model of a thermal power plant, which has been very rarely reported in
any of the relevant literature (Table 1). To be able to present a literature gap on various
possible methods of obtaining a diagnosis in steam, gas, and ORC turbines, the works
on this topic are shown in the form of Table 1. It should be noted that in addition to
these mentioned works on ANN [96], there are many further works [76,83,84,90,97] that
have demonstrated some proven approaches to diagnosis, but due to their inadequacy, the
authors decided to develop GA. However, it is worth mentioning that a new way of locating
the degradation in the turbine is revealed, namely convolution neural networks [98],
statistical iterative [85] and neural models [86], which is still unproven and may appear
as promising as GA. Additionally, works that combine two methods, such as GA with the
Finite Element Method (FEM) [87], increase the area of research. They are valuable and
offer the possibility of developing diagnostics, but FEM-type analyses are time consuming.
Their results depend on boundary conditions and models used to solve the problem. Hence,
GA should be developed more in the direction proposed in this article.

Further methods used in the literature (Table 1) include fuzzy logic [87], deterministic
simulations based on measurements [89], support vector machine [91], extreme learning
machine [92], and hierarchical fuzzy CMAC neural network [99], but they are extremely
sensitive to the measurement data provided and do not have the kind of verification pro-
posed in this paper, involving parallel revision of the process with a second approach. The
methods above were mainly related to steam turbines. However, analogous approaches
along with the repeatability of their inadequacies can be found for gas turbines, as demon-
strated in works [95,100–106]. Great prospects in steam turbine diagnostics are offered by
the hybrid approach, in which the following should be distinguished: extreme learning
machine-radial basis function networks [99], knowledge graph and Bayesian network [107],
and the fusion of the support vector machine classifier with an adaptive neuro-fuzzy in-
ference system classifier [73]. Work on gas turbines can be viewed from an analogous
perspective [108–112].

Table 1. Summary of the literature review concerning the degradation of the turbomachinery cycle.

Author Literature Source
Type of Analyzed

Turbine: Steam and/or
Gas and/or ORC

The Way of Locating
the Degradation in the

Turbine
Additional Remarks

Zhou et al. [69] Gas turbine Convolution neural
networks

Fast, Palme’ [68]

Gas turbine with its
heat recovery steam

generator and a
biomass-fueled boiler
with its steam cycle

ANN

Ślęzak-Żołna, Głuch [113] Steam turbine ANN
Ślęzak-Żołna [100] Steam turbine ANN

Głuch,
Drosińska-Komor [92] Steam turbine ANN

Głuch [95] Steam turbine ANN
Gardzilewicz et al. [101] Steam turbine Statistical iterative
Butterweck, Głuch [114] Steam turbine Neural model Modeling CFD.

Nowak, Rusin [102] Steam turbine GA + FEM

Shape optimization of
selected areas of the rotor

of the high-pressure part of
an ultra-supercritical steam

turbine and the
optimization of the turbine

startup method.
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Table 1. Cont.

Author Literature Source
Type of Analyzed

Turbine: Steam and/or
Gas and/or ORC

The Way of Locating
the Degradation in the

Turbine
Additional Remarks

Barelli et al. [103]

The turbocharging
system of a 1 MW

internal combustion
engine (I.C.E.)

The fuzzy logic Specifically for the filters
and compressor modules.

Zuming, Karimi [104]
Combined cycle gas

turbine (CCGT) power
plants

Simulators such as
GateCycle, Aspen

HYSYS

Zhou et al. [105] Gas turbine Support vector
machine

Wong et al. [106] Gas turbine Extreme learning
machine

The comparison between
extreme learning machines

and support vector
machines (SVM) was also

made.

Yan et al. [99] Steam turbine
generator

Hierarchical fuzzy
CMAC neural network

Tsoutsanis et al. [107] Gas turbine

Matlab’s built-in
nonlinear

unconstrained
optimization algorithm

is known as
“fminsearch” in the

performance
adaptation process.

Adaptive diagnostics
method.

Tsoutsanis et al. [108] Gas turbine The performance
adaptation process.

A model that was
developed in

Matlab/Simulink.
Barad et al. [109] Gas turbine engine Neural network

Madhavan et al. [110] Aero gas turbine
engine

Three-dimensional (3D)
finite element (FE)

Turbine rotor blade
vibration.

Kuo [96] Gas turbine ANN and fuzzy Logic Turbine blade faults in fan
turbo-jet.

Aslanidou et al. [111] Micro gas turbine Machine learning

Sławiński et al. [112] Gas turbine
The COM-GAS

numerical code and
FEM

Presents the ravages of
second rotor stage failure

in a gas turbine.
Angelakis et al. [115] Gas turbine ANN Diagnose blade faults.

Aretakis et al. [116] Gas turbine Wavelet analysis

Vibration, unsteady
pressure, and acoustic

measurements are used to
diagnose turbine faults.

