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SUMMARY

In the paper, we have proposed a framework that allows programming a parallel application for a multi-node 
system, with one or more GPUs per node, using an OpenMP+extended CUDA API. OpenMP is used for 
launching threads responsible for management of particular GPUs and extended CUDA calls allow to 
manage CUDA objects, data and launch kernels. The framework hides inter-node MPI communication from 
the programmer who can benefit from the traditional OpenMP+CUDA API in a multi-node environment. 
For optimization, the implementation takes advantage of the MPI THREAD MULTIPLE mode allowing: 
multiple threads handling distinct GPUs as well as overlapping communication and computations 
transparently using multiple CUDA streams. The solution allows data parallelization across available GPUs 
in order to minimize execution time and supports a power-aware mode in which GPUs are automatically 
selected for computations using a greedy approach in order not to exceed an imposed power limit. We have 
implemented and benchmarked three parallel applications including: finding the largest divisors; 
verification of the Collatz conjecture; finding patterns in vectors. These were tested on three various 
systems: a GPU cluster with 16 nodes, each with NVIDIA GTX 1060 GPU; a powerful 2-node system – one 
node with 8x NVIDIA Quadro RTX 6000 GPUs, the second with 4x NVIDIA Quadro RTX 5000 GPUs; a 
heterogeneous environment with one node with 2x NVIDIA RTX 2080 and 2 nodes with NVIDIA GTX 
1060 GPUs. We demonstrated effectiveness of the framework through execution times versus power caps 
within ranges of 100-1400W, 250-3000W and 125-600W for these systems respectively as well as gains 
from using two versus one CUDA streams per GPU. Finally, we have shown that for the testbed 
applications the solution allows to obtain high speed-ups between 89.3% to 97.4% of the theoretically 
assessed ideal ones, for 16 nodes and 2 CUDA streams, demonstrating very good parallel efficiency. 
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1. INTRODUCTION

Graphical Processing Units (GPUs) are contemporary computing devices very well suited for

massively parallel execution of selected classes of code, ideally without thread divergence and

processing data with coalesced access to global memory and allowing further optimizations using

GPU shared memory etc. Further increase in processing power for such workloads comes from

packing multiple GPUs within a node and integrating several nodes into a GPU cluster/multi-node

system. Efficient and scalable programming such GPU systems requires proper APIs. Specifically,

within a single CPU+GPU node, general purpose APIs typically used for GPUs include CUDA,

OpenCL, OpenACC [1] and OpenMP [2]. For a GPU cluster, the aforementioned APIs are combined

with MPI e.g. CUDA+MPI [1] or OpenMP+CUDA+MPI [3]. However, this is a real challenge for

many programmers as they often use just a single or only selected APIs [4]. Consequently, using

a simplified programming model for a GPU cluster, allowing good scaling across GPUs in several

nodes, is a very desired feature. In this context, the goal of this paper is to propose a multithreaded

programming model based on OpenMP, traditionally used within a single node, that allows to

manage several GPUs, not only within a single node but a whole GPU cluster. Communication

with the other nodes, when transferring data or launching CUDA kernels on the remote nodes, is

completely hidden from the programmer behind the extended CUDA API.

Additionally, contemporary high performance computing aims at consideration of energy and

power, next to performance [5]. Specifically, of interest are power-aware schedulers for independent

tasks in a heterogeneous cluster [6, 7] or selection of devices under power caps in a heterogeneous

CPU+GPU environment in order to minimize application execution time [8]. Energy-aware

optimization has been demonstrated for various types of workloads and HPC systems, specifically

for data-parallel applications [9, 10]. We shall observe that applying power caps for running parallel

applications may also lead to considerable energy savings, specifically larger energy savings than

time loss percentage wise for both CPUs [11] and GPUs [12, 13]. In this context, the goal of the

paper is to extend the proposed programming model with a possibility to impose a global power

limit on the GPUs selected for computations and minimizing execution time under the power cap.

Consequently, in this paper we contribute by the following:

1. Proposal of a multithreaded power-aware OpenMP+CUDA based programming model for

a multi-GPU cluster environment. The solution hides internode communication behind the

multithreaded model and allows minimization of execution time with setting an upper bound

on the total power of selected compute devices.

2. Implementation of the model using a combination of OpenMP, MPI and CUDA, incorporating

features such as using several streams per device in CUDA, distinct MPI communicators for

handling messages between the master process and other nodes as well as multithreading

within MPI for optimized communication.

3. Demonstration of scalability and adaptability of the solution in both homogeneous and

heterogeneous environments with various GPUs such as: NVIDIA Quadro RTX 6000, Quadro

RTX 5000, RTX 2080 and GTX 1060 in various configurations with 1 to 8 GPUs per node.

Programmers can benefit from the model and implementation by the possibility of much

easier programming and execution, compared to an alternative approach required to obtain such
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functionality. The latter would require manual coupling of MPI, OpenMP and CUDA and manual

querying GPUs using NVIDIA NVML as well as coordination using MPI.

The outline of the paper is as follows. Section 2 provides a summary of related state-of-the-art

works, on the topics of: models and frameworks for CPU+GPU cluster hiding details of inter-

node communication and supporting optimization of processing and scalability; tools allowing

transparent access to GPU resources and GPU virtualization in a parallel environment and finally

performance-energy and power-aware computing in such systems. In Section 3, the proposed

solution for multithreaded programming in a multi-GPU cluster environment is presented, with:

the programming model and application architecture combining OpenMP and CUDA, optimization

criteria including execution time and execution time with a power cap as well as implementation

of automatic optimization of application execution with a greedy algorithm for device selection.

Section 4 contains description of the three testbed applications, three testbed environments

and corresponding results as well as discussion, including: performance-power profiles showing

execution times under specific power caps, execution times versus the number of nodes and

CUDA streams, speed-ups versus the number of nodes and finally assessment of the overhead of

the framework. Section 5 includes summary and planned future work. Additionally, Appendix A

contains a comprehensive list of the framework API, Appendix B describes the syntax and details

of kernel invocation, Appendix C outlines code structure and dependencies including source files

and Appendix D includes profiles of the tested workloads with execution times of successive data

packets, executed either locally or remotely. Appendix E presents a concept allowing extension of

the proposed implementation to use available CPU cores for computations, in a way similar to how

the GPUs are used.

