
Unusual dynamics and nonlinear thermal self-focusing of
initially focused magnetoacoustic beams in a plasma

Anna Perelomova
Gdansk University of Technology,

Faculty of Applied Physics and Mathematics,

ul. Narutowicza 11/12, 80-233 Gdansk, Poland

anna.perelomova@pg.edu.pl

September 7, 2023

Abstract

Unusual thermal self-focusing of two-dimensional beams in plasma which axis is par-
allel to the equilibrium straight magnetic field, is considered. The equilibrium parameters
of plasma determine scenario of a beam divergence (usual or unusual) which is stronger
as compared to a flow without magnetic field. Nonlinear thermal self-action of a magne-
tosonic beam behaves differently in the ordinary and unusual cases. Damping of wave per-
turbations and normal defocusing in gases lead to reduction of the magnitude of initially
planar perturbations at the axis of a beam. Additional thermal self-focusing non-specific
for gases occurs in plasma under some condition which counteracts this reduction. The
theory and numerical examples concern thermal self-action of initially focused (defocused)
magnetosonic beam. Dynamics of perturbations in a beam is determined by dimensionless
parameters responsible for diffraction, damping of the wave perturbations, initial radius
of a beam’s front curvature and the ratio of viscous to thermal damping coefficients.

1 Introduction

The MHD (magnetohydrodynamic) flow consists in general of variety of different wave and non-
wave modes. The number of modes is larger compared with a flow which is not affected by the
magnetic field, and their definition depend strongly on the angle between the wave vector and
the magnetic field. The linear analysis of a flow considers equilibrium parameters of a medium,
geometry of a flow, diffraction and damping factors. Alfvén, fast and slow magnetoacoustic
modes specify the wave motion. The entropy mode belongs to the non-wave modes. The correct
definition of all modes is the starting point in studies of nonlinear flows. It relies on dispersion
relations, or, equivalently, on the links between small-magnitude specific perturbations.

The variety of modes increases in the multi-dimensional flow. A planar wave does not
reflect real flow. Dynamics of perturbations in the real beams differs from the rays’ behavior.
The transversal diffusion of magnitude of perturbations, that is, diffraction, takes place. Since
diffraction reduces magnitude of perturbations away from a beam’s axis, it has considerable
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impact on the nonlinear phenomena which enhance in the field of intense perturbations. This
concerns nonlinear distortion of a magnetosonic wave form itself and the nonlinear excitation
of the entropy mode in its field. The diffraction behavior of beams (including unusual one)
is determined by an angle between the magnetic field and direction of a beam propagation
and equilibrium parameters of plasma. We concentrate on initially focused beams propagating
along axis z which is parallel to the constant straight magnetic field. This study continues and
extends the previous results by considering usual and unusual behavior of magnetosonic beams
in initially focused (defocused) beams (Sections 3,4)[1]. It considers shear and bulk viscosity as
damping mechanisms as well. Unusual thermal self-focusing of a magnetosonic beam increases
the magnitude of perturbations and may lead to a pronounced focus in view of joint impact of
nonlinearity, diffraction and attenuation and to displacement of a geometrical focus (Sec. 5).

It would be useful to mention contribution of nonlinear wave theory of intense optic beams
in concern to self-action in acoustics (e.g., [2, 3]). The possibility of thermal self-action of
acoustic beams was suggested by analogy with optic beams by Askaryan [4]. Self-focusing in
non-linear optics is induced by the variations in refractive index of materials exposed to intense
electromagnetic radiation. A medium whose refractive index enlarges with the electric field
intensity acts as a focusing lens. Gain medium may be self-focusing and defocusing [5]. It is well-
established that self-focusing in plasma can occur by means of relativistic [6], ponderomotive
and thermal (due to growth of the index of refraction induced by collisional heating of a plasma
[7]) effects. Defocusing in tunnel ionized plasma is different for Gaussian and super-Gaussian
beams and depends on the spot size of the laser [8]. It depends also on the external magnetic
field [9]. The mathematical contents in regard to the acoustic and optic wave phenomena
are also different. This concerns different patterns of nonlinearity, strong dispersion of optic
waves and usually weak dispersion of acoustic waves. In weakly dispersive media, the initial
profile becomes distorted in the course of propagation and the spectrum rapidly spreads due to
excitation of higher harmonics. This requires special mathematical methods. Response of the
optic medium at the fundamental frequency occurs due to cubic nonlinearity and higher order
odd nonlinearities of the medium while acoustic nonlinearity in fluids is quadratic. Very special
property of acoustic beams in a plasma affected by the magnetic field which has no analogs
in optics is possibility of unusual diffraction and corresponding unusual thermal self-action of
beams.