Li, Nilkitsaranont [117] Gas turbine

Non-linear diagnostic
regression techniques,
including both linear

and quadratic models,

Breikin et al. [118] Aero gas turbine
engine GA Dynamic modeling.

Fentaye et al. [119] Gas turbine Bayesian network Used adaptive gas path
analysis (AGPA).

Dhini et al. [120] Steam turbine
Extreme learning

machine-radial basis
function networks

ELM-RBF was a
comparison with back

propagation neural
network (BPNN).

Yang et al. [121] Steam turbine Knowledge graph and
Bayesian network
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Table 1. Cont.

Author Literature Source
Type of Analyzed

Turbine: Steam and/or
Gas and/or ORC

The Way of Locating the
Degradation in the

Turbine
Additional Remarks

Salahshoor et al. [88] Steam turbine

Fusion of a support
vector machine classifier

with an adaptive
neuro-fuzzy inference

system classifier,

Zeng et al. [122] Gas turbine
Dynamic simulation
model and Cuckoo
search algorithm

The model was
developed in the
environment of

Matlab/Simulink.

Salilew et al. [123] Gas turbine Gas path non-linear
steady-state model

Yang et al. [124] Gas turbine Kalman filter
Asgari et al. [125] Gas turbine ANN

Mo et al. [126] Gas turbine Fuzzy inference logic
Zhang et al. [127] Steam turbine Bayesian network

Chmielniak and Trela [128] Steam turbine ANN and Bayesian
network

Bzymek et al. [129] Steam turbine

Computational Solid
Dynamic coupled

Computational Fluid
Dynamic

Process of improving the
safety and reliability of
operation of the 18K370

steam turbines Opole
Power Plant.

Banaszkiewicz [130] Steam turbine FEM + Duhamel’s
integral

Banaszkiewicz [131] Steam turbine
probabilistic analysis and

fracture mechanics
considerations

Banaszkiewicz and
Rehmus-Forc [132] Steam turbine

Material testing and
mechanical integrity

calculations

Kraszewski et al. [133] Spherical bifurcation
pipe of a live steam

A one-sided numerical
thermal-FSI analysis

Element of a block of
coal-fired power plant
working with a 18K370

turbine.

Badur et al. [134] Control stage in steam
turbine

Studied analytically and
numerically

Combination of CFD +
CSD, often called FSI

(Fluid–Solid Interaction
or Fluid–Structure

Interaction).

Badur et al. [135] Steam turbine–rotor
and casting

Thermal-FSI (Fluid–Solid
Interaction)

Madejski et al. [136] Utility boilers CFD calculations

Blaut, Breńkacz [137] Rotor unbalance Teager–Kaiser energy
operator (TKEO)

Andrearczyk et al. [138]

Prototypical
microturbine operating

in an ORC-based
power plant

Use LabVIEW Vibrodiagnostic system
designed.

Badur et al. [139] Heat exchanger
“Thermal-FSI”
(“Fluid–Solid
Interaction”)

Ziółkowski et al. [140] Steam and gas turbine COM GAS
Ziółkowski et al. [141] ORC COM GAS
Ziółkowski et al. [142] Steam turbine ECO PG, CFD

Lampart et al. [143] ORC Hybrid algorithms
Niksa-Rynkiewicz et al. [144] Gas turbine ANN
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Then, the Bayesian network [127], Computational Fluid Dynamic coupled with Com-
putational Solid Dynamic [135], FEM and Duhamel’s integral [130], probabilistic analysis
and fracture mechanics considerations [131], and material testing and mechanical integrity
calculations [96] are used for steam turbines. However, this requires the preparation of
full geometries and time-consuming and expensive tests for which there are often no re-
sources or time in everyday work. For diagnostics, the precise computational analyses of a
single element from the cycle are used, such as the spherical pipe of a live steam [133], the
variable regime control stage of a 18K360 turbine [84], or the assembly of several turbine
components including a rotor with a casting [142] and a steam boiler [59] (Table 1).

It is also important to support oneself with measurements [62,145] to verify the model,
which without proper scopes can become unphysical, especially concerning GA. Therefore,
works on steam, gas, and ORC turbines may be found in Table 1. ORC is the smallest
number; however, gas and steam turbines are comparable for diagnostics purposes. Of
course, reference should also be made to principal works in the literature. On their basis,
the adopted models of individual devices should be checked [146] and moved to complex
systems in nominal states [84], finalizing with the variable operating regimes of steam
units. Hence, Table 1 presents other methods of use, e.g., 0D, 3D, stationary, and a transient
approach, which allows the diagnostic process of the tested object. However, a more
developed method is considered for the purposes mentioned in this paper.

1.2. Purpose and Structure of the Article

The above works show that genetic algorithms are used in many energy-related fields
but were not used for thermal and flow diagnostics of steam turbines. In the literature on
the subject, according to the authors’ best knowledge, only the authors’ works can be found
concerning the thermal-flow diagnostics of steam turbines using genetic algorithms [12].
In this work, we have a multi-criteria optimization process that can be found in the above
papers; additionally, in the presented article, the genetic algorithm was combined with a
numerical program for calculating the parameters of thermal cycles. The works also contain
combinations of genetic algorithms with other neural networks or programs. In this case,
the algorithm was used to research the steam power plant cooperating with renewable
energy sources.