2. RELATED WORK

Explicit multi-node GPU programming using CUDA and MPI can benefit from CUDA-aware MPI

implementations allowing usage of GPU memory pointers for GPU-GPU communication on various

nodes. CUDA Inter-process Communication (IPC) allows GPU-GPU communication that can cross

the process boundary [14] with optimizations for intra-node MPI communication for multi-GPU

nodes shown in paper [15].

On the other hand, multithreaded programming models hiding details of inter-node

communication details exist, both in the context of CPU as well as GPU based systems. One

of the examples could be given with reference to the Partitioned Global Address Space (PGAS)

programming model in which a set of processors with local storage is distinguished. At least

parts of those storages are shared with others. Several compliant languages and libraries have

been discussed in [16] including: original PGAS languages – CAF, Titanium, UPC; HPCS PGAS

languages – Chapel, X10, Fortress; Retrospective PGAS languages – HPF, ZPL and GA as well as

XCalableMP (XMP) – PGAS extension for C and Fortran. Notable recent examples include using

PCJ for HPC systems [17], big data processing [18], clouds [19] as well as Shoal for clusters of

processors and FPGAs [20]. HPX [21] is a C++ library developed for concurrency and parallelism

that supports parallel, concurrent and distributed functions for general purpose programming, in

particular Active Global Address Space (AGAS) that allows moving objects between nodes without
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4 P. CZARNUL

changing addresses. In paper [22] a PGAS-like memory level called world memory was proposed to

extend OpenMP to distributed memory systems. The concept allows sharing data between processes

as well as synchronization and the model with extensions would allow mapping to either multi-

core CPUs or a GPU cluster. An example for a distributed memory Gauss-Seidel method using the

extension was shown.

In [8] users can use clusters via an engine implemented with Java EE and subsequent

communication with cluster managers is realized via SOA. Communication with node managers is

performed with TCP and OpenCL kernels are used for computations. This allows using a collection

of clusters with heterogeneous compute devices such as CPUs and GPUs. The optimization problem

of minimization of data-parallel application execution time under imposed power limit for compute

devices is solved by: selection of devices is used with solving a 0-1 knapsack problem (to which

a greedy approximation algorithm was applied) and data partitioning for load balancing. Selection

was generalized to to the 0/1 knapsack problem. It was shown that for a heterogeneous system with

3 heterogeneous nodes and 6 different compute devices and power caps between 100W and 1500W

execution times follow theoretical values computed based on raw compute devices’ performance for

a parallel MD5 password breaking application, with kernels implemented using OpenCL.

A similar flexible approach for heterogeneous clusters and data-parallel applications was

presented in the KernelHive system [23] where the engines managing the whole distributed system

of clusters and each cluster are implemented with Java while for each node there is a C++

implemented daemon managing execution of OpenCL kernels. The system allows to plug in

various optimizers including those considering power consumption of compute devices. Scaling of

computations has been shown for an environment of up to 18 nodes for MD5 workflows. Compared

to MPI+OpenCL, KernelHive introduced the overhead of 11% for up to 40 cluster nodes and 320

cores. Within a single node, CUDA Unified Memory provides a unified view on memory shared

between the host and the GPU sides allowing effective programming for multi-CPU + multi-GPU

single node systems [24]. This concept has been extended as Software Unified Memory (SUM)

for HyCOMP (Hybrid Cluster OpenMP) meant for hybrid CPU/GPU clusters [25]. SUM relies on

pages for consistency and uses the eager-release update protocol for coherence. It has been shown

that for matrix multiplication HyCOMP is approx. 7% slower than hybrid MPI+CUDA for large data

sizes. In paper [26] authors extended XCalableMP – a PGAS solution for clusters for multi-node

GPU clusters requiring only small code changes with additional GPU-related memory allocation

and sync clauses demonstrating good scalability between from 1, through 2 to 4 nodes for N-body

simulation using an AMD Opteron+InfiniBand environment.

On the other hand, there also exists a variety of solutions that provide transparent access to

GPU resources in a parallel environment. As outlined in [27], GPU virtualization solutions can

be divided into two groups: within VMs – typically using shared memory for data transfer from

main memory in VM to the GPU memory; and in either the native or the VM domain – typically

using the network layer for data transfer between the client and possibly a different server with a

GPU. Examples within the former group include: vCUDA, GViM, gVirtuS, Shadowfax while the

latter: rCUDA, GridCuda, DS-CUDA, Shadowfax II. Another approach extending a single node

programming model to a cluster was proposed in [28] for OpenCL as an API for GPU clusters.

When a request to a GPU is issued from a host thread to a GPU on a compute node, it is enqueued

to a per-device command queue and then sent by a command scheduler on a host node via an
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inter-node interconnect to a command scheduler on the compute node. Subsequently, the request

goes through a per-GPU ready queue and device thread to a GPU. A result is passed through a

completion queue and the command scheduler on the compute node, via a completion queue and

the command scheduler on the host node. The authors used a host node with 2 Intel Xeon X5680

CPUs and 72GB RAM and 8 compute nodes with 2 Intel Xeon 5660 CPUs with 24GB RAM and

4 NVIDIA GTX 480 GPUs. They benchmarked the solution for several applications: Binomial

option pricing (BO), Black-Scholes PDE (BS), Coulombic Potential (CP), Embarrassingly Parallel

(EP), Matrix Multiplication (MM) and Nbody simulation (NB). The authors showed very good

speed-ups over 1 GPU close to 28 for BO, exceeding 28 for EP and close to 30 for BS and CP

using 32 GPUs. For the two applications requiring much more communication i.e. NB and MM

the speed-up was approx. 24 for NB and severely hit barely exceeding 4 for 32 and approx. 6

for 16 GPUs. Another solution allowing to use CUDA for distributed heterogeneous CPU+GPU

clusters was proposed in [29]. Specifically, the authors proposed BigGPU which is distributed

system that can recompile and execute PTX codes on CPU/GPU devices within the cluster. The

programmer provides just the standard CUDA code and the system can distribute and balance the

load among computational devices. For experimental evaluation the authors used 4 workstations

with Intel Xeon E5645, 24 GB RAM and NVIDIA GeForce GTX 550 Ti as well as 10-Gigabit

Ethernet. Three applications were benchmarked: matrix multiplication (MM), motion estimation

(ME) and N-body simulation (NB). Scaling between 1, 2 and 4 GPUs was shown with execution

times dropping between 1 to 4 GPUs for large data sizes for the applications: from 110 to over

