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A B S T R A C T

We bring attention to the problem of solving nonlinear boundary-value problems for elastic
structures such as arches and shells. Here we discuss a classical problem of a shear-deformable
arch postbuckling. Considering a postbuckling behaviour of a circular arch we discuss the
possibility to find numerically a solution for highly nonlinear regimes. The main attention is
paid to the problem of determination of all solutions. The main conclusion that there is no
guarantee to find all solutions, in general.

. Introduction

After famous Euler’s elastica problem stability and postbuckling analysis became a very developed branch of structural mechanics.
n this field hundreds of books and thousand of papers were published, see e.g. Amabili (2008), Antman (2005), Bažant and Cedolin
1990), Luongo, Ferretti, and Di Nino (2023), Perelmuter and Slivker (2013), Thompson and Hunt (1973), Timoshenko and Gere
1963) and Wang, Wang, and Reddy (2005) and the references therein. Nevertheless, the buckling and especially postbuckling
nalysis is still topical, see e.g. recent works by Barretta, Čanadija, Luciano, and de Sciarra (2022), Chen, Wang, and Yan (2023),
ivalek, Uzun, and Yaylı (2023), Darban, Luciano, Caporale, and Fabbrocino (2020), Dehrouyeh-Semnani (2021), Epstein and Javadi
2023), Gholipour and Ghayesh (2020), Kapitaniak, Vaziri, and Wiercigroch (2020), Ong, Ghayesh, and Losic (2023), Penna (2023),
ezaiee-Pajand and Rajabzadeh-Safaei (2022), Taloni, Vilone, and Ruta (2023), Vaccaro (2022), Wang et al. (2023) and Yang, Wang,
ang, Yu, and Li (2023) for beams and Dastjerdi, Alibakhshi, Akgöz, and Civalek (2023), Khaniki and Ghayesh (2023), Malikan,
rasheninnikov, and Eremeyev (2020), Roudbari, Jorshari, Lü, Ansari, Kouzani et al. (2022), Wang, Liu, Fu, Zhang, Wang et al.
2021) and Yee and Ghayesh (2023) for shells. This relates to both appearance of new materials such as beam-lattice metamaterials
r origami/kirigami structures (Choudhury, 2022; dell’Isola & Steigmann, 2020; Lakes, 2020; Peraza Hernandez, Hartl, & Lagoudas,
019) as well as extensions of classic models of continua and structures considering various phenomena as long-range interactions
nd size-effects observed at small scales. Stability-related problems mostly corresponded to such flexible structures as beams, arches,
russes, plates, and shells. In particular, curved thin-walled structures, i.e. arches and shells, may demonstrate a rather complex
ehaviour in highly nonlinear regimes including existence of multiple solutions. This results in the necessity of developing efficient
umerical tools as well as further mathematical analysis. Unfortunately, determination of all solutions or at least a number of
ossible solutions within discrete or continuum models constitute a rather complex problem. In the literature one can find a few
esults related to a priori determination of a number of possible solutions, see e.g. Vorovich (1998) for shallow shells where nonlinear
unctional analysis was applied.

This paper deals with the general problem of determining the equilibrium configurations of structures in the pre- and postbuckling
ange of deformation including snap-through, snap-back, and other bifurcation phenomena. The aim of this paper is to highlight
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some critical aspects of this problem which we have experienced during numerous nonlinear finite element analyses of structures
and to draw attention to some basic difficulties which are not dealt with in the majority of numerically oriented papers in this field.

As an example we consider an ‘‘elementary’’ problem of finding equilibrium paths for a circular arch simply supported at both
nds and loaded by a concentrated force at the apex. An example like that can be found in almost every paper on nonlinear
inite element analysis of structures, see e.g. Boutyour, Zahrouni, Potier-Ferry, and Boudi (2004), Killpack and Abed-Meraim
2011), Leahu-Aluas and Abed-Meraim (2011), Simo and Vu-Quoc (1986), Simo, Wriggers, Schweizerhof, and Taylor (1986), Turco,
archiesi, Giorgio, and DellIsola (2020), Waszczyszyn (1983) and Wriggers and Simo (1990). Moreover, the interest to arches in
ivil engineering is still continued due to interesting and complex behaviour, see e.g. recent papers by Champneys et al. (2019),
u, Li, and Hu (2021), Hu, Pi, Gao, and Li (2018), Li and Zheng (2019), Pi, Bradford, and Guo (2016) and Wriggers (2017). If the
rch is very shallow the load–deflection path is rather simple and can be found without any essential difficulties. For increasing
pan to rise ratio the solutions become more and more complex exhibiting the so-called loops of the load–deflection curve during
he symmetric snap-through. In addition, non-symmetric solutions bifurcate from the primary equilibrium path and secondary or
ven higher order bifurcation points may appear. In these cases tracing of the load deflection curves becomes a quite involved
ask which requires effective path-following methods for solutions of the nonlinear operator equations enabling one to detect
ingular (limit or bifurcation) points. As the buckled arches are capable to carry loads in the postbuckling range, the analysis of
ostbifurcation deformations constitutes not only a mathematical problem but an engineering one. Let us note that here we have
ighly nonlinear regimes of deformations, which relate to large translations and rotations. This may result in looping of equilibrium
aths (deformation curves). In the case of non-shallow arches here we faced both geometrical and structural nonlinearities that
rings this complexity in solution.