2 The equations of MHD flow

We start from the system of ideal MHD equations. It makes use of the single-fluid model, a
model of an ideal gas consisting of molecules of negligible size, and macroscopic equilibrium
quantities of plasma. An internal energy of an ideal gas depends exclusively on its temperature.
Ideal magnetohydrodynamics is a reasonably good approximation in most flows of astrophysical
plasmas. The full set of ideal MHD equations consists of the continuity equation, momentum
equation, energy balance equation and electrodynamic equations (e.g., [10, 11, 12]):

∂ρ

∂t
+
−→
∇ · (ρv⃗) = 0,

ρ
Dv⃗

Dt
= −

−→
∇p+

1

µ0

(
−→
∇ × B⃗)× B⃗ + η∆v⃗ +

(
1

3
η + ξ

)
−→
∇(

−→
∇ · v⃗), (2.1)
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Dp

Dt
− γ

p

ρ

Dρ

Dt
= (γ − 1)

[
−→
∇ · (χ

−→
∇T ) + ξ(

−→
∇ · v⃗)2 + η

2

∑
i,k=1,2,3

(
∂vi
∂xk

+
∂vk
∂xi

− 2

3
δi,k

−→
∇ · v⃗

)2
]
,

∂B⃗

∂t
=

−→
∇ × (v⃗ × B⃗),

−→
∇ · B⃗ = 0,

where p, ρ, v⃗, B⃗ are hydrostatic pressure and mass density of plasma, its velocity, the magnetic
field, T is plasma’s temperature, µ0 is the permeability of free space, and γ denotes the ratio of
specific heats under constant pressure and constant density, γ = CP/CV . Thermal conductivity
is designated by χ, and η, ξ mark shear and bulk viscosity. δi,k is the Kronecker delta, and D

Dt

denotes the material derivative.
The analysis is readily reduced to two dimensions, if one considers all perturbations as

functions of two Cartesian coordinates x and z and time [13]. All equilibrium quantities are
constant and subscripted by 0, and all perturbations are superscripted by apostrophes. Since
the bulk flow is absent, v⃗0 = 0⃗, apostrophes by components of velocity are dropped. The
equilibrium magnetic field is aligned along axis z, B⃗0 = (0, 0, B0). The MHD equations may be
rearranged in the following leading-order form correct to the second order of the perturbations:

∂ρ′

∂t
+ ρ0

(
∂vx
∂x

+
∂vz
∂z

)
= N1,

∂vx
∂t

+
1

ρ0

∂p′

∂x
−
(

4η

3ρ0
+

ξ

ρ0

)
∂2vx
∂x2

−
(

η

3ρ0
+

ξ

ρ0

)
∂2vz
∂x∂z

− η

ρ0

∂2vx
∂x2

− η

ρ0

∂2vx
∂z2

− B0

ρ0µ0

(
∂B′

x

∂z
− ∂B′

z

∂x

)
= N2,

∂vy
∂t

− η

ρ0

∂2vy
∂x2

− η

ρ0

∂2vy
∂z2

− B0

ρ0µ0

∂B′
y

∂z
= N3, (2.2)

∂vz
∂t

− η

ρ0

∂2vz
∂x2

−
(

η

3ρ0
+

ξ

ρ0

)
∂2vx
∂x∂z

−
(

4η

3ρ0
+

ξ

ρ0

)
∂2vz
∂z2

+
1

ρ0

∂p′

∂z
= N4,

∂p′

∂t
+ γp0

∂vz
∂z

− χ

ρ0CP

∂2γp′

∂x2
+

γχp0
ρ20CP

∂2ρ′

∂x2
− χ

ρ0CP

∂2γp′

∂z2
+

γχp0
ρ20CP

∂2ρ′

∂z2
= N5,

∂B′
x

∂t
− B0

∂vx
∂z

= N6,

∂B′
y

∂t
− B0

∂vy
∂z

= N7,

∂B′
z

∂t
+B0

∂vx
∂x

= N8,

where N1 . . . N8 consist of quadratically nonlinear terms including these ones proportional to
damping coefficients.