50s for MM from 17 to 8s for ME, from 1100 to 300s for NB. In a heterogeneous CPU+GPU

environment with 4 nodes, benefits from adding CPUs were visible for NB and slightly for ME

only. Main costs affecting speed-ups were the memory copy and data-consistency mechanisms. In

paper [30] authors proposed SnuCL-D – a system for scalable execution of standard (i.e. single

node) OpenCL codes in a distributed environment with replication of the OpenCL host program

and data in each node. It has been compared to SnuCL with the centralized node approach using a

microbenchmark that copies contents of buffers to other buffers showing significant speed-ups over

SnuCL for more that 32 nodes, even 78 times faster using 512 nodes and 4096 cores (2 Intel Xeon

x5570 per node). The authors also used a series of benchmarks in further tests such as blackscholes,

BinomialOption, CP, N-body, matrix multiplication and NPB applications: EP, FT, CG, MG, SP

and BT. For a GPU cluster with 36 nodes, each with 2 Intel Xeon E5-2650 CPUs, 128GB RAM and

4 AMD Radeon HD7970 GPUs SnuCL-D visibly outperforms SnuCL for 32 nodes (128 GPUs)

for N-body, matrix multiplication, FT and SP, BT, CG and MG but did not scale well itself due

to small input data size for CG, MG, SP and FT. In paper [31] authors proposed a solution for

offloading computations from an OpenMP program to a cluster appearing as an accelerator device,

transforming OpenMP directives to Spark calls. For applications such as 2MM and 1GB sparse

matrices, the authors achieved speed-ups of 115 using 240 cores as well as for an application solving

the Collision Cross-Section problem the speed-up of 80 using 320 cores.

In [27], the authors studied benefits of using remote GPU virtualization, specifically: allowing a

larger number of GPUs to be available to an application; allowing access to remote GPUs even if

most or all CPU resources on that node are allocated to a non-GPU application (however, as per

studies in [32, 33] still a CPU core for accessing a GPU such as for the rCUDA daemon would

be preferable for performance reasons); increasing GPU utilization, minimization of workload
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6 P. CZARNUL

execution time as well as energy consumption; the possibility of using one GPU from several VMs.

Specifically, the authors studied use cases with 3 workloads: one composed of 400 instances using

GPU-Blast, LAMMPS, mCUDA-MEME, GROMACS; second one composed of 400 instances

using BarraCUDA, MUMmerGPU, GPU-LIBSVM, NAMD and the third combined one. Using

a 16 node cluster (and one access node) with nodes featuring 2 Xeon E5-2620 v2 CPUs, 1 NVIDIA

K20 GPU with InfiniBand (FDR) interconnect they demonstrated that using rCUDA versus the

traditional CUDA API it was possible to obtain for the three workloads: 48%, 37% and 27%

reduction in execution times respectively, approximately doubling GPU utilization and consequently

reduction of energy consumption by 40%, 25% and 15% respectively. The feature of decoupling

CPU and GPU computational parts using rCUDA is also studied in [34] where sharing of physical

GPUs can result in an increase of system throughput up to two times and in reduction of energy

consumption by approx. 15%. Features such as creating virtual instances out of the physical GPU

can be exploited and communication and computations can be overlapped for reduction of time

and energy. In [35] benefits of using rCUDA with a modified Slurm scheduler capable of assigning

remote GPUs to jobs are shown, resulting in increasing the cluster throughput two times and in

energy reduction up to 40%.

Many works present tools that assist in finding better than default performance-energy trade-offs,

typically assuming or well suited to certain processing models. In such cases, these are not used at

the program/API level but rather as external tools. Examples include browsing the available space of

power caps for NVIDIA GPUs optimizing energy consumption, Energy Delay Product (EDP) and

Energy Delay Sum (EDS) for training models such as Alexnet, VGG-19, Inception V3, Inception

V4, Resnet50 and Resnet152 using Nvidia Quadro RTX 6000 and Nvidia V100 GPUs [12]. As

an example, for V100 average energy savings of 24%–33%, for EDP 23%–27% with performance

loss of 13%–21% and for EDS (k=2) 23.5%–27.3% with performance loss of 4.5%–13.8% were

observed. In [36] a GPOEO solution was proposed, developed specifically for iterative machine

learning applications. The tool measures performance counter as well as energy online and time and

energy models are used to find best predicted configuration that optimizes a function of time and

energy. The authors demonstrated mean 16.2% energy savings at the 5.1% performance loss for an

environment with an AMD 5950X CPU + NVIDIA RTX3080Ti GPU run for 71 ML applications. At

a higher level, in paper [37] authors proposed an energy consumption cost efficient deep learning job

allocation (CE-DLA) solution for training and inference jobs assuming the dynamic electricity price.

They designed a mixed integer nonlinear programming formulation and demonstrated 43% better

energy consumption cost than PA-MBT and 15% than EPRONS competitors assuring acceptable

performance.

Power capping is considered in the context of an incoming stream of jobs scheduled on HPC

systems for e.g. maximizing throughput under an imposed power cap. For instance, Slurm allows to

set power caps using DVFS as well as shut down and start nodes [38]. In paper [39], PowerCoord

was proposed for systems with multiple CPU and GPU sockets and is able to coordinate between

the CPU and GPU domains in order to maximize throughput and maintain the power under the

imposed cap. The approach uses reinforcement learning in order to select one of several heuristic

allocation policies. Throughput improvement of 18% compared to a case without coordination

between domains.
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3. PROPOSED SOLUTION FOR MULTITHREADED PROGRAMMING IN A MULTI-GPU

CLUSTER ENVIRONMENT

In the context of the aforementioned existing works we contribute by providing an OpenMP+CUDA

based shared memory multi-threaded programming model and implementation † for a GPU cluster,

i.e. a cluster that consists of several nodes with 1+GPU(s) per node, with power-aware processing,

applicable at runtime.

3.1. Programming model and application architecture

Using a single node with potentially several GPUs typically involves coupling APIs [33] such as:

1. CUDA – for management of each GPU, including memory management, data copying, kernel

invocation (possibly using several CUDA streams) etc.

2. OpenMP (or other multithreaded API) – for management several GPUs i.e. a dedicated thread

manages its own GPU, synchronizing for input data and writing down results on the host side

with other threads.

The proposed solution assumes the architecture of a parallel application implemented with

OpenMP for launching multiple threads, each of which manages its own GPU. In this paper we

propose to maintain this application architecture i.e. the view of one process and multiple threads

but handling not only local GPUs but also remote GPUs in a cluster in a transparent way. The

OpenMP part is maintained without changes and CUDA functions have been overridden with their

analogous counterparts starting with cudampi , followed by the traditional CUDA call e.g.

cudampi cudaSetDevice() instead of cudaSetDevice() with same arguments.