The main purpose of this work was to present the possibility of using genetic algo-
rithms for thermal-flow diagnostics of steam turbines, but the method can also be imple-
mented both in gas and ORC turbines, nuclear power plants, and turbine power plants in
ships. For presentation goals, the steam turbine was chosen because they are more complex
and complicated than other fluid-flow machinery. The thermal-flow diagnostics can be used
for applications requiring a turbine with a low, medium, and high-pressure part in a power
plant cooperating with a nonstable wind and photovoltaic farm. To perform the diagnostic
process, a numerical program for thermo-flow calculations, DIAGAR, was applied [66],
which can identify damage to the turbine by combination with a genetic algorithm.

The most challenging stage of the work in the whole process was selecting the appro-
priate stage of the genetic algorithm. To make an assisted selection, characteristics were
created to represent the selection process for power, unit heat consumption, average value,
total value, skewness, and kurtosis. Based on these curves, it was possible to obtain a result.
The algorithm is completed when at least one signature is less than five percent from the
set signature. The authors determined this value, which can be treated as an additional
novelty of this article.

The structure of the work is divided into four main sections. In Section 1, the review of
work comprises different approaches to diagnostics. Section 2 considers the methodology
for obtaining a diagnosis in thermal and flow systems with a presentation of the example
for analysis strictly focused on the steam turbine. The information on the process receipt
location and the identification of the degradation, demonstrating procedures for selecting
the appropriate signatures of genetic algorithms, are reviewed in Section 3. Finally, Section 4
includes a summary of this paper and perspectives for future work development.
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2. Methodology Obtaining a Diagnosis in Thermal and Flow System

This section presents the methodology where the genetic algorithms are placed first,
together with the SWOT analysis for ANN and GA, indicating the validity of the adopted
approach (Section 2.1). Section 2.2 describes the thermodynamic cycle that has been
analyzed. The studied genetic procedures are detailed in Section 2.3.

2.1. Genetic Algorithms

Genetic algorithms have been known since 1975 when Holland presented the con-
cept [147]. He gave an example of a simple algorithm, further developed by, among others,
Goldberg [148].

Genetic algorithms are included in evolutionary algorithms [149,150] and are used to
optimize complex systems [151]. In the relevant study, power units are systems like these.
Typically, the process of optimization takes place in fields where a high number of variables
are found, e.g., system design [152], economics [153], or transport [154]. These algorithms
enable the global extremes [155] for a given function to be found quickly within its time
domain [156,157].

Thermal and flow diagnostics utilize genetic algorithms for process optimization to
cover the greatest possible data combination and then restrict them to the minimum during
the following phase. This process is used to determine the minimum distance between the
signature of the occurring degradation and the signature searching the degradation.

Each genetic algorithm consists of several subsequent stages. A simple algorithm, as
proposed by Holland, consists of seven following stages:

• First, the whole algorithm is initiated by creating an initial population.
• Then, the chromosome adaptation in the population is assessed, and this concerns

each chromosome in the population.
• The third stage concerns the stopping condition and depends on the method of ap-

plying a genetic algorithm. Two stopping conditions can occur. The first one occurs
when the problem being analyzed involves an optimization task. Here, the decisive
condition may be determining the optimum value (minimum or maximum). Another
case may occur after the algorithm has been in operation for a specified time or when
its operation does not lead to any improvement in the result obtained.

• The fourth stage introduces chromosome selection: to create a population, chromo-
somes with the highest value of adaptation are selected [158]. Ranking selection is
used in thermal and flow diagnostics.

• The fifth stage concerns the genetic operator, which creates a population out of chro-
mosomes obtained after the fourth stage. This is where the crossover and mutation
operators can be distinguished. The crossover operator is more frequently used than
the mutation operator [159].

• The penultimate stage involves creating a new population obtained after applying
operators from the preceding stage. The new population can thus be subject to a
specified action, i.e., checking the algorithm-stopping condition or introducing a
specified chromosome.

• The last stage involves introducing the “best” chromosome; this occurs when the stop-
ping condition is met. Such action enables the result for the entire genetic algorithm to
be obtained [160].