N1 = −ρ′
(
∂vx
∂x

+
∂vz
∂z

)
− vx

∂ρ′

∂x
− vz

∂ρ′

∂z

N2 = −vx
∂vx
∂x

− vz
∂vx
∂z

+
ρ′

ρ20

∂p′

∂x
− B0

ρ20µ0

ρ′
(
∂B′

x

∂z
− ∂B′

z

∂x

)
+

B′
z

ρ0µ0

(
∂B′

x

∂z
− ∂B′

z

∂x

)
−

B′
y

ρ0µ0

∂B′
y

∂x
− (2.3)
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(
4η

3ρ0
+

ξ

ρ0

)
ρ′

ρ0

∂2vx
∂x2

−
(

η

3ρ0
+

ξ

ρ0

)
ρ′

ρ0

∂2vz
∂x∂z

− η

ρ0

ρ′

ρ0

∂2vx
∂x2

− η

ρ0

ρ′

ρ0

∂2vx
∂z2

N3 = −vx
∂vy
∂x

− vz
∂vy
∂z

− B0

ρ20µ0

ρ′
∂B′

y

∂z
+

B′
z

ρ0µ0

∂B′
y

∂z
+

B′
x

ρ0µ0

∂B′
y

∂x
− η

ρ20
ρ′
∂2vy
∂x2

− η

ρ20
ρ′
∂2vy
∂z2

N4 = − ρ′

ρ20

∂p′

∂z
+

B′
x

ρ0µ0

∂B′
z

∂x
− 1

ρ0

∂

∂z

(
B2

x +B2
y

2µ0

)
− vz

∂vz
∂z

−(
η

3ρ0
+

ξ

ρ0

)
ρ′

ρ0

∂2vx
∂x∂z

−
(

4η

3ρ0
+

ξ

ρ0

)
ρ′

ρ0

∂2vz
∂z2

,

N5 = −γp′
∂vz
∂z

− vz
∂p′

∂z
+ (γ − 1)ξ

(
∂vx
∂x

+
∂vz
∂z

)2

+

(γ − 1)η

(
4

3

(
∂vx
∂x

)2

+
4

3

(
∂vz
∂z

)2

+
2

3

∂vx
∂z

∂vz
∂x

+

(
∂vx
∂z

)2

+

(
∂vz
∂x

)2

+

(
∂vy
∂x

)2

+

(
∂vy
∂z

)2
)
+

γχ

ρ30CP

∂2

∂x2

(
p0ρ

′2 − ρ0ρ
′p′
)
+

γχ

ρ30CP

∂2

∂z2
(
p0ρ

′2 − ρ0ρ
′p′
)
,

N6 =
∂

∂z
(vxB

′
z − vzB

′
x),

N7 =
∂

∂z
(vyB

′
z − vzB

′
y)−

∂

∂x
(vxB

′
y − vyB

′
x),

N8 =
∂

∂x
(vzB

′
x − vxB

′
z).

The system(2.2),(2.3) makes use of the equation of state for an ideal gas,

T =
p

ρ(CP − CV )
. (2.4)

Equations without account for damping were derived in references [13, 14, 15]. A set of
equations (2.2),(2.3) describes dynamics of perturbations correct to the second order in the
magnetoacoustic Mach number M . The Mach number measures the nonlinear effects of a flow
and equals the ratio of amplitude of velocity to the speed of magnetosonic perturbations. The
linear limit of Eqs (2.2) (the case N1 = ... = N8 = 0 determines the dynamic equations for
small magnitude perturbations).

3 Quasi-planar dynamics of small-amplitude magnetosound

perturbations

For definiteness, a beam propagating along the positive direction of axis z, is considered. The
linearized equations Eqs(2.2) (N1 = ... = N8 = 0) in the case of zero ξ, η, χ determine speed
of a wave along axis z if one assumes a planar wave with all perturbations proportional to
exp(iωt − ikzz), where ω denotes frequency of wave oscillations, and kz is the wave vector of
the planar wave. Apart from Alfvén waves and the entropy non-wave mode, there are four
roots of the dispersion relation ω = Ckz [16, 17]

C4 + c20C
2
A − C2(c20 + C2

A) = 0. (3.5)
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There are two absolute values of propagation speed of the planar wave, C = c0 and C = CA,
where

c0 =

√
γp0
ρ0

, CA =
B0√
µ0ρ0

(3.6)

denote the acoustic speed in non-magnetized gas in equilibrium and the Alfvén speed. The
roots of Eq.(3.5) C coincide with speeds of propagation of the quasi-planar wave along axis z.