The parallel application consists of several processes, each of which runs on a different node

with a GPU or GPUs. Implementation wise, the inter-node communication is realized with MPI that

can, depending on the implementation, provide low latency and high throughput communication

between nodes such as using Infiniband. Furthermore, we require the implementation to support the

MPI THREAD MULTIPLE mode for threads to communicate with other processes independently.

As shown in Figure 1, within process with MPI rank 0, several threads are created. Each of these

manages a different GPU, which is either local for process 0 or remote on a different node. In the

former case, commands are passed directly to a GPU using CUDA. In the case of a remote GPU,

commands are passed using MPI to an appropriate process on a remote node on which the given

GPU is located. Furthermore, within that process there is a thread dedicated to that particular GPU

that manages it locally via CUDA.

Consequently, within each remote (slave) MPI process, there are as many threads as the number

of its local GPUs. Each such thread sets its current GPU with cudaSetDevice() and proceeds

with responding to requests from process 0’s thread. Since there are communication pairs between

process 0 and a given process referring to different GPUs, this will allow independent and potentially

parallel management of GPUs assuming multi-core CPUs at both ends. For such communication

to take place, we have created independent MPI communicators each of which is dedicated to a

†available at https://kask.eti.pg.gda.pl/gitlab/pczarnul/cudampilib
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8 P. CZARNUL

Figure 1. Interaction diagram outlining processes, threads, MPI (communicators) and message tags

different target GPU – effectively used by one pair of threads in process 0 and the process which

resides on a node of a given GPU. Then MPI tags refer to various types of messages and operations

supported by the framework for remote GPUs, as outlined in Figure 1.

Because of the specific CUDA kernel invocation syntax, the proposed solution involves an

assumption to pass to a kernel a pointer to a previously allocated space in GPU’s global memory,

which is a common practice. Prior to invocation of a kernel, input parameters are copied to that

global memory in a GPU rather than passed by values in the kernel invocation. We assume that each

grid’s thread would then fetch input data based on its global id. This approach allows to hide the

proposed implementation practically completely. We shall note that OpenCL’s syntax would allow

to override setting kernel parameters in an easier way than for CUDA but, in fact, this is just a

technical detail.

3.2. Additional API

Additional, compared to CUDA, helper calls are supported, including:

Copyright © 2023 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2023)
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1. void cudampi kernelinstream(void *devPtr,cudaStream t

stream) for launching a kernel in a given stream with arguments devPtr.

The kernel itself is launched in function launchkernelinstream(void

*devPtr,cudaStream t stream) which invokes the kernel code provided by

the programmer in function appkernel(void *devPtr). Details on how the CUDA

grid can be configured for this invocation is shown in Appendix B.

2. int cudampi getnextchunkindex(long long *globalcounter,int

batchsize,long long max) for a given thread in process 0 a new data packet index

is returned (using an OpenMP critical section) for processing on the GPU. Returns the next

available data chunk index, skipping by batchsize. max is returned when the given GPU

is disabled from further computations. Further details on how this function is used to disable

a particular GPU from further usage are described in Section 3.5. globalcounter points

at the global counter (guarded by a critical section).

3. void cudampi initializeMPI(int argc,char **argv) – initializes the

MPI environment with multithreading support passing the arguments of the main() function.

4. void cudampi terminateMPI() – terminates the multi-node MPI environment.

5. void cudampi setglobalpowerlimit(float powerlimit) – sets a global,

total power limit ([W]) for the GPUs selected for application execution.

6. cudampi cudaSetDevice() – sets an active GPU – invoked by each thread of process

0, an actual active GPU is set using an equivalent CUDA call either locally or remotely,

depending on the GPU.

3.3. Application template

The application structure, implemented by the programmer, considering the proposed model and

processing of batchsize sized vectors, using either 1 or 2 streams is shown in Listing 1.

Furthermore, the design of the solution allows for usage of many CUDA streams per GPU,

which has been implemented in the tested software. By default, functions such as data copy and

kernel invocation without explicit stream passing can be used. Additionally, standard CUDA stream

creation, management and usage can be used, which allows for e.g. using 2+ streams per GPU from

one CPU thread managing a GPU for hiding CPU-GPU communication and kernel runs in various

streams. In this case, stream creation and management is passed to the target GPU thread, if run

remotely.

3.4. Optimization criteria

Within the framework, two alternative optimization criteria are considered and realized:

minimization of execution time – as in a dynamic master-slave approach where threads managing

GPUs request successive data chunks for processing. Effective load balancing is possible if the

number of data chunks is considerably larger (e.g. a few times larger more) than the number

of GPUs and thanks to the dynamic master-slave technique.

minimization of execution time with a limit on the total power consumption of used GPUs – in

this case a greedy algorithm selects such GPUs so that their total power consumption does
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__cudampi__initializeMPI(argc,argv);

__cudampi__setglobalpowerlimit(powerlimit);

__cudampi__cudaGetDeviceCount(&cudadevicescount);

cudaHostAlloc((void**)&vectora,sizeof(char)*VECTORSIZE,cudaHostAllocDefault);

cudaHostAlloc((void**)&vectorc,sizeof(char)*VECTORSIZE,cudaHostAllocDefault);

initialize_vectors(...);

#pragma omp parallel num_threads(cudadevicescount)

{ long long mycounter; int finish=0;void *devPtra,*devPtrc,*devPtra2,*devPtrc2;

int i; cudaStream_t stream1,stream2; int mythreadid=omp_get_thread_num();

void *devPtr,*devPtr2; long long privatecounter=0;

__cudampi__cudaSetDevice(mythreadid);

#pragma omp barrier

__cudampi__cudaMalloc(&devPtra,batchsize*sizeof(char));

__cudampi__cudaMalloc(&devPtrc,batchsize*sizeof(char));

__cudampi__cudaMalloc(&devPtr,2*sizeof(void *));

__cudampi__cudaMalloc(&devPtra2,batchsize*sizeof(char));

__cudampi__cudaMalloc(&devPtrc2,batchsize*sizeof(char));

__cudampi__cudaMalloc(&devPtr2,2*sizeof(void *));

__cudampi__cudaStreamCreate(&stream1);

__cudampi__cudaStreamCreate(&stream2);

__cudampi__cudaMemcpyAsync(devPtr,&devPtra,sizeof(void *),

cudaMemcpyHostToDevice,stream1);