A scheme for such an action has been used to create an algorithm for thermal and flow
diagnostics. A SWOT analysis was performed for genetic algorithms (Table 2) and artifi-
cial neural networks (Table 3) in the power industry to support selecting the appropriate
method. In the literature, you can find a lot of information about genetic algorithms and
neural networks because both belong to artificial intelligence, which is still being developed.
Based on this information, conclusions can be drawn about the advantages and disadvan-
tages of both methods that are included in the SWOT analysis. The main advantage of
genetic algorithms is the ability to solve complex systems with many elements [161]. This
algorithm can be used for optimization [162,163]. It has a simple structure consisting of
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seven steps [164]. This algorithm can be used in various fields of science [165–167]. The
disadvantage of GA should be seen in the possibility of omitting a solution during the
selection process [168] or a numerical error affecting the final result [169]. In the case of
artificial neural networks, their advantage is the quick solving of complex systems [170,171]
and the high availability of various types of networks [42,172] that can be used for the
appropriate case [173,174]. In addition, they can find the solution to a diagnostic task with
a small error [49]. However, the disadvantage is the need to train the network for a long
time [175], having a very large amount of training data [176]. If the training data have
errors, the result will also be incorrect.

Table 2. SWOT analysis of thermal-flow diagnostics using GA.

Advantages Disadvantages

Internal features

Strengths:

• solving complex systems with a large number of
elements

• the universality of the algorithm
• speed of the method
• simplicity of operation
• can be used for the optimization
• possibility of multiple repetitions of calculations

Weaknesses:

• the possibility of omitting the
solution during the selection

• the occurrence of a numerical error
• the occurrence of a measurement

error affects the final result

External factors

Opportunities:

• growing interest in artificial intelligence
• can be used for other turbine and industrial

facilities
• a small number of applications

Threats:

• numerical error
• hardware limitations
• due to its versatility, it is not as

effective as specialized methods

Table 3. SWOT analysis of thermal-flow diagnostics using ANN.

Advantages Disadvantages

Internal features

Strengths:

• solving complex systems, calculations
• a large number of network types are available
• finding a solution to a diagnostic task with a small

error ([42,95] location of degradation 97%)
• quick calculations for a trained network

Weaknesses:

• the long network learning process
• lack of universality: the necessity to

conduct network training when
changing the data, the research object

• having a large amount of data
• learning the network each time after

making changes in the tested facility
• always gives the result: a threat to

novice researchers

External factors
Opportunities:

• growing interest in artificial intelligence
• extension of the method toward big data mining

Threats:

• wrong data for network learning
• in case of a large amount of data, the

possibility of under-training

2.2. Description of the Analyzed System

The study subject in the relevant work is a class 200 MW steam turbine (Figure 1).
The turbine has been installed in a steam power unit in a power plant in Poland. In
Poland, 80% of electricity is produced from solid resources (hard coal and lignite) [177].
However, this issue should be considered not only on a national scale or in view of non-
renewable energy sources but also on a global scale because thermodynamic cycles, by
whose example artificial neural networks have been trained, are also used in power plants
using renewable energy sources, e.g., geothermal energy [178], solar energy [179] and wind
energy in Compressed Air Energy Storage systems [180].
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Figure 1. Cycle diagram with 200 MW class turbine, where: B—coil fired boiler, D—deaerator,
G—electric generator, HP—high-pressure steam turbine, IP—intermediate pressure steam tur-
bine, LP—low-pressure steam turbine, CON—steam condenser, P1—condensate pump, HE1–HE8—
regenerative heat exchangers; The figure is based on [92].

The lines in the picture (Figure 1) stand for different working media pipelines. Mea-
suring equipment is placed mainly on these pipelines. The parameters measured are
characteristic of both changing conditions and geometry degradation caused by power unit
exploitation. In the cycle diagram, there is a series of other devices used in the scheme, such
as low-pressure regenerative heat exchangers (HE1–HE2), intermediate-pressure regenera-
tive heat exchangers (HE3–HE5), high-pressure regenerative heat exchangers (HE6–HE7)
and the steam condenser (CON).

The steam power unit in question possesses a three-casing turbine consisting of high
(HP), intermediate (IP), and low-pressure (LP) parts. Seven stages of regenerative supply
feedwater heating (HE1–HE7), thus seven regenerative extractions, are involved. The object
was precisely measured: sensors were installed on steam and water pipelines. Thus, over
3000 pieces of data are almost instantaneously obtained, of which as many as 276 concern
the steam cycle only. These sensors enable the following to be measured:

• Pressures;
• Mass flows;
• Temperatures;
• Currents and voltages supplying the motors installed on the power unit;
• Electric power.

Usually, the measured data for thermal and flow diagnostics are obtained at the
pipelines connecting related cycle components (Figure 1). These data vary constantly
according to power unit load and some external data such as ambient parameters.
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2.3. Studied Genetic Procedures

In search of degradation, a numerical program has been created based on the assump-
tions mentioned. This also uses a DIAGAR numerical code to calculate thermal cycles
(presented in Figure 1). It should be emphasized that procedures for genetic algorithms are
applied for this purpose. The difference between the procedure presented in this article and
the original GA procedure is the method used to achieve the desired results. GA looks for
optimized solutions, while the procedure presented knows the target and attempts to find
conditions leading to this target. In the case of diagnostics, these are service conditions.