The plasma beta symbolized by β = 2
γ

c20
C2

A
is the ratio of the plasma pressure to the magnetic

pressure. Most tokamaks deal with β of order 0.01, and spherical tokamaks typically operate
at values about 0.1. The Sun’s corona has β around 0.01. Active regions have much higher
β, over 1 in some cases. A large value of plasma beta is a characteristic of stellar terrestrial
environment, for example, the solar atmosphere. There are reports of laboratory production
of an extremely large plasma beta, termed ELB plasma [18]. Hence, in physically meaningful
cases, the plasma beta can be varied from 10−3 to values as large as 103. The case c0 = CA is
especial and is not paid attention in this study.

3.1 Case C = c0 and c0 ̸= CA

This case describes p-modes, that it, magnetosonic modes with non-zero perturbations of pres-
sure. Substituting all perturbations in the form of the plane waves proportional to exp(iωt −
ikxx− ikzz), considering weak damping and treating kx

kz
as a small parameter, we arrive at the

leading-order dispersion relation:

ω = c0kz

(
1 +

c20k
2
x

2(c20 − C2
A)k

2
z

)
+ i

(
(γ − 1)χ

2CPρ0
+

2η

3ρ0
+

ξ

2ρ0

)
k2
z . (3.7)

The effects relating to diffraction and damping due to thermal conduction and viscosity are
supposed to be of the same order, so Eq.(3.7) is valid to the second order of the generic small
parameter m which is responsible for diffraction and damping effects. Going to derivation of
dynamic equation, one makes use of correspondence of operators ∂/∂t and ∂/∂x, ∂/∂z to iω,
−ikx and −ikz, respectively. Any field perturbation φ inherent to this mode may be considered
as a function of the retarded time τ = t− z/c0 and ”slow” coordinates mz,

√
mx. This choice

of variables suggests that the spatial variations occur more slowly along axis z of a beam than
along axis x to an observer which moves at speed c0 along axis z [2, 19, 20] (φ may represent
any perturbation from the set ρ′, vx, vz, p

′, B′
x, B

′
z). Discarding terms O(m2), collecting terms

of order m and rearranging equation from the slow scale back to coordinates x, z, one arrives
at the dynamic equation

∂

∂τ

(
∂φ

∂z
− 1

c30

(
(γ − 1)χ

2CPρ0
+

2η

3ρ0
+

ξ

2ρ0

)
∂2φ

∂τ 2

)
= ±D2c0

2

∂2φ

∂x2
, (3.8)

where
D =

c0√
|c20 − C2

A|
.

The upper sign in the right-hand side of Eq.(3.8) corresponds to the case c0 > CA, and the
lower one to the case c0 < CA. Eq.(3.8) resembles the famous equation for the small magnitude
perturbations in weakly diverging beams in a gas in the absence of magnetic field (φ may
represent any perturbation from the set ρ′, vx, vz, p

′) [19, 20]:

∂

∂τ

(
∂φ

∂z
− 1

c30

(
(γ − 1)χ

2CPρ0
+

2η

3ρ0
+

ξ

2ρ0

)
∂2φ

∂τ 2

)
=

c0
2

∂2φ

∂x2
. (3.9)
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The divergence is more manifested in the presence of a magnetic field since D > 1. The
diffraction length for the harmonic oscillations with frequency ω,

zd = ωa2/(2Dc0) (3.10)

(a denotes the characteristic width of a beam at a transducer) is shorter in this case compared
to that in the non-magnetized gas (D = 1),

zd,0 = ωa2/(2c0). (3.11)

3.2 Case C = CA and c0 ̸= CA

This case is not acoustic. Similar to subcec.3.1 manipulations yield the leading-order dispersion
relation corresponding to a beam propagating in the positive direction of axis z,

ω = CAkz

(
1 +

C2
Ak

2
x

2(C2
A − c20)k

2
z

)
. (3.12)

An equation which governs perturbations in a beam may be extracted from Eq.(3.12) by as-
suming perturbations as φ(t− z/CA,mz,

√
mx). We arrive at

∂2φ

∂τ∂z
=


D2C3

A

2c20

∂2φ
∂x2 , CA > c0

−D2C3
A

2c20

∂2φ
∂x2 , CA < c0

. (3.13)

where φ may take value of any non-zero wave perturbation which specifies the wave modes.
Propagation of non-zero perturbations is not affected by damping mechanisms. The cases
CA > c0 and CA < c0 impose normal and unusual diffraction, respectively, and resemble the
Alvfén mode which propagates in the positive direction of axis z with the speed CA. This
is important difference between these two modes. Namely, the Alvfén mode propagates as a
planar wave without diffraction due to exact dispersion relation ω = CAkz.