__cudampi__cudaMemcpyAsync(devPtr+sizeof(void *),&devPtrc,

sizeof(void *),cudaMemcpyHostToDevice,stream1);

__cudampi__cudaMemcpyAsync(devPtr2,&devPtra2,sizeof(void *),

cudaMemcpyHostToDevice,stream2);

__cudampi__cudaMemcpyAsync(devPtr2+sizeof(void *),&devPtrc2,

sizeof(void *),cudaMemcpyHostToDevice,stream2);

do {

mycounter=__cudampi__getnextchunkindex(&globalcounter,batchsize,VECTORSIZE)

;

if (mycounter>=VECTORSIZE) finish=1; else {

__cudampi__cudaMemcpyAsync(devPtra,vectora+mycounter,batchsize*sizeof(

char),cudaMemcpyHostToDevice,stream1);

__cudampi__kernelinstream(devPtr,stream1);

__cudampi__cudaMemcpyAsync(vectorc+mycounter,devPtrc,batchsize*sizeof(

char),cudaMemcpyDeviceToHost,stream1);

}

if (streamcount==2) // do it again in the second stream

if (!finish) {

mycounter=__cudampi__getnextchunkindex(&globalcounter,batchsize,

VECTORSIZE);

if (mycounter>=VECTORSIZE) finish=1; else {

__cudampi__cudaMemcpyAsync(devPtra2,vectora+mycounter,batchsize*
sizeof(char),cudaMemcpyHostToDevice,stream2);

__cudampi__kernelinstream(devPtr2,stream2);

__cudampi__cudaMemcpyAsync(vectorc+mycounter,devPtrc2,batchsize*
sizeof(char),cudaMemcpyDeviceToHost,stream2);

}

}

privatecounter++;if (privatecounter%2) __cudampi__cudaDeviceSynchronize();

} while (!finish);

__cudampi__cudaDeviceSynchronize(); __cudampi__cudaStreamDestroy(stream1);

}

__cudampi__terminateMPI();

Listing 1: Template for multi-node multi-GPU programming with the proposed framework

not exceed a given limit and selects available devices with best ratio of performance/power

consumption.
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A MULTITHREADED CUDA AND OPENMP BASED POWER-AWARE PROGRAMMING FRAMEWORK ...11

input: set Din of available devices di, power limit P

output: set Dout of selected devices

avP = P;

do {

D = Din;

find such di in D:

1. powerdi ≤ avP; and

2. performancedi/powerdi is largest across all i in D;

remove di from D;

add di to Dout;

} while (di has been found);

Listing 2: Greedy algorithm for device selection

3.5. Implementation of automatic optimization of application execution

For the purpose of automated optimization of application execution, both execution times of

processing particular chunks of data on a given GPU including communication (i.e. turnaround

times for data packets for particular devices) as well as power consumption of a given GPU are

monitored. The latter is performed by calling nvidia-smi. Specifically, in the framework, in the

threads of MPI’s process 0, for each GPU, a typical sequence of asynchronous calls is inserted

into each stream i.e.: asynchronous host to device communication, kernel launch and asynchronous

device to host communication. Since these calls are asynchronous from the point of view of the host,

after a number (which can be defined) of such sequences has been started, device synchronization is

invoked. This is needed since it then allows load balancing of data packet distribution across GPU

devices (otherwise all data packets would have been spread across devices immediately without

proper dynamic load balancing). This also means that after launching the calls, GPU is busy and at

this point, before blocking cudaDeviceSynchronize(), a power readout is performed.

At the same time, round trip times for data chunks for all GPUs (via the local bus for local GPUs

and via MPI using Ethernet or Infiniband for remote GPUs) are measured periodically, between

synchronization points.

In the power-aware version, which is activated by calling a power limit by function

cudampi setglobalpowerlimit(powerlimit), after round trip times and power

readouts have been gathered, thread 0 in process 0 performs device enabling (OpenMP locks are

used for particular threads managing GPUs) based on their performance and power consumption,

according to the greedy algorithm shown in Listing 2.

Performance of a given device can be either assigned a priori, for instance measured

using a benchmark corresponding to the workload being optimized, or measured dynamically

as an inverse of data chunk processing time. In the latter case, processing packets

assigned to devices should be of similar size computationally wise before the next

device selection using such data takes place. This issue is solved by performing this

measurement in the overloaded implementation of function cudaDeviceSynchronize() i.e.

cudampi cudaDeviceSynchronize() which averages execution of several data chunks

per GPU. From this point on, function cudampi getnextchunkindex(long long

*globalcounter,int batchsize,long long max), depending on the GPU, either

returns next data chunk index to be processed (batches of batchsize per GPU are considered) or
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12 P. CZARNUL

skips to max which effectively informs the given thread that there are no more data packets available

to a given thread, in turn eliminating the given GPU from subsequent computations.

Additionally, switching between threads managing selection of devices has been implemented to

handle a situation in which some threads have become inactive and thus cannot continue to handle

this function. One of the threads handling an enabled/active device is selected to perform this task.

4. EXPERIMENTS

4.1. Testbed applications

The proposed framework allows for easy implementation of various applications that fall within

the adopted model suitable for GPU(s) i.e. the one in which input data can be partitioned into data

chunks that can be processed in parallel and which output can be integrated afterwards. For the sake

of tests, the following applications have been implemented and subsequently tested with 1 and 2

streams per GPU:

1. finding a predefined number of pattern(s) PATTERNCOUNT of length PATTERNLENGTH

(400 and 400 benchmarked) in a given input char vector (length=4e8, batchsize=5e4 for

testbeds 1 and 3; length=2e9, batchsize=1e6 for testbed 2) and returning a vector stating

occurrence or lack of thereof at a given location of the vector (index),

2. checking the Collatz conjecture for numbers passed as input in vector va and returning vector

vc that in vc[i] stores the number of iterations to reach number 1 according to the Collatz

procedure for input number in va[i] (2e8 numbers, batchsize=5e4 for testbeds 1 and 3; 1e9

numbers, batchsize=1e6 for testbed 2),

3. finding the largest divisor out of elements va[i] and vb[i] (vector size=2e8, batchsize=5e4 for

testbeds 1 and 3; vector size=1e9, batchsize=1e6 for testbed 2).

