Received: 26 March 2023

Revised: 23 August 2023

W) Check for updates

Accepted: 14 October 2023

DOI: 10.1002/jbm.b.35342

REVIEW ARTICLE

Society For
Biomaterials

Electrophoretically deposited titanium and its alloys in
biomedical engineering: Recent progress and remaining

challenges

Balbina Makurat-Kasprolewicz

Faculty of Mechanical Engineering and Ship
Technology, Gdansk University of Technology,
Gdansk, Poland

Correspondence

Balbina Makurat-Kasprolewicz, Gdansk
University of Technology, Faculty of
Mechanical Engineering and Ship Technology,
11/12 Narutowicza St., 80-233 Gdansk,
Poland.

Email: balbina.makurat-kasprolewicz@pg.
edu.pl

| Agnieszka Ossowska

Abstract

Over the past decade, titanium implants have gained popularity as the number of per-
formed implantation operations has significantly increased. There are a number of
methods for modifying the surface of biomaterials, which are aimed at extending the
life of titanium implants. The developments in this field in recent years have required
a comprehensive discussion of all the properties of electrophoretically deposited
coatings on titanium and its alloys, taking into account their bioactivity. The develop-
ment that took place in this field in recent years required a comprehensive discussion
of all the properties of coatings electrophoretically deposited on titanium and its
alloys, with particular emphasis on their bioactivity. Herein, we attempt to assess the
influence of the electrophoretic deposition (EPD) process parameters on these coat-
ings' biological and mechanical properties. Particular attention has been addressed to
the in-vitro and in-vivo studies conducted hitherto. We have seen an increased inter-
est in using titanium alloys without the addition of toxic compounds and gaps in the
EPD field such as the uncommon endeavors to develop a “Design of experiments”
approach as well as the lack of assessment of the surface free energy and detailed
topography of electrophoretically deposited coatings. The exact correlation of coat-
ing properties with EPD process parameters still seems explicitly not understood,
necessitating more future investigations. Ipso facto, the exact mechanism of particle

agglomeration and Hamaker's law need to be fathomable.
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1 | INTRODUCTION

Among the common problems of civilization, there are diseases of the
musculoskeletal system, the number of which increases due to a traf-
fic collision, a sedentary lifestyle and an aging society.»? Therefore,
scientists focus on finding such biomaterials that would enable long-
term replacement of destroyed or damaged bone.® Such material must
be characterized by high biocompatibility, corrosion resistance in the
human body and suitable biomechanical properties.'

Titanium and its alloys are among the metallic materials and are
widely used in implantology.® This is not only due to the fact that the
chemical compositions of these materials are very diverse, which
allows for their appropriate selection in terms of possible allergic reac-
tions. Crucial are their biocompatibility, biomechanical properties and
good corrosion resistance (Table 1), which is a consequence of the
formation of a stable passive layer on the titanium surface.>*° An
important parameter of titanium endoprostheses is Young's modulus
(Table 1), which should be as close as possible to Young's modulus of
the cortical part of the replaced bone.l° Otherwise, stress shielding
may occur, which contributes to the loosening of the implant and ulti-
mately can result in reoperations, which often end in failure.>*° Now-
adays, titanium and its alloys are used during total joint replacement
surgery or as fracture fixation elements.’* Commercially pure titanium
(CP-Ti), depending on the grade, is mainly used as a partial resurfacing
of the knee or hip joint (especially as a component of the acetabulum),
as well as for (ii) craniofacial reconstruction and (iii) spinal interbody
fusion.1°*® Further, titanium alloys are used for hip and knee arthro-
plasty, especially as a tibial or femoral component, and also in fracture
fixation in a humeral part.©

Despite the variety of good properties of titanium materials, there
are still concerns with their adequate stability and corrosion resistance
in the environment of body fluids, especially in the long-term
aspect.1*"1¢ The release of corrosion products can occasion metallo-
sis, which consequently may lead to the loosening of the implant or

14,15

deterioration of the implant properties. In addition, some

TABLE 1
biomedical field.>~?
Elastic Yield Tensile
modulus strength strength
Material (GPa) (MPa) (MPa)
CP-Ti (Grade 1-4) 105 170-480° 240-550?
Ti-6Al-4V 112 850-900 895-930
Ti-6Al-7Nb 110 921 900-1050
Ti-13Nb-13Zr 79-84 900 973-1037
Ti-35Nb-5Ta-7Zr 55-66 793 596
Bone 4-40 - 90-140

*Varies according to Grade.
BIn NaCl (3.5 wt%) solution.
“In Ringer's solution.

endoprostheses are rejected by the recipient at an early postoperative
stage due to the occurrence of an allergic reaction.! Moreover, the
implant should possess adequate microstructure which accelerates
the formation of a permanent bond at the tissue-implant interface.’
Due to the above, methods of surface modification of metallic
implants are being sought that would allow to fulfill these require-
ments, especially in the long-term aspect. The following methods that
have already been used can be distinguished: plasma thermal
spraying,'® ion implantation,'? plasma spraying?® magnetron
sputtering,?  physical vapor deposition,?>  chemical  vapor
deposition,?® sol-gel,2* micro-arc oxidation (MAO),2°~28 anodic oxida-
tion (AO)**=32 and electrophoretic deposition (EPD).23373¢ The last
three abovementioned methods belong to the group of electrochemi-
cal methods, which are characterized by simplicity and a relatively low
price compared to the rest of the mentioned methods. In addition,
they facilitate the formation of coatings with disparate morphology,
roughness, crystallinity, chemical composition, wettability as well as
corrosion and mechanical properties on materials of various shapes
and the equipment is inexpensive.®” All electrochemical methods are
characterized by the ability to change the following process parame-
ters: voltage, time and concentration, pH, temperature and composi-
tion of the electrolyte/suspension.”*®=** However, amid these
methods, the EPD has more variables that can be modified. This is pri-
marily due to the fact that in addition to the process parameters, the
parameters related to the suspension can also be altered. Such diver-
sity in the possibility of changing parameters gives scientists a wide
range of surface modifications, what the authors have shown in this
paper. On the other hand, there are some reports where AO and
MAO were performed in suspension and thus incorporation, for
example hydroxyapatite (HA), into titanium coatings was possible.*>4¢
However, these are few reports and the diversity of incorporated
compounds is much more modest than that of the EPD. In addition,
EPD is characterized by a short process time and high deposition rate
compared to other electrochemical methods (Figure 1). Additionally,