4 Nonlinear dynamics of weakly divergent focused mag-

netosonic beams

Both cases C = c0 and C = CA impose unusual diffraction in dependence on the ratio CA

c0
.

Eq.(3.8) concerns perturbation in magnetoacoustic beam. It contains term responsible for the
thermal conduction and viscosity and includes Eq.(3.13) as a particular mathematical case
(with different coefficient by diffraction term). We concentrate on the studies of dynamics
of perturbations in initially focused acoustic beams. Only beams propagating with speed c0
(p-modes) may excite entropy perturbations and experience thermal self-action.

Going to the weakly nonlinear dynamics, we consider effects due to nonlinearity, diffraction
and attenuation of the same order in smallness (hence, the Mach number M and the generic
parameter m responsible for diffraction and damping due to thermal conduction and viscosity
are of comparative smallness). These effects are considered as independent and having only
small impact on the wave process. The dynamic equations correct to the second order of
perturbations follow from the system (2.2),(2.3). All perturbations are treated as functions of
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retarded time and τ = t − z/c0 and ”slow” coordinates mz,
√
mx. The links of perturbations

in the beam are required for the proper evaluation of the nonlinear term. The leading-order
links in the beam are as follows:

vx = vy = 0, vz =
c0
ρ0

ρ′, p′ = c20ρ
′, B′

x = B′
y = B′

z = 0. (4.14)

for any C except for the case C = c0 = CA. In particular, equation which describes perturbation
of density in the magnetosonic beam propagating in the positive direction of axis z with the
speed c0 takes the form:

∂

∂τ

(
∂ρ′

∂z
− γ + 1

2ρ0c0
ρ′
∂ρ′

∂τ
− 1

c30

(
(γ − 1)χ

2CPρ0
+

2η

3ρ0
+

ξ

2ρ0

)
∂2ρ′

∂τ 2

)
=

{
D2c0
2

∂2ρ′

∂x2 , c0 > CA

−D2c0
2

∂2ρ′

∂x2 , c0 < CA

.

(4.15)
An equation which describes perturbations in a planar wave affected by thermal conduction
in a weakly nonlinear flow at arbitrary angle between the equilibrium magnetic field and wave
wector, has been derived in Ref. [14]. Eq.(4.15) incorporates weak nonlinearity, damping due
to thermal conduction and viscosity, and diffraction (including unusual one). It complements
the dynamic equation derived in Ref.[1] by terms associated with viscosity. The case c0 > CA

corresponds to the usual diffraction but with the shorter diffraction length zd, and the case
c0 < CA is especial. The famous Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a
Newtonian beam is in fact (4.15) with D = 1. There are no analytical solutions to Eq.(4.15)
in general. In the case of negligible nonlinearity, (4.15) transforms into (3.8) with φ replaced
by ρ′:

∂ρ′

∂z∂τ
− 1

c30

(
(γ − 1)χ

2CPρ0
+

2η

3ρ0
+

ξ

2ρ0

)
∂3ρ′

∂τ 3
=

{
D2c0
2

∂2ρ′

∂x2 , c0 > CA

−D2c0
2

∂2ρ′

∂x2 , c0 < CA

. (4.16)

The analytical solution to it may be obtained seeking ρ′ in the form [19]

ρ′ = A(x, z) exp(iωτ), (4.17)

which transforms (4.16) to
∂A

∂Z
+

zd
ztv

A = ∓ i

4

∂2A

∂X2
, (4.18)

where X = x/a, Z = z/zd are dimensionless coordinates, and

ztv =
2c30
ω2

(
(γ − 1)χ

CPρ0
+

4η

3ρ0
+

ξ

ρ0

)−1

(4.19)

designates the characteristic scale of damping due to viscosity and thermal diffusion. Eq.(4.18)
differs from the parabolic equation for the complex amplitude by the term zd

ztv
A [2, 19]. We will

consider sound beams with an initially curved wave front and Gaussian transversal distribution
of amplitude. The boundary condition for a focused beam at Z = 0 is

A(X, 0)

A0

= exp
(
−X2(1∓ iδ)

)
, δ =

ωa2

2Rc0
=

zd
R
, (4.20)

where R is an initial radius of a beam’s front curvature, and A0 denoted the magnitude of
perturbation at X = 0 Z = 0. Positive δ correspond to the initially focused beams, and
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negative δ correspond to defocused beams with negative R. The solution to Eq.(4.18) with the
boundary condition (4.20) takes the form

A(X,Z)

A0

=
exp

(
−X2(1∓iδ)2

1∓iZ−δZ
− zd

ztv
Z
)