The rationale of testing various applications was to assess performance of the solution for

potentially various ratios of compute to communication (host-to (via local or network interconnect)

-device). Additionally, the applications differ in compute times across particular data chunks for

a given problem. For the pattern search application execution times of data packets of a given

size (numbers of elements in a data chunk) will also depend on values of particular elements. The

proposed scheme will still balance load, provided the number of data chunks is considerably larger

than the number of compute devices and relative ratios of execution times across data chunks are

limited.

4.2. Testbed environments

The proposed implementation incorporates support for heterogeneous environments in which

various nodes can feature various numbers of GPUs. This is allowed by specification of a

configuration file that includes lines with the < nodeid/MPIrank >:< GPUcount > syntax. For

the purpose of tests, several environments have been used, that differ in: the number of GPUs and

nodes as well as relative performance of GPUs in the environment, as follows:
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A MULTITHREADED CUDA AND OPENMP BASED POWER-AWARE PROGRAMMING FRAMEWORK ...13

Testbed 1: a cluster of 16 nodes, each with an NVIDIA GTX 1060 GPU and Gb Ethernet, Intel(R)

Core(TM) i7-7700 CPU at 3.60GHz, 16 GB RAM;

Testbed 2: 2 very powerful nodes, one with: 8x NVIDIA Quadro RTX 6000 GPUs, 2 Intel(R)

Xeon(R) Silver 4210 CPUs at 2.20GHz, 384 GB RAM, second with 4x NVIDIA Quadro

RTX 5000 GPUs, 2 Intel(R) Xeon(R) Silver 4210 CPUs at 2.20GHz, 384 GB RAM;

Testbed 3: a heterogeneous environment with the following nodes: one with 2x NVIDIA RTX

2080, 2 Intel(R) Xeon(R) Gold 6130 CPUs at 2.10GHz, 256 GB RAM; 2 nodes, each with an

NVIDIA GTX 1060 GPU, Intel(R) Xeon(R) CPU W3540 at 2.93GHz, 24 GB RAM.

4.3. Results

Figures 2, 3 and 4 present execution times versus imposed power limits, for the tested pattern search

application, for all testbeds 1-3, respectively. Analogous charts for the collatz application are shown

in Figures 5, 6 and 7 while for finding largest divisors (vecmaxdiv) in Figures 8, 9 and 10.

Figures 11, 12 and 13 depict execution times for the testbed applications: pattern search, collatz

and vecmaxdiv respectively – using testbed 1, for various numbers of nodes (1-16) as well as either

1 or 2 streams per GPU. Figures 14, 15 and 16 present speed-ups for pattern search, collatz and

vecmaxdiv respectively.

Finally, we can compare speed-ups of the proposed framework to its time on 1 node versus

the time on 1 node obtained by the OpenMP+CUDA implementation, as a performance optimized

baseline. Results are shown in Figures 17, 18 and 19 for the three applications respectively.

4.4. Discussion

4.4.1. Performance-power profiles From Figures 2 through 10 we can see that for all

configurations the framework adjusts the assignment of data packets to the nodes which results in

increasing execution times, for smaller power limits, similarly to the approach shown in paper [8].

Interestingly, this is visible either for both a homogeneous environment with 16 nodes (testbed 1)

as well as even a small heterogeneous environment such as testbed 3, albeit with steps visible in the

chart due to the small number of compute devices.

4.4.2. Execution time vs number of nodes and CUDA streams As noted in paper [33], 2 streams

per GPU shall bring visible benefits for GPU applications processing independent data packets, as

is the case for the applications considered in this paper (in that model 2 data packets resulted in one

output packet corresponding to e.g. multiplication or addition of matrices). In Figures 11 through

13 we can see that the proposed implementation clearly results in improvement of execution times

from using 2 versus 1 stream per GPU, for all applications and all configurations, e.g.: for pattern

search 7.5% for 1 node, 6.4% for 8 and 5.4% for 16 nodes; for collatz 5.1% for 1 node, 5.4% for

8 and 4% for 16 nodes; for vecmaxdiv 0.5% for 1 node, 2.2% for 8 and 1.4% for 16 nodes. This

means that the proposed solution can benefit from multiple CUDA streams in a GPU cluster.

4.4.3. Speed-ups vs number of nodes Apart from actually measured speed-ups, those can be

compared to theoretical values assuming ideal load balancing across the compute devices.
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Figure 2. Pattern search application – execution time vs power limit, testbed 1
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Figure 3. Pattern search application – execution time vs power limit, testbed 2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 100  150  200  250  300  350  400  450  500  550  600

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

power [W]

average
min
max

Figure 4. Pattern search application – execution time vs power limit, testbed 3
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Figure 5. Collatz application – execution time vs power limit, testbed 1
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Figure 6. Collatz application – execution time vs power limit, testbed 2
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Figure 7. Collatz application – execution time vs power limit, testbed 3
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Figure 8. Vecmaxdiv application – execution time vs power limit, testbed 1
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Figure 9. Vecmaxdiv application – execution time vs power limit, testbed 2
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Figure 10. Vecmaxdiv application – execution time vs power limit, testbed 3
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Figure 11. Pattern search application – execution time vs number of nodes, 1 or 2 streams per GPU, testbed
1
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Figure 12. Collatz application – execution time vs number of nodes, 1 or 2 streams per GPU, testbed 1
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Figure 13. Vecmaxdiv application – execution time vs number of nodes, 1 or 2 streams per GPU, testbed 1
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18 P. CZARNUL

Specifically, based on profiles of the workloads from testbed 1 shown in Figures A2, A3 and

A4 in Appendix D, we can compute relative performance of the nodes including communication

based on these samples. Those values, assuming then performance of node 0 perf0 as well as the

remaining N-1 nodes with perf1, assuming ideal load balancing, can be used to assess ideal speed-

ups. Specifically, data packets processed fast i.e. for approx. 0.05s in Figure A3 denote packets

processed on a local GPU while the others on remote GPUs. Taking into account border cases of

shortest remote times (and corresponding potentially best i.e. largest performance perf1 regarded

as inverse of the execution time) and longest local times (corresponding performance perf0) we

can compute (assuming ideal load balancing) theoretically best speed-ups on 16 nodes (assuming

1 stream) as sp(16) = 1 + 15 perf1
perf0

. Such comparisons of speed-ups obtained using either 1 or 2

streams per GPU to the theoretically ideal computed as suggested above are shown in Figures 14,

15 and 16 for pattern search, collatz and vecmaxdiv respectively. We can see that the applications

differ in the potentially best speed-up considerably, which stems from their profiles and potential for

load balancing which is visible in execution times of successive 200 samples, shown in the profiles

above. Nevertheless, speed-ups obtained for 2 streams per GPU and 16 nodes are close to the best

assessed theoretical ones: for pattern search – 89.3% of the theoretically ideal, for collatz – 89.6%

of the theoretically ideal, for vecmaxdiv – 97.4% of the theoretically ideal.
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Figure 14. Pattern search application – speed-up vs number of nodes, 1 and 2 streams per GPU, testbed 1

4.4.4. Overhead of the framework and comparison to other results In order to fully evaluate

usefulness and performance of a framework, it is necessary to assess the overhead of the

latter compared to an implementation based solely on low level parallel programming APIs,

presumably resulting in lowest practically obtained overheads. As an example, the performance

of the KernelHive framework was compared to the performance of an MPI+OpenCL for a parallel

geospatial interpolation application on up to 40 cluster nodes and 320 cores [23].