AO requires in-situ detection techniques to track the course of

Properties of selected titanium and its alloys compared to properties of human bone and their exemplary application in the

Corrosion The influence of elements on the

potential (V) human body

-03t00.2° -

—0.4° V and Al are toxic and can cause Alzheimer's
disease, osteomalacia or neuropathy

0.3¢ Al is toxic, Nb promotes apatite-formation

0.2° Nb promotes apatite-formation
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surface reactions, while MAO is more expensive, not well-
commercialized and the design of coating properties is more
difficult.*®

EPD is a bridge between two processes: deposition and electro-
phoresis.*’ The applied electric field enables the deposition of thick
films or bulk components.”® To date, the following chemical com-
pounds have been deposited on titanium and its alloys: chitosan
(CS),°1758 HA 525456 polytetrafluoroethylene (PTFE),?” polyether-
etherketone (PEEK),>*>7-58 molybdenum disulfide nanosheets,>*
multi-walled carbon nanotubes,” sodium alginate,° bioactive glass
(BAG),°%! copper nanoparticles,® iron oxide>® graphene oxide

=—_

FIGURE 1 Advantages and
disadvantages of the electrophoretic
deposition method in respect of
biomedical applications.>®***” Designed
and illustrated by the authors of

this work.
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(GO),%2 silver nanoparticles,®® kaolinite nanoclay (Kao),%* and so forth.
Due to the growing number of papers concerning surface
modification with the EPD method, it is essential to systematize the
achievements and shortcomings so far. In recent years, there have
been released review papers that concerned only specific chemical
compounds used during the EPD process, for example chitosan-based
composite coatings,®® polymers and proteins,®* metal oxides,®> carbon
nanotubes®® or carbon nanomaterials®” and their content was not
entirely focused on the biological aspects of coatings. This literature
review focuses on a wide range of compounds used for EPD only in
respect of biomedical applications. All properties of the biomaterial
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coatings were discussed concerning their bioactivity. Particular
emphasis was placed on the achievements in the immersion tests, in-
vitro cell culture assays and in-vivo assays, which performance is a first
step to the potential use of coated materials in clinical practice. In
addition, to fulfill the needs of the reader's group of this work (implan-
tologists, surgeons as well as biomedical, material and mechanical
engineers), future outlooks and challenges were discussed.

The methodology of preparing this article was based on several
components: topic (titanium and its alloys, electrophoretic deposition),
date of publication (chiefly the last 5 years), addresses (scientists
engage in similar topics in their research, physicians—implantologists
and surgeons), published research results (influence of process param-
eters on the properties of coatings, notably in terms of their influence

on bioactivity).

2 | SHORT DELINEATION OF EPD

EPD facilitates the deposition of coatings on the surface of an object.
During this process, particles from a dispersion system are deposited
on the surface of the processed material under the influence of an
applied electric field (Figure 2).%° Currently, this method is gaining great
popularity in academic and industrial sectors because it has many
unique features (Figure 1).38°9677? particularly important in the devel-
opment of this process is the fact that the process can be carried out
on materials of any shape (flat, cylindrical, etc.) and size with minimal
changes in the construction and position of the electrode as well as the
construction of workstation, providing a layer with a superior homoge-
neity of the microstructure.*’ Therefore, laboratory research conducted
with small samples (usually round with a diameter of 10-20 mm or
square with a side length of 10-15 mm) can often be successfully
scaled for industrial usage, including biomedical fields.®®

The possibility of changing the process parameters in the case of

EPD is much wider than in the case of other electrochemical methods.

Anodic electrophoretic deposition

This is mainly due to the fact that the parameters related to the sus-
pension can also be altered.>® The parameters incident to the suspen-
sion are particle size, as well as conductivity, mobility and zeta
potential of suspension.”®” The particle size and shape that are used
in EPD affect the mobility of the particles in the electrolyte, the zeta
potential of the suspension, and the thickness of the deposited coat-
ing.® Accordingly, they must be of optimal size, shape and weight to
remain suspended during the process and ultimately to be completely
and uniformly dispersed over the coating.®””* Thereupon, they must
have optimal properties in order to be able to remain in suspension
during the process. The optimal conductivity of the suspension facili-
tates the mobility of the particles. Highly conductive suspension
causes weak particle movement. If the suspension is not very conduc-
tive, the particles become electronically charged and become unsta-
ble. The optimal conductivity value is different for each system. The
conductivity of the suspension can be modified by changing the pro-
cess parameters: as the temperature and/or concentration of the dis-
persant decrease, the conductivity of the suspension decreases.®” The
zeta potential is the potential between the dispersant and the layer of
fluid that is attached to the surface of a particle. It enables the stabil-
ity of colloidal systems to be determined and is a key parameter in
EPD.%® The optimal zeta potential influences the interaction between
the individual particles of the suspension, and thus the quality of the
coatings.’®”2 Zeta potential values usually range from —100 mV to
4100 mV.”®

The parameters related to the process are deposition time,
applied voltage, conductivity of substrate and temperature.®””* Dura-
tion mainly affects the thickness of the deposited coatings. The char-
acteristic of the deposition rate is the time dependence of the
deposition rate. It rises linearly at the start of the process and then
lowers over time until it reaches a plateau at some point. This happens
when the coating is thick enough to break the conductivity.°®”* The
applied electrical voltage also affects the coating, and in general,

the greater the voltage, the thicker the coating. However, optimal

oo [T @
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Power supply

FIGURE 2  Schematic illustration of
anodic and cathodic electrophoretic
deposition processes. Anode
electrophoretic deposition occurs when
negatively charged particles are deposited
on the positive electrode. Cathodic
electrophoretic deposition occurs when
positively charged particles are deposited
on a negative electrode. Appropriate
modification of the surface charge on the
particles enables the selection of either of
the two deposition modes.
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voltage values should be used. This is due to the fact that too low a
voltage value does not cause the phenomenon of electrophoresis.
Too high voltage value leads to turbulence, which resultantly has a
negative effect on the quality of the coating.®®%7%72 The quality of
the coating also depends on the conductivity of the substrate. A low
conductivity value results in a heterogeneous coating and the deposi-
tion process is very long.® Furthermore, the temperature during the
process must be stabilized, because its increase reduces the resistance
of the suspension, which consequently affects the velocity of ion
migration and reproducibility of the process. It is stated that the ions'
mobility increases by about 2.4% for each degree of temperature
increase.”* Therefore, the temperature during the process is usually
kept at room temperature (see Section 3 herein), which can be

achieved by using a stirring and a cooling/heating system.