√
1∓ iZ − δZ

. (4.21)

The module of A,

|A(X,Z)| = A0

4
√
Z2 + (1− δZ)2

exp

(
− X2

Z2 + (1− δZ)2
− zd

ztv
Z

)
(4.22)

gets smaller away from the axis of a beam in the both cases of positive and negative signs.
The magnitude of the wave perturbation at the axis of a beam |A(0, Z)| is proportional to
1/ 4
√
Z2 + (1− δZ)2, and the width of a beam increases as

√
Z2 + (1− δZ)2. The perturbation

of density which amplitude satisfies Eq.(4.18) with the boundary condition (4.20), takes the
form

ρ′ = A0

exp
(
− X2

Z2+(1−δZ)2
− zd

ztv
Z
)
sin
(
ωτ − X2((1+δ2)Z−δ)

Z2+(1−δZ)2
± 1

2
arctan

(
Z

1−δZ

))
4
√

Z2 + (1− δZ)2
. (4.23)

The phase of perturbations at the axis of a beam (X = 0) equals ωτ ± 1
2
arctan

(
Z

1−δZ

)
. An

excess dimensionless speed of perturbations ∆c
c0

at the axis of a beam in the vicinity of transducer
(that is, for Z ≪ 1) equals approximately ± c0

2zdω
. Usually, perturbations at the axis of a beam

propagate faster than that in the planar wave in the same equilibrium parameters of plasma
(sign plus, c0 > CA), but they propagate slower in the unusual case (sign minus, c0 < CA). The
magnitude of perturbation in density in the focal point zf achieves maximum (if focal point
exists). The geometrical focus at the axis of a focused beam without damping is suited at
(exists if δ > 0)

Zf,0 =
zf
zd

=
δ

1 + δ2
. (4.24)

Maximum dimensionless perturbation of density in the focal point equals 4
√
1 + δ2A0. The

dimensionless focal distance at the axis of damped beam equals (δ > 0, if 1 + δ2 > 4zd/ztv)

Zf =
δ

1 + δ2
+

√
1−+2δ2 + δ4 − δ2 − 1

4(1 + δ2)zd/ztv
. (4.25)

Perturbation of density achieves maximum ρ′max

ρ′max = A0

23/4
√

zd
ztv

exp

(
δ2+1−4zdδ/ztv−

√
1−16z2d/z

2
tv+2δ2+δ4

4(1+δ2)

)
4

√
1 + δ2 −

√
1 + 2δ2 + δ4 − 16z2d/z

2
tv

(4.26)

at the axis of a beam in a focal point, in the case of weak damping, the focal point shifts towards
a transducer approximately at the dimensionless distance 2zd/ztv

(1+δ2)2
(compared to the case with

zero thermal conduction and viscosity). The magnitude of density perturbation achieves in the
focal point value A0(

4
√
1 + δ2 − δ

4
√

(1+δ2)3
zd
ztv

). If total damping is strong enough,

zd
ztv

≥ 1 + δ2

4
, (4.27)
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it prevents formation of the pronounced focal point. The dimensionless focal distance and
maximum dimensionless perturbation of density ρ′max

A0
at the axis of a beam (for the parameters

zd
ztv

and δ where the local maximum exists) are shown at Fig.1

Figure 1.The dimensionless focal distance
Zf

R
and maximum dimensionless perturbation of

density ρ′max

A0
at the axis of a beam (for the parameters zd

ztv
and δ where the local maximum

exists).

5 Thermal self-action of magnetosonic beams

Nonlinearity alters waveforms of the finite-magnitude perturbations in the course of propaga-
tion. The nonlinear interaction of modes which is responsible for an irreversible transfer of
momentum and energy from the macroscopic to microscopic motion, go into play. The reason
for interaction is damping and nonlinearity [19, 20]. Excitation of the entropy perturbations
in the field of intense magnetosonic wave leads to the heterogeneous enlargement of the back-
ground temperature in a plane perpendicular to the axis of a beam and to formation of thermal
lenses. Diffraction plays a key role in propagation of a wave beam and hence in the mag-
netosonic heating. Since the sound speed depends on temperature, the distortions of a wave
front are stronger in the vicinity of a beam axis. The acoustic heating leads to the defocusing
of a beam, if (∂c0/∂T )p > 0, and to the focusing of a beam otherwise. This phenomenon
is known as thermal self-action and was firstly studied with regard to the Newtonian flows
[21, 22]. Thermal self-action of quasi-harmonic sound waves in the case of weak nonlinearity
has much in common with thermal self-action of optic waves [23, 24]. Acoustic nonlinearity
in a weakly dispersive medium leads to the higher harmonic generation in the course of wave
propagation and hence wave perturbations can not be longer considered as quasi-harmonic.
The coupling system which describes magnetoacoustic heating due to loss of beam’s energy,
consists of Eq.(4.15) supplemented by the term taking into account variation of the local sound
speed due to variation of the background temperature T ′, and the diffusion equation which is
responsible for this variation,