Therefore, the procedure presented, based on the genetic algorithm procedure, consists
of eight stages:

1. The first stage of the software is to prepare geometric data sets (e.g., Figure 2) for the
calculation process.

2. In the following phase, symptoms and signatures are determined by numerical simu-
lation using the DIAGAR program.

3. The third stage involves simulating and sampling a single degradation and then
determining symptoms and signatures for the degradation.
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One characteristic signature corresponds to each complex degradation. For one of the 
signatures (Figure 3) considered in the study, 16 parameters are assigned. These 16 pa-
rameters are presented in Table 4. 

  

Figure 2. (a) Geometry of a turbine stage subjected to degradation where: a1—stator throat diameter,
b1—stator chord, t1—stator pitch, c1—stator inlet absolute velocity, w1—rotor inlet relative veloc-
ity, a2—rotor throat diameter, b2—rotor chord, t2—rotor pitch, c2—rotor outlet absolute velocity,
w2—rotor outlet absolute velocity, Lszkiel1—stator blade camber line length, Lszkiel2—rotor blade
camber line length, Delz1—stage external glands clearance, Delw1—internal ordinary gland segment
clearance; (b) the process of changing the degradation of seals = clearances; The figure is based
on [181].

One characteristic signature corresponds to each complex degradation. For one of
the signatures (Figure 3) considered in the study, 16 parameters are assigned. These
16 parameters are presented in Table 4.
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degradation formed is obtained. 

5. After performing the above operations, a geometric data set is constructed for new 
data created after the crossover. At the moment, only one fault is analyzed, which can 
occur at any time on one of six component devices, for which six suitable searching 
signatures are created by performing six appropriate calculations for the relevant 
thermal cycle using DIAGAR software in preparation for the next phase. 

Figure 3. An example of simulated degradation signatures of measurable parameters in the cycle
caused by the maximum degradation of selected geometric parameters. The parameter’s name
specifies its deviation relative to a non-degraded state stemming from degradation—the numbers
meaning according to the list in the text; The figure is based on [182].

Table 4. List of 16 parameters present in signature degradation [12].

Number Element Name of Parameter

1 power deviation;
2 deviation of specific heat consumption;
3 steam pressure deviation at the I extraction;
4 steam temperature deviation at the I extraction;
5 steam pressure deviation at the II extraction;
6 steam temperature deviation at the II extraction;
7 steam pressure deviation at the III extraction;
8 steam temperature deviation at the III extraction;
9 steam pressure deviation at the IV extraction;
10 steam temperature deviation at the IV extraction;
11 steam pressure deviation at the V extraction;
12 steam temperature deviation at the V extraction;
13 steam pressure deviation at the VI extraction;
14 steam temperature deviation at the VI extraction;
15 steam pressure deviation at the VII extraction;
16 steam temperature deviation at the VII extraction.

The first three stages are used to prepare the initiation of calculation procedures.

4. The next step is to sample and perform crossover operations using geometric data
subject to operational degradation. This aims to determine the component device of
the cycle, for which crossover will be carried out and as a result of which the level of
degradation formed is obtained.

5. After performing the above operations, a geometric data set is constructed for new
data created after the crossover. At the moment, only one fault is analyzed, which can
occur at any time on one of six component devices, for which six suitable searching
signatures are created by performing six appropriate calculations for the relevant
thermal cycle using DIAGAR software in preparation for the next phase.

6. In the sixth phase, the specialized software calculates symptoms for six datasets,
accumulates them in six searching signatures, and then subjects them to the selection
process.
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7. In the seventh phase, the selection is carried out as mentioned earlier in the article.
More precisely, the process consists of selecting the two signatures closest to the
present signature. This assumption is met when the condition of a location below
the minimum distance is met for at least one signature. It is one of the most difficult
phases. Therefore, the authors made a big effort to accelerate and gain better accuracy
of the recognition decision choosing signatures for further operation in proper order.
For numerical procedures, finding appropriate single numbers defining each signature
helped achieve the purpose mentioned above.

8. The moment of meeting such a condition is described as a solution. If this condition
cannot be met, the fourth phase is repeated. This involves creating new data files
on the two parameters closest to degradation. Files with data are subjected to the
following phases mentioned above until a solution is obtained.

In accordance with the above procedure, a thermal flow diagnostic routine has been
performed. Selection phase checking has been the primary purpose of these investigations.
They have been based on numerical simulations constructed using the DIAGAR program,
which has also helped to determine the reference state of the power unit in terms of its
degraded characteristics caused by simulated exploitation geometry degradation. Values
obtained in this way have been subjected to the procedure presented. At this stage of the
investigation, attention has been focused on single geometry degradations, which means
that only one possible degradation has occurred for one simulation. The data used in
the seventh phase mentioned above have been applied in the Results section to select the
closest degradation characteristic to the simulated one.

3. Procedure Selection and Creation of Characteristics

Geometry degradations occur in a real turbine and steam unit due to normal opera-
tional processes. Values of symptoms creating degradation stem from object measurements.
For this paper, signatures have been determined in the process of simulating degradation
calculations.