3 | PROPERTIES OF COATINGS—ANALYSIS
OF ACHIEVEMENTS AND SHORTCOMINGS
3.1 | Morphology

The morphology of the implant should reflect the morphology of the
human bone, especially porosity, as it can promote cell adhesion and
osseointegration.”>””” The quality and morphology of the obtained
coating and its final parameters depend on many variables.®® The effect
of different voltage values and deposition time on the quality of the
obtained coatings on CP-Ti (Table 2) was investigated by Mehana

Usmaniya et al.*

Optimal deposition conditions were obtained at a
voltage of 50V and a time of 5 min because under these conditions
the coatings characterized uniform morphology and had no cracks. Het-
erogeneous coatings were obtained at a lower deposition voltage, while
hydrogen evolution was announced at a higher voltage. Apart from the
influence of time and voltage, the influence of particles and their sizes
on the quality of the deposited coatings can be measured. This issue
was raised by Jugowiec et al.>* where the deposition of sol-gel BAG
(0.2-4.5 um) and chitosan coating on Ti-13Nb-13Zr was practiced. The
most homogeneous and continuous composite coatings were obtained
at a constant voltage of 10 V for 4 min (Figure 2). Diameter of the sol-
gel BAG particles in the coatings ranged from 660 nm to 11.3 um,
which proves that the sol-gel glass particles agglomerate during EPD.
Coatings obtained from bioglass (BG) powder (1.6-9.8 um) and CS
were the most homogeneous and continuous at a constant voltage of
6V for 6 min (Figure 3). The diameter of the BG powder particles in
the coatings ranged from 320 nm to 16.5 um, which confirms the fact
that bioglass powder particles agglomerate during EPD. This is crucial
because it determines whether thick films or bulk components are
obtained on the surface,®® which defines the surface morphology.
Moreover, in all cases, the increase in electrical voltage prompted het-
erogeneity, what could have been occasioned by the hydrogen evolu-
tion.°T More examples of the influence of EPD conditions on the
morphology of the coatings are presented in Table 2.

The processes carried out after EPD also influence the micro-

structure of the coating, among which can be mentioned initial

Y sk WILEY-L__®

t’® and target thermal treatment.>® Incorrectly car-

thermal treatmen
ried out thermal treatment (the application of too high temperature
or too fast process) can cause cracks in the coating.®® An accurately
conducted process improves the homogeneity of coating.”” Adhe-
sion and migration of cells, as well as the formation of an appropri-
ate bond at the tissue-implant interface, depend on the surface
morphology, primarily on its porosity.”>”® The optimal pore size,
which has an affirmative effect on the bioactivity of coatings, is
200-600 um.”? Optimizing the surface morphology during the EPD
process is elaborated because the particles can agglomerate.’%* So
far, the exact mechanism of particle agglomeration is under consid-
eration. It is believed that the double-layer distortion model®® suffi-
ciently describes this phenomenon, but researchers should focus on
understanding the precise mechanism. Furthermore, since the mor-
phology of the implant surface has a vast impact on its bioactivity in
the human body, it is crucial to modify its surface using respective
process parameters. The authors noted that few publications focus
on the accurate adjustment of morphology to biomedical require-
ments without the use of additional post-treatments. We believe
that the application of other technology during the EPD process,
such as ultrasound treatment, would facilitate obtaining more
homogeneous layers. Ultrasound is a widely used auxiliary technol-
ogy that has already been applied during electroless plating or elec-
trochemical plating. As a result, coatings with increased
homogeneity were obtained.®! The use of such treatment during
EPD has been reported sporadically,®? and it seems to have a partic-
ular purpose in the formation of layers on biomaterials, where

homogeneity is essential.

3.2 | Thickness

The appropriate coating thickness for implants has not been deter-
mined.82 However, it is substantial that the coating does not delami-
nate or crack and simultaneously guarantees congenial corrosion
protection.®384 EPD exhibits an increase in the thickness of the coat-
ing (to a certain value what was explained in Chapter 2 herein) with
increasing voltage and duration.®32> The thickness of the coating is
also influenced the particle content of the suspension. In the case of
depositing the nanoHA coating on Ti-13Zr-13Nb, it was noticed that
an increase in the nanoHA powder content in the suspension gave
rise to an increase in the thickness of the coating.> This is probably
because a larger amount of particles can cause the intensification of
the electrochemical process (the coating is filled with particles), and
this occasions an increase in the thickness of the coating.®> The size
of the particles in the suspension also affects the thickness of the
coating, however, this parameter is not linear what was described by
Fajri et al.>> Natural HA of various sizes (25, 63, 125 pm) was depos-
ited on Ti-29Nb-13Ta-4.6Zr. For these sizes, the following thick-
nesses were obtained: 121.27, 163.57 and 63.80 um, respectively.
The addition of nanoCu particles to nanoHA powder changes this vol-
atility. As the diameter of the nanoCu particles increases, a decrease

d.34

in the thickness of the coating is observe The differences could
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FIGURE 3 Microstructure of the composite coating with BG powder and chitosan deposited at 6 V for 6 min (A) and composite coating with
sol-gel BAG and chitosan deposited at 10 V for 4 min (B) on the Ti-13Nb-13Zr. More specifics attributable to the morphology are detailed in
Table 2. Reprinted from,>* with permission from Elsevier (license 5500240381842).

occasion due to the parameters of the particles, that is their chemical
composition, mobility or zeta potential. #%:°%>%
Electrophoretically deposited coatings and their thickness are often

nonuniform>1:568¢

as the particles during the process can agglomer-
ate.>* As mentioned above, the better recognition of the mechanism of
particle agglomeration and usage of ultrasonic technology could enable
an increase in the layers' homogeneity and thus make the thickness of
the layers obtained during the EPD process more predictable as well as
the process even more repeatable. It was noted that the use of ultra-
sound during other electrochemical processes enhances the mass trans-
fer process and consequently increases the thickness of the
coatings.¥®” In terms of the above arguments and the fact that the
EPD process is characterized by a high deposition rate, the simulta-
neous application of these two technologies would further reduce the
process time. Nevertheless, so far adjustment of the parameters and
application of the appropriate post-treatment can enable obtaining
coatings that will promote the formation of a strong bond between the
tissue-implant interface. We would like to draw attention to the lack of
sufficient research on the correlation of the mathematical model for
the kinetics of the EPD process known as Hamaker's law with the
results obtained in experiments. The law suggested by Hamaker indi-
cates that the amount of material deposited over time during the pro-
cess is proportional to (i) the electrophoretic mobility of the particles,
(i) the electric field strength, (iii) the electrode surface area and (iv) the
mass concentration of particles in suspension.®® This law is a relatively

acceptable tool for EPD process design, especially at low process

voltages, and is rarely used in the literature.*”%? The application of the
law at high process voltages is associated with deviations, due to
changes in dispersion properties.®® Therefore, a detailed understanding
of aspects of the deposition mechanism is required, which would
enable the amelioration of Hamaker's law, facilitating its application

within a broader framework of process parameters.