In this case, this has been done by comparison of times with the use of the proposed framework

versus an implementation using just OpenMP+CUDA on 1 node. From Figures 17 through 19 we

can see that the overheads of the proposed framework, considering 2 streams per GPU, are perfectly

acceptable and speed-up drop versus the configuration on 1 node without the framework is as follows
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Figure 15. Collatz application – speed-up vs number of nodes, 1 and 2 streams per GPU, testbed 1
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Figure 16. Vecmaxdiv application – speed-up vs number of nodes, 1 and 2 streams per GPU, testbed 1

using 16 nodes: for pattern search – 1.398 (9.9%), for collatz – 0.400 (8.2%), for vecmaxdiv – 0.377

(5.3%).

We can compare results obtained in this paper to those from KernelHive, described in Section 2

and referenced above. This comparison is valid since both systems follow a similar dynamic master-

slave strategy for distribution of data packets and integration and both can utilize GPUs across

several nodes of a system which can be homogeneous or heterogeneous. The difference is that

KernelHive uses OpenCL kernels which at a similar programming abstraction level as CUDA

but the Java technology for integration of nodes than MPI. While in paper [23] KernelHive was

benchmarked with a MD5 password-breaking application, best results could be compared to the

best scaling application in this paper i.e. pattern search application as both feature a relatively large

compute/communication ratio and relatively balanced execution times per data chunk. In terms of

speed-ups on the same 16 nodes (the same lab), we can see the speed-up exceeding 14 for 16 nodes

in this paper versus approx. 12 for the KernelHive system for the best data partitioning configuration.
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20 P. CZARNUL

This is expected due to the aforementioned software stacks and at the same time allows to assess

the proposed CUDA+OpenMP+MPI framework favorably, in terms of scalability.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

s
p

e
e

d
-u

p

number of nodes

vs. 1-node with framework (2 streams)
vs. 1-node OpenMP+CUDA without framework (2 streams)

Figure 17. Pattern search application, comparison of speed-up vs number of nodes, vs 1 node using the
framework or vs 1 node using OpenMP+CUDA only, 2 streams per GPU, testbed 1
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Figure 18. Collatz application, comparison of speed-up vs number of nodes, vs 1 node using the framework
or vs 1 node using OpenMP+CUDA only, 2 streams per GPU, testbed 1

5. SUMMARY AND FUTURE WORK

In the paper, we have proposed an API and implementation of combined OpenMP+CUDA

framework for a GPU cluster that hides internode communication behind CUDA APIs by using

MPI, specifically taking advantage of the MPI THREAD MULTIPLE mode for multithreaded

communication and management of GPUs as well as multiple CUDA streams. We have shown

scalability of the solution for 3 workloads including finding the largest divisors, checking the Collatz
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Figure 19. Vecmaxdiv application, comparison of speed-up vs number of nodes, vs 1 node using the
framework or vs 1 node using OpenMP+CUDA only, 2 streams per GPU, testbed 1

conjecture and finding patterns in vectors, tested on 3 various systems: a cluster of 16 nodes with

NVIDIA GTX 1060 GPUs; a system with 2 powerful nodes, one with: 8x NVIDIA Quadro RTX

6000 GPUs, second with 4x NVIDIA Quadro RTX 5000 GPUs; a heterogeneous environment with

several nodes: one with 2x NVIDIA RTX 2080 and 2 nodes with NVIDIA GTX 1060 GPUs. We

showed scaling of execution times versus imposed power caps, benefits from using 2 streams per

GPU in the framework. We further showed that the speed-ups of the framework, compared to a

theoretically ideal implementation is within 89.3% to 97.4% of the theoretically ideal ones for 16

nodes. Consequently, we have confirmed that the framework is a viable and efficient solution to the

problem of dynamic power-aware load balancing in a multi-node GPU environment.

In the future, benchmarking and extending the solution towards other types of GPUs will be

of interest, specifically mobile and embedded type of compute devices in multi-node systems.

It has been demonstrated that such devices offer less power demanding computing [40, 41]

and exploration of performance-power trade-offs using power capping might result in non-trivial

configurations under more strict power limitations as compared to powerful GPUs in the traditional

servers and HPC systems. Additionally, extending the implementation to use available CPU cores

for computations will be performed, according to the concept presented in Appendix E.
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A. LIST OF API FUNCTIONS

The following list contains C functions available within the framework along with corresponding

descriptions of performed actions.

void __cudampi__setglobalpowerlimit(float powerlimit); // sets a global power

limit for GPU computing devices

float __cudampi__gettotalpowerofselecteddevices(); // gets total power of

currently enabled devices

int __cudampi__selectdevicesforpowerlimit_greedy() { // adopts a greedy

strategy for selecting devices

// returns 1 if successful, 0 otherwise - if not all devices have been recorded

power

int __cudampi__getnextchunkindex(long long *globalcounter,int batchsize,long

long max); // wrapper for

// __cudampi__getnextchunkindex_enableddevices(globalcounter,batchsize,max);

int __cudampi__getnextchunkindex_enableddevices(long long *globalcounter,int

batchsize,long long max);

// for a given thread (GPU) return the next available data chunk - enabled

devices considered

// max is the vector size

int __cudampi__getnextchunkindex_alldevices(long long *globalcounter,int

batchsize,long long max);