Changes to the values of the design geometry of cycle components are anticipated
in a physically possible range that does not result in its emergency stop yet. Only the
high-pressure (HP) and intermediate-pressure (IP) turbine casings were designated as
power unit components subject to degradation. Among several hundred design geometry
parameters, only the 22 mentioned below change their values as a result of degradation: HP
nozzle boxes, seals of IP nozzle boxes, seals of the HP inner casing, and 16 values shown in
Table 4 associated with the geometry of six groups of HP and IP stages and consisting, for
each of these degree groups, of seals of inner turbine stages, their roughness and damage
to the trailing edge.

Ten out of the above-mentioned parameters named in Table 4 are submitted to be
presented in further parts of the paper. See also Table 5.

Their designed or simulated degraded values are introduced as data to the DIAGAR
program. This code has been successfully used for failure study [41] and diagnostics of
the thermodynamic cycle [43] and is currently being developed as EcoPG for the analysis
of thermodynamic cycles with renewable energy sources [142]. In the first case, they are
used to determine the signature of the correct operation (base signature), and in the second
case, they aim to determine signatures of various degradations. Single-time degradations
can be analyzed. Only one of the above geometric parameters is subject to degradation
or multiple-time degradations when several parameters are subject to degradation at the
same time. For this paper, only single-time degradations have been tested.

One genetic method involving artificial intelligence (AI) that is seldom reported
in diagnostics has been studied as a diagnostic relation. This work creates a thermal
power plant inverse model, which helps to find deterioration causes occurring during the
operation of power units forming electricity generation systems.
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Table 5. Description of the degradations used for the selection procedure for Figures 4–9 [183].

Symbol Name Degradation Description
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3.1. Crossover Operations on Chromosomes—Values of Geometric Parameters

To identify and locate degradation, a dedicated calculation scheme has been used.
The first stage of the system was to determine symptoms and improve calculations, which
were grouped into signatures. The second task was to determine structural or geometric
parameters for degrading turbines. The minimum and maximum values of each parameter
were specified. Nominal values were designated as the minimum values, while the highest
possible degradation values for the safe operation of the given element were designated
as the maximum values. In the following phase, these values are presented in binary
form. Number modifications are made by performing mutations so that their value re-
mains within the range from minimum to maximum. Thus, populations are created. If
the operations previously described have already been made, one should return to data
representation in decimal form. The obtained data are entered as input data to the DIAGAR
software. After the results are obtained, the present signature is compared with the received
signature, and extremely deviant signatures are rejected, while the remaining ones and
their corresponding geometric changes of structure are subject to assessment.

3.2. Selection

For the entire cycle, symptoms are obtained as a result of measurements. In the
relevant study, they are created during operational degradation simulation. These tests are
close to real ones in so much as the DIAGAR software is used, which is set up for actual
measurements obtained from one of the power units of Polish power plants. Changes in
structural geometry simulate operational degradation. The relevant study paid attention to
the geometric degradation of selected HP and IP stage groups (Figure 2). Data concerning
a turbine stage consist of 46 geometrics parameters. These data support the 1D theory of
flow. Some are subject to operational degradation, while others are not subject to change
during operations not threatened by critical failure. These variables primarily concern
the limit dimensions of the flow channel and the geometry of blade mounts and seals.
In addition, Figure 2 part b shows what the seals look like when there is no degradation
(0%—Non-degraded), at 50% of the value (Partly degraded), and when the degradation
reaches 100% (Max. degraded); then, the seals wear out completely.

Decimal numbers are then changed to binary, assuming that structural limits are not
exceeded. Once sampled, the values obtained are returned to decimal. After executing a
complete set of samples several times, the geometric data for calculations in the DIAGAR
software are changed, and several groups of signatures used in search of a solution are
determined by selection procedures.

Selection involves comparing signatures to find the solution described with the sim-
ulated degradation signature. As mentioned previously, comparing two numbers repre-
senting degradation signatures is helpful in the accuracy and acceleration of the finding
of numerical procedures. Suppose the distance between one of the searching signatures
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from the present signature is lower than expected. In that case, it is treated as a result of
optimizing a task occurring in thermal and flow diagnostics. If this assumption is not met,
the range of geometric data variability shall be reduced to the two closest values to the
searching signature. The sampling, crossover, and selection operations are repeated until
suitable results are obtained.

The selection of signatures (e.g., in Figure 3) not meeting convergence conditions when
complete signatures are compared poses technical difficulties. Thus, the process has been
divided into two stages:

• Preliminary selection based on selected characteristics;
• Final selection based on complete signatures.

The selected characteristics represented by single algebraic numbers have been listed
below:

• Power: represented by value No. 1 from Figure 3;
• Efficiency: characterized by a reverse of specific heat consumption value No. 2 from

Figure 3;
• Mean value: represented by statistical value (2nd statistical moment based on all

deviations in signature), e.g., Figures 3 and 6;
• Skewness: defined by statistical value (3rd statistical moment based on all deviations

in signature), e.g., Figures 3 and 8;
• Kurtosis: represented by statistical value (4th statistical moment based on all devia-

tions in signature), e.g., Figures 3 and 9;
• Full signature: characterized by a sum of all deviations in signature, e.g., Figure 3.