3.3 | Chemical composition and crystallinity

The chemical composition and crystallinity of the coating are other
crucial properties that influence the biological features of the coating.
The incorporation of appropriate chemical compounds into the coat-
ing is a critical problem because it can positively affect the corrosion
and tribological properties of the implant, as well as improve its bioac-
tivity and antimicrobial properties.”®~?2 EPD enables the deposition of
coatings having a chemical composition similar to that of the suspen-
sion. Thanks to this, it is possible to deposit hydroxyapatite (which

)52,55,59,62,71,78,94

induces implant-tissue bonding particles with specific

properties, for example bactericidal (copper® or silver nanoparticles®®

and another as C5°18¢

which is bioactive and germicidal or polymers
(e.g., PEEK as well as PTFE®?) which can improve the mechanical and
tribological properties. The formation of composite coatings is also
increasingly ubiquitous.®®° The Ti-13Zr-13Nb was used as a sub-
strate by Jugowiec et al.°! (Table 1). Analysis of electrophoretically

deposited coatings corroborated the presence of an amorphous CS
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phase, amorphous glass phases and crystalline phase of HA, as well as
the inherence of Si, O, Ca (about 6 at%) and P (about 5 at%). The pres-
ence of calcium and phosphorus in both coatings proceeds from the
fact that HA has been deposited on the titanium substrate (the chemi-
cal composition of HA includes Ca and P).”® The positive aspect was
the detection of amorphous and crystal phases of HA. In implantology,
the presence of crystalline phases is extremely important, as they sig-
nificantly favor osseointegration (compared to amorphous phases),
which promotes cell growth at the tissue-implant interface.?®

All things considered, by choosing the congruous environment in
which the EPD process is conducted, it is possible to obtain coatings
with a specific, foreseeable chemical composition.>®¢””? Additionally,
the incorporation of chemical compounds with unique properties can
radically change the properties of the coating. However, despite many
achievements in the field of incorporating a wide variety of additives
into coatings during the EPD process, there are still shortcomings in
the incorporation of electrically neutral compounds. Research focus-
ing on the development of biocompatible and natural dispersants and
charging agents could contribute to overcoming these issues.®*

3.4 | Roughness

Titanium implants are currently the basic material used in the production
of endoprostheses.>*3* Due to the surface roughness (Ra), they can be
divided into three types’® minimal (+ 0.5 um), moderate (1.0-2.0 um)
and rough (>2.0 um). Despite many attempts, the optimal roughness
value of the implant, which would enable enhanced cell proliferation
and differentiation, has not been established.®? Nevertheless, it is
known that the roughness affects the wettability of the surface, which
influences not only osseointegration but also the polarization of macro-
phages, which are responsible for the appearance of the inflammatory
process after implantation surgery.82°7-?8 Rougher implant surfaces (and
thus increased surface development) make greater bone-to-implant con-
tact and therefore achieving optimal surface roughness is one of the
objectives of EPD coating.243>? The roughness of coatings obtained
on titanium and its alloys can be modified by changing the process
parameters.*”” This concern has been discepted by Bartmarski et al.*
where for coatings obtained at low concentrations of nanoHA powder
in a suspension (0.1 and 0.2 g), the roughness of the coatings decreased
with increasing voltage. In the case of a higher concentration of nanoHA
(0.5 g) in the suspension, an increase in roughness with increasing volt-
age was observed. This is because at lower particle concentrations,
fewer agglomerates are present on the surface. For all groups of
nanoHA coatings, their roughness was higher than that of the uncoated
sample Ti-13Zr-13Nb, that could have a positive effect on the osseoin-
tegration of the implant with human tissue.>>>® Other observations
were reported by Askari et al.”* where the suspensions of 0.6 g L™!
iodine and 1.2 g HA particles added into 60 mL of isopropanol-acetone
with a ratio of 50/50 were used. The surface roughness of the coating
was minimal (as opposed to uncoated CP-Ti and sand-blasted CP-Ti.

d49,50

This may be due to the size of the particles use which could occa-

sion the formation of a comparatively uniform coating.

Y sk WILEY-L2

In the field of biomedical engineering, optimal roughness values
are indiscriminately sought which would contribute to promoting the
formation of a permanent bond at the tissue-implant interface and
minimize the risk of the formation of a fibrous layer after implanta-
tion.”” For example, Cai et al.'°° observed that the roughness of the
titanium surface did not significantly affect the absorption of bovine
serum albumin or human plasma fibrinogen. In contrast, some studies
state that roughness affects the amount of adsorbed proteins.2°!
However, we believe that considering only the arithmetic average of
the 3D roughness (S,) is insufficient to assess the impact of the sur-
face topography on the absorption of proteins, microorganisms'
behavior, and so forth. Many scientific publications that are not
focused on biomaterials provide a number of other statistical parame-
ters that describe the surface according to 1SO 25178 standards.1%?
Implementation of some of them in the study of biomaterials may
prove crucial for the correct assessment of the influence of surface
topography on osseointegration. For example, the parameters Sy,
(mean hill area), Sy, (mean dale area), Sy, (mean hill volume) and Sq,
(mean dale volume) could help to accurately assess the topography. In
addition, the functional parameters obtained from the areal material
ratio curve, that is Sy, (peak material portion) and S, (valley material
portion), are conventionally analyzed to assess the wear-resistance
and lubricant retention, respectively. We believe that the study of
these parameters in the case of biomaterials would help to better
assess abrasion resistance (which is especially important in the case of
hip and knee joint endoprostheses), and also enables scrutiny of the
quality and quantity of “pockets”, which in the case of biomaterials
can be considered as convenient places for cell proliferation. Further-
more, the need for the study of surface texture directions should be
stressed. This is a study that is standardly performed during topogra-
phy analysis and is not carried out in the case of biomaterials.'®?
Nonetheless, it is required that the layer covering implants will be

homogeneous, that is that the topography exhibits isotropy.