∂

∂τ

(
∂ρ′

∂z
− T ′

2c0T0

∂ρ′

∂τ
− γ + 1

2ρ0c0
ρ′
∂p′

∂τ
− 1

c30

(
(γ − 1)χ

2CPρ0
+

2η

3ρ0
+

ξ

2ρ0

)
∂2ρ′

∂τ 2

)
= ±D2c0

2

∂2ρ′

∂x2
,

(5.28)
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∂T ′

∂t
− χ

ρ0CP

∂2T ′

∂x2
=

c0
CP

F, (5.29)

where F designates the magnetosonic force of heating. Eq.(5.28) takes into account the equality
valid for an ideal gas, (∂c0/∂T )p = c0/2T0. T ′ is not an acoustic quantity but a non-wave
perturbation which specifies the entropy mode governed by Eq.(5.29). In the case of the periodic
or nearly periodic magnetosonic perturbations, F is the quantity averaged over a period [2, 25].

F =
1

c0ρ20

(
(γ − 1)χ

CPρ0
+

4η

3ρ0
+

ξ

ρ0

)⟨(
∂ρ′

∂τ

)2
⟩
. (5.30)

The ”fast” time may be eliminated from Eq.(5.28) by substitution (4.17) [25]. This yields the
dynamic equation for the complex amplitude A,

∂A

∂Z
− i

ωT ′CP (γ − 1)zd
2c30

(1 + rtv)A+
zd
ztv

A = ∓ i

4

∂2A

∂X2
, (5.31)

where rtv denotes ratio of viscous to thermal damping,

rtv =
(4η/3 + ξ)CP

(γ − 1)χ
. (5.32)

Eq.(5.31) couples to Eq.(5.29) by means of the force F (5.30). The stationary heating imposes
∂T ′/∂t = 0. For the preliminary evaluations of T ′, we assume that A is a solution to (4.18)
with the boundary condition (4.20), that is, (4.21). The magnetosonic force takes the form

F = A2
0

ω2(γ − 1)χ

2c0CPρ30

exp
(
− 2X2

Z2+(1−δZ)2
− 2 zd

ztv
Z
)

√
(1− δZ)2 + Z2

(1 + rtv). (5.33)

Making use of (5.29), (5.33), we rearrange (5.31) as

∂A

∂Z
+ iν(1 + rtv) exp

(
−2

zd
ztv

Z

)(
exp

(
− 2X2

Z2 + (1− δZ)2

)√
Z2 + (1− δZ)2+ (5.34)

√
2πXerf

( √
2X√

Z2 + (1− δZ)2

))
A+

zd
ztv

A = ∓ i

4

∂2A

∂X2
,

where

ν =
(γ − 1)2D2

2(γ + 1)2
z2d
z2nl

, (5.35)

and erf(y) = 2√
π

∫ y

0
exp(−s2)ds is the error function. So, dynamics is determined by four

dimensionless parameters: the ratio of thermoviscous to diffraction effects, zd
ztv

, squared ratio of
nonlinear to diffraction effects ν, the ratio of viscous to thermal effects, rtv, and δ. Eq.(5.34)
is solved numerically in Mathematica with the boundary condition (4.20). Zero boundary
conditions are set at X = ±100. Z varies from 0 till 100. The dimensionless magnitude at
the beam’s axis |A|/A0 for some sets of ν(1 + rtv), zd/ztv and δ in the unusual (bold lines) and
ordinary cases (thin lines) of diffraction are shown in Fig.2. The broken curves represent |A|/A0

at the axis of a beam in accordance to (4.22), that is, they represent a case without thermal
self-action. Neither nonlinear distortion of a beam nor its nonlinear self-action are considered
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by the broken curves but only the initial curvature of a wave profile and linear impact of
diffraction, viscosity and thermal conduction. Positive δ correspond to focused at a transducer
beams and negative δ correspond to initially defocused beams. Usually, thermal self-defocusing
of a beam in a gaseous medium takes place. The unusual case results in the larger magnitudes
at the axis of a beam’s propagation than that in the course of usual diffraction. This resembles
thermal self-focusing when (∂c0/∂T )p < 0 which does not happen to gases but to the most
liquids apart from water.
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ν 1+rtv)=1
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Figure 2. The dimensionless amplitude at the axis of a beam |A|/A0 for various ν(1 + rtv),
zd/ztv, δ (δ > 0 for initially focused beams, and δ < 0 for initially defocused beams). Bold

lines correspond to the unusual case (sign plus on the right of (5.34)), and thin lines
correspond to the ordinary case (sign minus). The boundary condition at the transducer is
given by (4.20). The dotted lines represent a linear case without thermal self-action, that is,

|A|/A0 determined by (4.22).