3.3. Characteristics

An example of characteristics obtained during each selection procedure is presented
in Figures 4–9. The algorithm of this selection has proven itself for the single-time degra-
dations analyzed in this study. The symbols description used for the single degradation
characteristics shown in Figures 4–9 is shown in Table 5.

The individual values in the graphs introduced above represent numerical and statisti-
cal characteristics of particular causes of degradation. The values depend on the size of
the degradation. Collected on appropriate charts, they show distributions characteristic
for various causes of degradation, creating degradation lines. In different graphs, the
degradation lines differ in a significant way. This makes it possible to distinguish the
causes of degradation. Therefore, it supports selection procedures. The specific cause of
degradation sought is characterized by a set of single numbers corresponding to the terms
in Figures 5–9. They can be positioned as points on appropriate graphs. This observation
ultimately expands the distinguishability of the causes of degradation and completes the
selection stage in the primary genetic algorithm, improving its functioning.

Results of studies on degradation were obtained using the above procedure, which
is more precisely described in Section 2.1. It should be remembered that only numerical
simulations of degradation were studied, which stand for error-free measurements of
thermal cycles. As mentioned above, these concerned only the single degradation. Single
degradation investigations are the first step toward developing a final diagnostic procedure.
The calculation of both genetic and energy cycles was relatively simple in this case. By
contrast, the resolution problem has, in the meantime, been given arbitrarily, and it has
been used to study the selection procedure. The results of this selection depend on the
characteristics of signature degradation. Those for which the characteristics shown in
the charts in Figures 4–9 are more significant are better recognizable in the case of single
degradation of flow channel geometry. Kurtosis and skewness (Figures 8 and 9) proved
particularly useful for this study.

The recognition of the most influential degradation on the characteristics shown in
Figures 4–9 has been high speed; only one iteration was sufficient to notice the cause of
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degradation. This applies to the degradation of the control valve and external turbine
glands.

The remaining causes of degradation have been observed in two or three iterations,
and it has been necessary to consider more than one of the characteristics from Figures 4–9
to assist in recognizing the cause of degradation.

4. Summary and Perspective

The review presented in the paper demonstrates that genetic algorithms rarely used in
diagnostics can be utilized for obtaining a diagnosis of TFD. The described method fulfills
its task in single degradations, enabling it to obtain a result for multiple degradations.
This procedure has proved to be quite effective for the case above. In some examples, the
degradation can be recognized in only one iteration. For less distinguishable causes of
degradation, the number of iterations is slightly higher. As it has emerged in the review, the
crucial advantage of the GA procedure is that it enables a diagnosis for the relevant object
to be found more quickly than in the case of ANN despite their excellent accuracy. This is
because the time-consuming network training stage is eliminated. This review provides
scope for further development of the diagnostic approach to recognizing causes of multiple
degradations.

Perspective investigations concerning the selection phase performed for so-called
multiple degradations—when more than one degradation cause occurs—are much more
complicated. This situation tends to arise in real machines, and the final signature of
multiple degradations is the sum of single degradation signatures. Unfortunately, the
relations are not linear and therefore require further intensive investigation, which is
currently at the development stage. The presented method of genetic algorithms usage
with the proposed new approach to selection phase improvement shows the possibility of
its application for diagnostic purposes.

Nowadays, the appropriate diagnostics for power units are becoming particularly
important. Conventional power units are being displaced from the order of merit and are
giving way to an electricity regulator for electricity generating systems in co-operation
with Renewable Energy Sources (RESs). In such a situation, power units operate under
off-design loads and not under widely known design parameters. Very often, an operation
is moved to variable load regimes of the turbine and boiler, sometimes even exceeding the
limits. This greatly increases the risk of failure. In this context, appropriate diagnostics of
the power units ensure the safety of continuous, unbroken operation. In addition, proper
heat-flow modeling and extension of this issue for diagnostic is decisive in modernizing
power units for reducing their greenhouse footprint through carbon capture.

Additionally, this may help heat, chemical, and electrical energy storage systems
to be produced correctly and safely. The above DIAGAR code is being converted from
conventional operation to co-operation with RES units. In this way, steam power units can
stabilize the electricity grid during power changes. They can also support electricity storage
with methanol from captured CO2 using photovoltaics and wind farms to deliver H2.

In addition, the GA can be used for diagnostic testing and the reliability of systems in
combined systems, nuclear power plants, or steam power plants on ships. Therefore, it is
possible to extend genetic algorithms to other areas of the industry, not only the energy
industry.