3.5 | Mechanical and adhesion properties

Biomechanical and adhesive properties of the implant answer for its
long-term lifespan in the human body. Inaptly matched mechanical
properties, such as inadequate Young's modulus can cause stress

shielding,-*°

whereas the good adhesive properties of the coating pre-
vent the implant from delaminating or cracking.8%#* Decrepitude of the
coating may lead to corrosion, which consequently may cause metallosis
and subsequent loosening of the implant.2**> The formation of coatings
(both uniform as well as composite and/or hybrid) on durable metal sub-
strates is a way to simultaneously achieve optimal biomechanical and
adhesion advantages of the coatings.”® Currently, a fairly common
method of assessing the quality of a coating is nanoindentation, thanks
to which both the mechanical properties of the coating can be measured
and nanoscratch tests can be performed. Bartmanski et al.>3 specialize
in these matters. In their work, they deposited the coating on Ti-13Zr-
13Nb at 15 and 30 V (Table 1), then performed a thermal treatment at
800°C for 120 min and finally conducted the above-mentioned studies.
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Obtained results are listed in Table 3. It can be seen that the mechanical
properties decreased for the applied higher voltage, while the adhesion
properties increased for higher voltage. This was also confirmed by
Jugowiec et al.>? Such dependencies probably result from the properties
of used HA and the formation of a porous structure on the surface of
the titanium alloy. Furthermore, the adhesive properties depend on the
value of hardness and Young's modulus.X®® A similar relationship was
noticed in the case of the extension of the deposition time for the
three-stage treatment (anodizing, EPD, heat treatment)—the extension
of the time caused a reduction of mechanical properties and, simulta-
neously, an improvement in adhesion properties. Extending the duration
in electrochemical methods results in a thicker layer, which may occa-
sion better adhesive properties.®*8> Albeit the tests carried out with the
same parameters and the same suspension composition for the two-
stage treatment (EPD, thermal treatment) showed that the extension of
the treatment time reduces the mechanical and adhesion properties.3
There are attempts to use EPD along with other surface treatment
methods, such as anodizing, as they can have a positive effect on the
adhesive properties of the coatings. However, in that case, the proper-
ties of the coating change with distance from the substrate and this
problem will be presumably further explored.’°® In the case of EPD, a
heat treatment is usually necessary in order to obtain satisfactory prop-
erties of the coating. Its usage changes Young's modulus, hardness, criti-
cal friction, critical load, morphology and crystallinity of the coating.2®*
Obtaining optimal properties is very complicated and it is believed
that Young's modulus is a crucial factor in transferring the appropriate
mechanical stress from the implant to the surrounding bone. The criti-
cal load associated with the adhesion limit should also be increased,
as it is essential in orthopedic surgery.>”’%1%% However, the main
problem in assessing the adhesion of layers on titanium and its alloys
is the lack of manifest international standards.’®> Frequently used
scratch tests should be considered only as helpful preliminary exami-
nation, as they do not reflect the processes occurring at the interface
of implants (especially considering endoprosthesis). We agree with
the statement that it is requisite to specify methods or procedures for
biomaterials that would facilitate the determination of coated implant
biotribology (especially in wet contact—which occurs when the

implant is placed in the environment of human body fluid).1%°

3.6 | Corrosion resistance

Titanium and its alloys, thanks to their self-passivation, are refractory

to the corrosive effects of many natural environments.2%®

TABLE 3

Unfortunately, their corrosion resistance significantly deteriorates in
the vicious environment of human body fluids, which can lead to
metallosis and, consequently, loosening of the implant.*%” The dia-
gram of the corrosion mechanism of titanium materials in the environ-
ment of human body fluids is presented in Figure 4. Corrosion
resistance of a biomaterial can be degraded or improved after the
treatment's application but the objective of the scientists is to amelio-
rate it. The most widespread method used to assess the corrosion
resistance of materials is potentiodynamic polarization measurements
performed in solutions simulating the environment of body fluids:
SBF, Hank's, 3. 5% NaCl, Ringer's, artificial saliva or 0. 6 M NaCl.*®
Based on this study, it is possible to determine the corrosion current
density (jcor), the corrosion potential (Ec,,) and the polarization resis-
tance (Rpo)) of samples. These parameters are obtained from the inter-
action of the Tafel region of a polarization curve.'°81%? Furthermore,
the corrosion rate (CR) and protection efficiency (PE) of samples can
be determined based on calculated results 48110111

Pawlowski et al.*® studied the effect of various surface treat-
ments on the corrosion resistance of titanium and its alloys. In the
case of electrophoretic deposition on Ti-13Zr-13Nb, an improvement
in corrosion resistance was observed for the CNTs layer with TiO,
layer (dual-step procedure; the amount of TiO, nanoparticles in sus-
pension was 0.15 g and the voltage equaled 50 V). It was observed
that the jcorr decreased from 4.22 + 0.2 nA/cm? for uncoated titanium
alloy to 1.4 + 0.3 nA/cm? for coated titanium alloy. However, increas-
ing the voltage (from 50 to 60 V) as well as increasing the amount of
TiO5, in the suspension (from 0.15 to 0.30 g) significantly deteriorated
the corrosion resistance of the material. Another study disclosed that
the deposition of hydroxyapatite coatings with nanoHA on Ti-13Zr-
13Nb acquires lower corrosion resistance, nonetheless, the addition
of nanosilver particles to nanoHA coating reduces the corrosion cur-
rent density.>® Jugowiec et al.>? revealed that the nc-HA-s (ethanol-
based colloidal solution of HA)/CS coating improved the corrosion
resistance of the Ti-13Nb-13Zr in Ringer's solution at a temperature
of 37°C. The properties of hydroxyapatite-based coatings vary as
their thickness and porosity affect the corrosion resistance. In porous
coatings, the presence of corrosion channels is possible, which may
contribute to the formation of local corrosion. The addition of suitable
particles, for example nanosilver, causes the pores to “block” and thus
reduces the odds of the appearance of corrosive channels.**''2 Com-
posite coatings are increasingly subjected to tests. Composite sol-gel
glass/CS coating on near-p Ti-13Nb-13Zr has been assessed in an
immersion test in Ringer's solution at a temperature of 37°C by other

researchers.’! The passive current density was reduced from

Mechanical and adhesion properties of coatings deposited in suspension consisting of 0.1 g of HA nanopowder in 100 mL of

ethanol and then performed a thermal treatment. Reprinted from,%3 with permission from Elsevier (license 5500241455192).