// for a given thread (GPU) return the next available data chunk - all

devices considered

// max is the vector size

int __cudampi__isdeviceenabled(int deviceid); // returns whether the device has

been enabled (1) or not (0)

cudaError_t __cudampi__cudaGetDeviceCount(int *count); // wrapper for

// __cudampi__getCUDAdevicescount(count);

void __cudampi__getCUDAdevicescount(int *cudadevicescount); // returns how many

GPUs in total are available (on all considered nodes)

void __cudampi__initializeMPI(int argc,char **argv); // initialize the multi-

node MPI environment, arguments are then

// passed to MPI_Init_thread with MPI_THREAD_MULTIPLE

void __cudampi__terminateMPI(); // terminate processing, shut down the multi-

node MPI environment

int __cudampi__gettargetGPU(int device); // gets target GPU id on a given node

for device number (global)

int __cudampi__gettargetMPIrank(int device); // gets target MPI rank based on

local GPU id

cudaError_t __cudampi__cudaMalloc(void **devPtr, size_t size); // allocate

space of a given size

// for current device (locally or remotely depending on location of the device)

cudaError_t __cudampi__cudaFree(void *devPtr); // free memory at given pointer

// for current device (locally or remotely depending on location of the device)

cudaError_t __cudampi__cudaDeviceSynchronize(void); // invoke

cudaDeviceSynchronize()

// on the current device and measure power as well as time

// if the given thread is a manager invoke

__cudampi__selectdevicesforpowerlimit_greedy()

cudaError_t __cudampi__cudaSetDevice(int device); // set the current device to

device (argument)

// locally or remotely
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cudaError_t __cudampi__cudaMemcpy(void *dst, const void *src, size_t count,

enum cudaMemcpyKind kind); // copy data as in cudaMemcpy(dst,src,count,kind)

// execute either locally or remotely (to, from device, using MPI)

cudaError_t __cudampi__cudaMemcpyAsync(void *dst, const void *src, size_t count

,

enum cudaMemcpyKind kind,cudaStream_t stream); // launch asynchronous copying

as in

// cudaMemcpyAsync(dst,src,count,kind,stream);

// execute either locally or remotely (to, from device, using MPI)

void launchkernelinstream(void *devPtr,cudaStream_t stream); // function

executing

// a kernel, allows to configure the grid (dimensions, sizes of thread blocks

and the grid)

void __cudampi__kernelinstream(void *devPtr,cudaStream_t stream); // function

for kernel launch

// from application code, launches the kernel invoked in launchkernelinstream

(...) in

// the given stream

void launchkernel(void *devPtr); // wrapper calling launchkernelinstream(...)

for the default (0) stream

void __cudampi__kernel(void *devPtr); // function for kernel launch from

application code

// launches the kernel invoked in launchkernel(...) in the default stream

cudaError_t __cudampi__cudaStreamCreate (cudaStream_t *pStream); // create a

new stream

cudaError_t __cudampi__cudaStreamDestroy(cudaStream_t stream); // destroy the

given stream

B. KERNEL INVOCATION DETAILS

Each kernel is invoked from the application source code with a call to: void

cudampi kernelinstream(void *devPtr,cudaStream t stream)

or void cudampi kernel(void *devPtr) that launch functions: void

launchkernelinstream(void *devPtr,cudaStream t stream) or void

launchkernel(void *devPtr) (stream 0) respectively. The latter two invoke the kernel

body provided by the programmer in function void appkernel(void *devPtr). Details

of these functions are as follows:

extern "C" void launchkernelinstream(void *devPtr,cudaStream_t stream) {

dim3 blocksingrid(gridsize);

dim3 threadsinblock(blocksize);

appkernel<<<blocksingrid,threadsinblock,0,stream>>>(devPtr);

if (cudaSuccess!=cudaGetLastError())

printf("Error during kernel launch in stream");

}

and

__global__

void appkernel(void *devPtr) {
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...

}

C. CODE STRUCTURE AND DEPENDENCIES

As outlined in Figure A1, the solution has a modular architecture with the following key source

files:

Figure A1. Source component diagram

cudampi.h – constants corresponding to labels (MPI tags) of messages exchanged between

process 0 (the master) and the other slave/worker processes,

cudampilib.h – declaration of functions and constants used exposed by cudampilib.c and

used by the implementation of process 0 of the MPI application – master/manager handling

communication with the other processes but also launching computations on local GPUs,

cudampilib.c – library of functions used by the implementation of process 0,

appkernel.cu – implementation of a kernel with the syntax as well as grid configuration in the

code actually launching a kernel on a GPU described in Appendix B,

app.c – code of the actual application with the multithreaded structure according to the model

described in Section 3.1,
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cudampislave.c – implementation of MPI processes with ranks larger than 0 running on other

nodes with GPUs.

D. PROFILES OF THE TESTED WORKLOADS

Figures A2, A3 and A4 depict processing times of 200 successive data packets from testbed 1, for

each application, respectively. These times include communication for non-local GPUs. Shortest

observed times correspond to data packets processed locally.
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Figure A2. Pattern search application – data packet processing times, 16 nodes, testbed 1
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Figure A3. Collatz application – data packet processing times, 16 nodes, testbed 1
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Figure A4. Vecmaxdiv application – data packet processing times, 16 nodes, testbed 1

E. SUPPORT FOR HETEROGENEOUS ENVIRONMENTS

It shall be noted that the proposed model and the implementation support load balancing, assuming

the number of data chunks is sufficiently large compared to the number of compute devices, among

GPUs in a heterogeneous environment i.e. various numbers of GPUs per node and various GPUs

across the system, as shown by the results for testbed 3. This is possible because threads managing

various GPUs can fetch subsequent data chunks and schedule kernel calls while other GPUs are

active.

While the current implementation is meant for a GPU cluster in which computations are assumed

to be performed by the GPUs and the CPUs are used for GPU management, it is possible to extend

the implementation to benefit from the available CPU cores for computations as well. Specifically,

within MPI’s process 0 additional OpenMP threads can be launched for managing CPU cores on

particular nodes. Similarly to the current implementation with GPUs, where there is one thread

responsible for management of a GPU, one additional OpenMP thread shall be responsible for

managing CPU cores (physical, logical) on a particular node (either local or remote). Further

parallelization on the target CPU’s end, reached with MPI messages, can be performed among the

CPU cores with OpenMP nested parallelism and data can be partitioned among the threads in a way

analogous to how it is implemented for a GPU. Instead of NVIDIA NVML, power readings can be

done using Intel RAPL for Intel CPUs or more universally via PAPI. At the level of the framework,

power readings can be considered in a way analogous to those of the GPUs for either engaging or not

engaging the particular CPU cores on a given node, as for the GPUs. Similarly, performance/power

ratios for CPUs would be considered as in Listing 2.
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