6 Concluding Remarks

The linear dynamic equations which describe perturbations in the weakly diverging beams
which propagate parallel to the magnetic field (p-modes,(3.8); non-acoustic modes,(3.13)), take
the form different from that in a Newtonian flow. The case C = c0 ̸= CA yields an unusual
sign of the diffraction term in an equation describing perturbations if c0 < CA. This has been
reported in Ref.[1]. The divergence is more pronounced for magnetosonic beams affected by the
magnetic field compared to that in non-magnetized gas. The scale of transversal divergence is
smaller c0√

|c20−C2
A|

times. Eq.(4.15) incorporates nonlinear, diffraction and damping effects due

to viscosity and thermal conduction on dynamics of perturbation of density in a magnetosound
wave. It resembles the KZK equation with still unavailable analytical solutions [2, 19, 26] but
with shorter diffraction length and possible unusual scenario of diffraction.

Sections 4,5 represent the main results of this study. They consider dynamics and non-linear
thermal self-focusing of initially focused (or defocused) weakly divergent magnetosonic beams in
thermoviscous plasma. Eq.(4.21) describes magnitude of perturbation of density in the focused
beam with account for unusual diffraction if nonlinear distortion of the magnetosonic pertur-
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bations is weak. Sec.5 considers stationary thermal self-action of initially focused or defocused
Gaussian periodic beams. The thermal self-action is modeled by Eq.(5.31) which couples to
Eq.(5.29) by means of a force F (Eq.(5.30)). Magnitude of perturbation of density in the
magnetosonic Gaussian beam satisfying the boundary condition (4.20) is determined by (5.34)
which considers unusual diffraction as well. The quasi-linear approach does not lead to the
broadening of frequency spectrum and allows to consider the quasi-harmonic wave propagation,
hence the nonlinearity goes into play only in coupling of the entropy and magnetosonic modes.
The dynamics is determined by four parameters, ν (Eq.(5.35)), zd/ztv (Eqs(3.10),(4.19)), rtv
(Eq.(5.32)) and δ (Eq.(4.20)). In the course of self-focusing, thermal and viscous damping
coefficients contribute individually by means of rtv. The unusual thermal self-action leads to
growth of a beam’s magnitude at the axis and resembles an additional focusing of a beam
which takes place in a medium with negative temperature coefficient (∂c0/∂T )p (majority of
liquids). The nonlinear effects have impact on a position of a focal point which moves towards a
transducer. This occurs because the thermal lens becomes stronger in the course of the heating
of a medium. Damping of a medium also shifts the focal point towards transducer and makes
it less pronounced or prevents its formation. As for nonlinear thermal self-action caused by
the Newtonian beams with discontinuities, the peak pressure at the axis decreases due to the
nonlinear absorption [25]. The nonlinear distortion of a wave front is of a key importance in
this case.

The numerical results of this study confirm theoretical conclusions. They are conducted in
Mathematica. Numerical evaluations are founded on Eq.(5.31) and thus rely on weak nonlinear
effects and do not concern waves with discontinuities. In an unusual case of diffraction, a beam
is additionally focused which is not specific in gases. The upper series in Fig.2 reveal possibility
for a pronounced focus to appear in the case of unusual propagation while it is absent in the
usual cases due to damping despite the waveform is focused initially (positive δ is responsible
for the initial focusing of a beam). The last four illustrations in Fig.2 show the case of a beam
defocused initially (δ < 0). An additional focusing in unusual cases is evident. Summarizing, a
wide variety of linear and nonlinear behavior of perturbations in a beam rely on the type of di-
vergence, usual or unusual. The results can have practical application and provide information
about profile of perturbations for any set of parameters. The character of perturbations prop-
agation in a beam may indicate the equilibrium parameters of plasma, damping coefficients,
initial radius of a beam’s front curvature and the characteristic frequency of perturbations in
observations, also remote.
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