Mechanical Properties (nanoindentation)

Adhesion Properties (nanoscratch test)

EPD Voltage (V) Hardness (GPa)
15 0.2245 + 0.036 41.10£8.91
30 0.0661 + 0.008 19.52 +1.29

Young's modulus (GPa)

Critical Friction (mN) Critical load (mN)
35.83+12.75

66.43 + 14.09

11.53 +2.23
16.03 + 1.41
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FIGURE 4 The schematic mechanism of electrophoretically deposited titanium material corrosion in the environment of human body fluids.
Stage 1: the coated implant is in contact with biological fluids which leads to the adhesion of bacteria on the surface and the diffusion of
corrosive agents of human body fluids through the layer. Stage 2: first of all, the formation of biofilm, and thus bacterial metabolism (discharge of
lactic acid, formic acid, hydrogen peroxide) fosters the acidification of the microenvironment around the biomaterial. Other contributors to this
process are infections, diet, and inflammation. Localized pitting corrosion is formed which leads to the exposure of the titanium surface. Stage 3:
local microgalvanic corrosion occurs, where the cathode is the implant surface covered with biofilm, and the anode is exposed titanium material.
The reaction of the material with the corrosive media causes the release and accumulation of corrosion products, forming the corrosion product

layer.

20 pAcm 2 for the uncoated sample to 9 pA cm~2 and corrosion
potential increased from ~ —0.43 to —0.28 V. Composite coatings
improved the corrosion resistance of the titanium alloy. Mehana
Usmaniya et al.°* scrutinized the corrosion resistance of nanocompo-
site coatings consisting of a mixture of BAG/Kao on CP-Ti in a simu-
lated body fluid. The charge transfer resistance equaled 9 x 10° and
2.8 x 10° Q for the uncoated and the deposited substrate, respec-
tively. Confirmation of better corrosion resistance for coated titanium
was also received in polarization studies (Figure 5). These properties
are probably due to the addition of BAG to the coating, as BAG can
impede corrosion in a biological environment.**® It can be seen from
the above tests that it is possible to improve corrosion properties with
the use of EPD, however, an appropriate selection of parameters and

suspension composition are required.”®114

3.7 | Wettability

Surface wettability is a physicochemical parameter that describes a
biomaterial. The nature of the coating (hydrophilic or hydrophobic),
along with the morphology and surface roughness, have a significant

influence on the adhesion of platelets to the implant surface.®®

Hydrophobic coatings have been shown to resist platelet adhesion.**®
Optimum behavior is obtained with coatings with a medium degree of
hydrophilicity because the adhesion, proliferation and differentiation
of cells to the surface are being watched.!**''” Moreover, bacteria
(including Staphylococcus aureus, which frequently causes orthopedic
infections) often attach to hydrophobic surfaces.**®*%” This is proba-
bly due to the structure of the bacteria—the presence of fimbriae or
pili in its outer envelope. These structures are hydrophobic, so they
readily link up with hydrophobic surfaces.'”*8 Therefore, the fabrica-
tion of a hydrophilic surface can deplete bacterial adhesion and
thereby preclude inflammation from occurring.

Increasing the content of nanoHA in the suspension of EPD
causes a decrease of wettability values.> It was observed by Singh
et al.>® that the contact angle values were significantly decreased for
each composite coating (with iron oxide Fe;04, HA and CS) as com-
pared to the Ti-13Nb-13Zr. The lowering of the contact angle in the
case of coatings with CS or HA is due to their hydrophilic nature.*?°
Generally, the wettability of the surface of the coatings with HA on
the Ti-13Zr-13Nb decreases with increasing voltage®® and with
lengthening the deposition time.2® This may be due to the surface
morphology of the considered coatings. Often, increasing the voltage

and the time of process result in non-uniform coatings with greater
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FIGURE 5 Polarization curves for the uncoated CP-Ti and

electrophoretically deposited CP-Ti samples in different suspensions:
T1-100% BAG, T2-80:20 BAG:Kao, T3-60:40 BAG:Kao and T4-
50:50 BAG:Kao. Samples with coatings exhibited better corrosion
parameters in SBF electrolyte (reduced corrosion current density
compared to the uncoated substrate: 7.9 x 1077, 4.4 x 1077,

33 x1077,1.7 x 1077 and 1.5 x 10”7 A/cm? for CP-Ti, T1, T2, T3
and T4 sample, respectively; increased corrosion potential compared
to the uncoated substrate: —300, 50, 70, 80 and 110 mV for CP-Ti,
T1, T2, T3 and T4 sample, respectively). Reprinted from,°* with
permission from Elsevier (license 5500240661009).

roughness, and with increasing roughness, the hydrophilic nature of
the coating is enhanced.?* This may provide better protein adsorp-
tion and cell adhesion.*?? Which is conducive to the formation of a
stronger bond between the implant surface and the bone tissue.'? In
addition, we would like to draw attention to another feature of the
coatings, which is determined on the basis of the contact angle mea-
surement and computer modeling—surface free energy. Its study is
important in biomedical applications because it determines the inter-
action between the implant and human body fluids, thereby affecting
the behavior of proteins and the differentiation of osteoblasts.®” In
the case of EPD processes conducted on titanium and its alloys, there
is a gap in this area that needs to be filled with the object of a better

understanding of the layers' bioactivity.

3.8 | Apatite formation—immersion tests

The study of the possibility of forming apatite on the deposited sub-
strate is one of the tests that enable assessing the bioactivity of the
coating in an aggressive environment such as simulated body fluid
(SBF) or Hank's solution, which are designed to reflect the composi-
tion of human blood, reproducing the aggressive environment of
human body fluids.224712¢ |n order to properly assess biological activ-
ity, samples are placed in a reasonable environment for a specified
period of time (e.g., 7 days or 14 days), and then subjected to appro-
priate tests to determine the morphology and chemical composition

of the formed material on the samples. These studies are helpful in
predicting in-vivo bioactivity.12412”

Kwok et al.*?” studied apatite formation after placing a sample in
Hank's solution at 37°C for 4 weeks. All coatings on Ti-6Al-4 V coated
with HA showed high bioactivity, which was confirmed by XRD tests
(the intensity of Ca and P diffraction reflections increased significantly
after the immersion test) what can be seen in Figure 6. The uncoated
sample of titanium alloy and the uncoated sample of titanium alloy
subjected to heat treatment did not show any bioactivity. Similar

results were obtained when other scientists?®

placed graphene oxide
reinforced CS-HA nanocomposite coatings on CP-Ti in SBF for 5 days
to assess their bioactivity. Coatings deposited with HA were coated
by flake-like apatite aggregates, whereas no particular changes after

assays were noticed on uncoated titanium. Molaei et al.t??