The current trend in many countries is to move away from conventional coal-fired
power plants and replace them with renewable energy sources or atomic energy, among oth-
ers. This is related to the energy policy of individual countries worldwide, especially in the
European Union. At the same time, efforts are being made to reduce man-made pollution.
One of the solutions allowing the simultaneous disposal of waste sludge, electricity genera-
tion, and CO2 capture is the introduction of BECCS (BioEnergy with Carbon Capture and
Storage) systems [184,185], an example of which is the nCO2PP cycle [186,187]. Significant
growth in interest with prospects for development is also given by systems based on the
recovery of waste thermal energy [188] or the capture of geothermal power [146,189]. For
many countries, shifting away from conventional energy sources is a significant challenge.
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Therefore, the creation of the energy mix should be completed concerning the available
technology. Thus, it is necessary to look for solutions that allow the longest and most
efficient use of current systems of classical power plants with their cooperation with new
technologies. Developments related to their possible modifications, e.g., in combination
with renewable energy sources or the use of CO2 capture, should be combined with the
trend of proper diagnostics. With the emergence of such megatrends, applying the GA-
based diagnostic system presented in the paper becomes important. Because the mentioned
power generation arrangements in the mix are characterized by a significant level of com-
plexity in diagnostics, there will be trends in the use of technology indicating the detection
of multiple degradation cases. In addition, there is expected to be a strong trend in the
development of diagnostics in respect of energy storage both in terms of the reliability of
energy storage and the economical way of charging and discharging [190,191].

Innovative applications of the proposed artificial intelligence method in building
modern diagnostic relations in thermal-flow diagnostics affect the development of technical
disciplines related to the operation of energy facilities.
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Nomenclature

a1 Stator throat diameter
a2 Rotor throat diameter
AGPA Adaptive gas path analysis
AHP Absorption heat pump
AFARN Adaptive Fault Attention Residual Network
AI Artificial intelligence
ANN Artificial neutral networks
B Coal-fired boiler
b1 Stator chord
b2 Rotor chord
BECCS BioEnergy with Carbon Capture and Storage
BPNN Back propagation neural network
C1 Stator absolute velocity
C2 Rotor outlet absolute velocity
CCGT Combined cycle gas turbine
CFD Computational Fluid Dynamics
CMAC Cerebellar Model Articulation Controller
CON Steam condenser
D Deaerator
Delz1 Stage external glands clearance
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Delw1 Internal ordinary gland segment clearance
DHX Dedicated heat exchanger
DP Degradation parameter
ECO PG Program name from Ecological Poli-Generation systems
FEM Finite Element Method
FSI Fluid–Solid Interaction
G Electric generator
GA Genetic algorithms
HE Regenerative heat exchangers
HP High-pressure steam turbine
I.C.E. Internal combustion engine
IP Intermediate pressure steam turbine
Lszkiel1 Stator blade camber line length
Lszkiel2 Rotor blade camber line length
LP Low pressure steam turbine
MOGA Multi-objective genetic algorithm
ORC Organic Rankine Cycle
P1 Condensate pump
RES Renewable Energy Sources
SWOT Strengths–Weaknesses–Opportunities–Threats
SVM Support vector machines
t1 Stator pitch
t2 Rotor pitch
TFD Thermal-Flow Diagnostics
TKEO Teager–Kaiser energy operator
w1 Rotor inlet relative velocity
w2 Rotor outlet relative velocity
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39. Breńkacz, Ł.; Żywica, G.; Drosińska-Komor, M.; Szewczuk-Krypa, N. The Experimental Determination of Bearings Dynamic
Coefficients in a Wide Range of Rotational Speeds, Taking into Account the Resonance and Hydrodynamic Instability. In
Dynamical Systems in Applications; Awrejcewicz, J., Ed.; Springer Proceedings in Mathematics & Statistics; Springer International
Publishing: Cham, Switzerland, 2018; Volume 249, pp. 13–24. ISBN 978-3-319-96600-7.
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112. Sławiński, D.; Ziółkowski, P.; Badur, J. Thermal Failure of a Second Rotor Stage in Heavy Duty Gas Turbine. Eng. Fail. Anal. 2020,
115, 104672. [CrossRef]
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Comprehensive Thermodynamic Analysis of Steam Storage in a Steam Cycle in a Different Regime of Work: A Zero-Dimensional
and Three-Dimensional Approach. J. Energy Resour. Technol. 2021, 143, 050905. [CrossRef]

143. Lampart, P.; Witanowski, Ł.; Klonowicz, P. Efficiency Optimisation of Blade Shape in Steam and ORC Turbines. Mech. Mech. Eng.
2018, 22, 553–564. [CrossRef]

144. Niksa-Rynkiewicz, T.; Witkowska, A.; Głuch, J.; Adamowicz, M. Monitoring the Gas Turbine Start-Up Phase on a Platform Using
a Hierarchical Model Based on Multi-Layer Perceptron Networks. Polish Marit. Res. 2022, 29, 123–131. [CrossRef]

145. Korczewski, Z. Exhaust Gas Temperature Measurements in Diagnostic Examination of Naval Gas Turbine Engines. Polish Marit.
Res. 2011, 18, 49–53. [CrossRef]
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