reported
that CS-BG-HA-halloysite nanotubes (HNTs) composite coating on
titanium and stainless steel 316 showed bioactivity, as after immer-
sion in SBF for 14 days, an increase in carbonated hydroxyapatite was
observed. On composite coatings HA-CS-collagen-hexagonal boron
nitride (hBN) on Ti-6Al-4 V after 12 weeks of immersion into the
revised simulated body fluid (r-SBF) at 37°C, globular clusters with
flower-like clusters appeared which were carbonated-apatite struc-

ture. 13

It can be noticed that all coatings that were deposited in sus-
pensions containing HA in their compositions displayed bioactivity. It
is assumed that HA, when placed in blood plasma, is negatively
charged and idiosyncratically attracts Ca?* ions. Then, the positively
charged locations interact with the negatively charged PO~ ions,
thereby causing the formation of bone-like apatite on the surface of
the biomaterial.'®* HA improves corrosion resistance and increases
the osteoconductivity and osteoinductivity of metallic implants.}%?
However, it also exhibits many disadvantages, such as poor mechani-
cal properties or low tensile strength.'*21%% Therefore, coatings are
deposited in suspensions containing HA and chemical compounds that
have a profitable effect on the properties of the coated biomaterial.

In the examples cited above, the following chemical additions can

be distinguished:

e CS—has antimicrobial properties, is biocompatible and non-
toxic”?1**: may have a synergistic effect on the bioactivity of the
coating?®

e BG—is bioactive, however, the addition of dopants may affect their
bioactivity and antibacterial activity'?%14°

e HNTs—are

properties,1#¢14” therefore they can reinforce the coating®*° and

biocompatible and have good mechanical
may occasion enhanced osteogenic cell differentiation#¢

e collagen—is a component of human bones (acts as a matrix for the
crystallization of HA); is biocompatible, bioactive and
biodegradable!3%148

o hBN-—is a biocompatible material that shows thermal stability and

0

has high corrosion resistance’®® can shorten the healing time

and prevent infection*?

Scientists are trying to use a wide range of chemical compounds

that could potentially increase the osseointegration of the implant
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(A) XRD patterns for sintered coatings deposited on Ti substrate in suspension with (a) spherical HA (b) flake-shaped HA

(c) needle-shaped HA and (d) spherical HA and CNTs before and after immersion test in Hank's solution. H—HA, R—rutile. (B) SEM images of
samples deposited in suspension with (a) spherical HA and (b) spherical HA and CNTs after the bioactivity test. Reprinted from,*2” with

permission from Elsevier (license5604710158401).

with human tissue, as well as increase the corrosion resistance of the
material and adjust the mechanical properties. In addition, compounds
with antibacterial properties, such as copper nanoparticles®® are
increasingly used. In Table 4, the selected published data of apatite
formation tests of electrophoretically deposited coating on titanium

and its alloys are specified.

3.9 | |In-vitro cell culture assays

Cell culture assays are performed to determine the physicochemical
properties as well as the cytotoxic and bactericidal activity of the
coating.*®15? Despite the fact that these tests do not facilitate an
inclusive reflection of the conditions prevailing in the human body,
their popularity is constantly growing. The main reason for this is their
relatively low price as well as the celerity and simplicity that allow for
the initial assessment of the reaction of cells with biomaterial 32159152
Such studies are carried out when the mechanical and adhesive prop-
erties as well as the morphology, chemical composition and wettabil-

ity of the coating appear to have promising features in biomedical

applications.2 For this purpose, various cell lines are used, which are
presented in Table 5.

1.5 analyzed the metabolic activity of osteoblast-

Jugowiec et a
like cells MG-63 on composite sol-gel glass-CS coating and composite
BG-CS coatings on Ti-13Nb-13Zr. The viability increased with time,
but no beneficial effect of sol-gel glass and BG particles on cell adhe-
sion and growth was observed. This is mainly due to the fact that the
particles were covered with a thin layer of CS, and unmodified CS did
not have a positive effect on cell adhesion and proliferation.*®* None-
theless, coatings developed in this study were not cytotoxic and can
be considered cytocompatible. HA-titanium-CNTs composite coating
on NiTi was obtained and cell proliferation was studied using MG-63

osteoblast-like cells by Maleki-Ghaleh et al.>’

After 6 days of immer-
sion in the culture medium, the proliferation of MG-63 on the surface
increased more over three times. Promising results were also obtained
for the coatings deposited by Asgari et al.”® on CP-Ti where MTT cell
viability assays were applied to study proliferation on two coatings:
(1) with HA and (2) with HA, aluminium powder and zirconia powder.
The viability after 2 days was ~100% and ~117%, respectively, and

after 4 days ~102% and ~120%, respectively. The addition of zirconia
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TABLE 5 Types of cell lines used for in-vitro assays on
electrophoretically deposited coatings on titanium and its alloy.

Name Abbreviation  References
Human osteosarcoma cells MG-63 128,134~
136,142
Human fetal osteoblast cells hFOB 139,153-156
Osteoblast cells derived from Mus MC3T3-E1 125,157-159
musculus calvaria
Human bone marrow stromal cells hBMSCs CSZIC0

and alumina powders improved the properties of the HA bioactive
coatings because of their proliferative properties.?®? In addition, cell
adhesion and differentiation are also affected by the nature of the
coating (its hydrophilic or hydrophobic nature).*¢%” Table 4 shows
more selected published data of in-vitro cell culture assays of electro-
phoretically deposited coating on titanium and its alloys.

The purpose of surface modification of metallic materials is to
increase their bioactivity, that is to increase cell differentiation, adhe-
sion and proliferation.}*41'” The increase in the number of cells tested
during in-vitro assays implicates the absence of cytotoxicity and a pro-
spective application of the biomaterial in implantology.**%*>* It is crucial
to simultaneously constrain the growth and adhesion of bacteria at the
tissue-implant interface, which depends on the nature of the coating,
roughness and the presence of an electrostatic double layer.118:163.164
Bacteria must overcome energy barriers to be able to attach.1®®

A comprehensive approach to the properties of the biomaterial
coatings is essential when assessing their in-vitro properties but
obtaining positive results may be a contribution to conducting in-vivo

assays on various models. 16167

3.10 | In-vivo assays

In-vivo assays are carried out after obtaining positive results of in-vitro
evaluations.'®®*%” Contemporaneously, in-vivo studies are the last
type of research that must be performed before clinical trials.2¢%%¢7
In-vivo assessments facilitate simulating the environment of the
human body in which the implant is to be placed.2**%81%7 Only coat-
ings with auspicious properties that have been comprehensively
tested in each of the above-discussed aspects (morphology, thickness,
chemical composition, crystallinity, roughness, corrosion resistance,
wettability, mechanical and tribological properties, in-vitro assays) are
submitted to such assays. In-vivo assays on Rattus norvegicus Wistar
rats investigated by Nuswantoro et al.**3
Ti-29Nb-13Ta-4.6Zr promoted osseointegration and exhibited a

higher bond strength (higher removal torque) compared to the

showed that HA coating on

uncoated substrate. Moreover, the presence of HA caused the reduc-
tion of inflammation. The HA layer displayed high osteoblast activity
and chondrocyte formation, whereas uncoated titanium alloy was
covered mainly by granulation tissue. Hydroxyapatite facilitates the
formation of apatite at the implant-tissue interface so it was possible

to obtain promising properties of the biomaterial.*** Another model—

Y ook WILEY- LY

TABLE 6 Statistic of the removal torque values of Ti-6Al-7Nb
biomaterial after different distances of time of implantation in rabbits.
PSZ—Ti-6Al-7Nb deposited in suspension with PSZ, HA—Ti-6Al-7Nb
deposited in suspension with HA, PSZ-HA—Ti-6Al-7Nb deposited in
suspension with PSZ and HA.1*! A higher torque removal value
indicates better bonding at the tissue-implant interface.

Weeks after implantation 2 6 18

Torque values (N cm)

Type of sample Uncoated ~9 ~18 No precise data
PSz ~11 ~22 ~50
HA ~12 ~28 ~55
PSZ-HA ~13 ~29 ~62

Abbreviations: HA, hydroxyapatite; PSZ, partially stabilized zirconia.

adult New Zealand white rabbits were used for in-vivo studies by
Alzubaydi et al.»** Four types of biomaterials were tested (Table 6).
The composite coating exhibited prime osseointegration properties as
the addition of partially stabilized zirconia (PSZ) could change the
morphology and mechanical properties of the coating, which conse-
quently could contribute to better osseointegration of the implant
with the tissue.*¢®1% More selected published data of in-vivo assays
of electrophoretically deposited coating on titanium and its alloys are
listed in Table 3.

4 | FINAL REMARKS AND FUTURE
OUTLOOKS

This paper reviews the latest advances in electrophoretically depos-
ited coatings on titanium and its alloys. The available literature has
been analyzed in detail, highlighting the key properties of the coat-
ing and the parameters of the EPD process in respect of the bio-
activity of the coating. Despite the many advantages of EPD
coatings on titanium and its alloys, challenges remain that should
be addressed for further improvement. In the present section, we
summarize the final remarks, challenges, and future perspectives of
electrophoretically deposited titanium and its alloy in biomedical
engineering.

The properties of electrophoretically deposited coatings can be
relatively easily adjusted by changing the process parameters, such as
the chemical composition of the suspension, applied voltage or depo-
sition time. Therefore, it is extremely important to optimize the pro-
cess in order to obtain coatings with the desired properties. Currently,
optimization is mainly about conducting a lot of time-consuming
experiments and finding the right parameters through trial and error.
Therefore, it seems crucial to develop an advanced “Design of experi-
ments” approach,?’®1”1 which would facilitate finding quantitative
relationships that would connect the parameters and kinetics of the
EPD process with the properties of the coating. Moreover, it is requi-
site to germinate the exact mechanism of particle agglomeration and
Hamaker's law (see Section 3.1. and 3.2 herein, respectively, for more

information).
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There is a gap in the literature regarding one of the most impor-
tant features of biologically active coatings—their surface free
energy,®” which mission is to determine the adhesion between the
implant and human body fluids.*”? This feature facilitates assessment
of the biological response of the implant, that is protein interaction
and differentiation of osteoblasts, which in close vicinity to the
implant attempt to achieve the lowest possible value of total free
energy in the arrangement.2”317# Therefore, in order to comprehen-
sively assess the biological properties of the electrophoretically
deposited coatings on titanium and its alloys, it is crucial to determine
the values of surface free energy.

In addition, it is worth considering a more detailed study of the
topography of coatings on biomaterials. So far, researchers have
focused mainly on the study of the S, parameter, which in our opinion
is not sufficient for a proper analysis of the coating properties. Besides
this parameter, there are a number of functional parameters that could
be used in the biomedical field. Furthermore, the use of the areal mate-
rial ratio curve could enable a more precise determination of abrasion
resistance of coatings, or the designation of “pockets”, which could be
defined as a convenient place for cell proliferation. Another useful tool
may be the assessment of surface texture directions, which would facil-
itate the scrutiny of the isotropy (or anisotropy) of the coating. For a
more detailed explanation see Section 3.4 herein.

The component that is often present in suspensions is HA, which,
as mentioned, despite many advantages, has many disadvantages,
including poor mechanical properties. Researchers are trying to rein-
force biomaterial coatings by adding other chemical compounds with
good mechanical properties to the suspension. However, it seems
advisable to combine the EPD method with methods that enable
obtaining coatings with high adhesion and good mechanical proper-
ties. An example is the combination of the micro-arc oxidation process
and EPD, which was already done by researchers a few years
ago.17>"77 However, the current development of knowledge regard-
ing micro-arc oxidation is at a more advanced level, therefore it may
be possible to better adjust the process parameters to obtain suitable
mechanical properties and porosity.

Moreover, titanium and Ti-6Al-4 V were most often electropho-
retically deposited materials. First, it seems advisable to discontinue
the use of alloys with vanadium, which is toxic in the long term and
replace them in all studies with another material such as Ti-13Zr-
13Nb. Second, the chemical composition of the substrate also affects
the properties of the deposited coatings (e.g., in the case of the Ti-
6Al-4 V alloy, a distinct deposition in the vanadium-enriched §§ phase
than in the a phase). Therefore, it seems reasonable to deposit coat-
ings with promising biological properties on another material (e.g., a
different titanium alloy).

Currently, mainly composite coatings are being developed, the
properties of which may be components of individual chemical com-
pounds but also compounds may have a synergistic effect on each
other. The number of studies related to the EPD of composite coat-
ings is expected to increase in the near future. The research will focus
mainly on titanium alloys with niobium, molybdenum and/or tantalum

and advanced organic-inorganic coatings.
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