This problem has received much attention in the mathematical as well as engineering literature, so e.g. in the work by Wriggers
nd Simo (1990), who deal with the formulation and numerical implementation of general purpose algorithms for the direct
omputation of stability points within the context of finite element formulations in non-linear solid mechanics. However, in spite
f these interesting developments there are certain phenomena connected with the nonlinear behaviour in general and with the use
f the Finite Element Method in particular, which have not yet been solved sufficiently and which will be addressed in this paper.
e shall demonstrate this by comparing our results with those presented in Wriggers and Simo (1990) and examine in this context
ore closely some difficulties lying behind the solution of such a nonlinear structural problem in general.

We shall show, in particular, that symmetric solutions characterized by typical loops of the load deflection curve may change
ompletely (not only quantitatively, but also qualitatively) with a refinement of the finite element mesh as well as with the use
f different theories which lead to different types (e.g. 𝐶0, 𝐶1) of elements. For the arch problem under consideration we present
olutions for different discretizations which clearly show that with the exception of initial and final loops all remaining parts of the
oad deflection curve during the symmetric snap through are most often questionable, because the wavelength of the deformation
attern becomes extremely small for higher order loops. The problem of reliability of finite element approximations increases
ramatically with decreasing wavelength of the deformation pattern, which is typical not only for snap-through loops, but also
or problems involving high frequency vibrations and propagation of short waves.

In addition, we shall present non-symmetric solutions for the arch problem under consideration including also bifurcation points
nd equilibrium paths which have not yet been reported in literature. These solutions allow for the correct interpretation of certain
oints in the load–deflection paths which have not been recognized as bifurcation points in earlier literature. In particular we shall
lso present a bifurcation point in a secondary, already bifurcated path, leading to a tertiary equilibrium path. To the best of our
nowledge such a phenomenon has not yet been presented in nonlinear analysis of structures at all.

However, the provided analysis shows that one has to be aware of the fact that the complete solution can be obtained in this
ay. The long term experience of the first author suggests that the attempt to obtain the complete and correct finite element solution

or nonlinear structural problems like the one considered here is a rather hopeless task (hence the title of this work).

. Shear-deformable beam model

.1. Governing equations

Let us consider a planar deformation of a naturally curved plane elastic rod. We take the (𝑥, 𝑦)-plane spanned by the orthonormal
asis {𝐞1, 𝐞2} to be the plane of the rod deformation. Our subsequent analysis is based on Reissner’s theory of plane deformation
f rods which is rich enough to accommodate the longitudinal extension, flexure and shear (Reissner, 1972). In this theory a
eformation of the rod is completely determined by two Cartesian components (𝑢,𝑤) of the displacement of the rod axis and a
ean rotation 𝜓 of the cross-section which we write collectively as the vector 𝐮(𝜉) = {𝑢(𝜉), 𝑤(𝜉), 𝜓(𝜉)}𝑇 . Here 𝜉 ∈ [𝑎, 𝑏] denotes an

rbitrary arc-length parameter along the undeformed rod axis. The associated strains constitute the vector 𝜺(𝜉) = {𝜀(𝜉), 𝛾(𝜉), 𝜅(𝜉)}𝑇

onsisting of the stretching strain, the shear strain and the bending strain, respectively. The strain–displacement relations take the
orm

𝜺(𝜉) =
⎧

⎪

⎨

⎪

⎩

𝜀(𝜉)
𝛾(𝜉)
𝜅(𝜉)

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝛼−1𝜉 (𝐶𝑢,𝜉 + 𝑆𝑤,𝜉 ) + cos𝜓 − 1
𝛼−1𝜉 (−𝑆𝑢,𝜉 + 𝐶𝑤,𝜉 ) + sin𝜓
𝛼−1𝜉 𝜓,𝜉

⎫

⎪

⎬

⎪

⎭

, (1)

here 𝛼𝜉 denotes the Lamé coefficient, so d 𝑠 ≡ 𝛼𝜉d 𝜉 is an elementary length, 𝑆(𝜉) ≡ sin(𝜙 − 𝜓) and 𝐶(𝜉) ≡ cos(𝜙 − 𝜓). Here 𝜙
2

enotes the angle between 𝑥-axis and the tangent to the undeformed rod axis. The work-conjugate stress measures constitute the
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triple 𝐒(𝜉) = {𝑁(𝜉), 𝑄(𝜉),𝑀(𝜉)}𝑇 consisting of the normal stress resultant 𝑁 , the shear stress resultant 𝑄 and the couple 𝑀 . The
principle of virtual work expressing equilibrium conditions takes the form

𝐺[𝐮; 𝛿𝐮] ≡ ∫ 𝛿𝜺𝑇 𝐒𝛼𝜉d 𝜉 − 𝛿𝑊 = ∫ (𝑁𝛿𝜀 +𝑄𝛿𝛾 +𝑀𝛿𝜅)𝛼𝜉d 𝜉 − 𝛿𝑊 = 0, (2)

or every kinematically admissible virtual displacement 𝛿𝐮. Here 𝛿𝑊 stands for the virtual work of the external loads which must
e specified for each type of loads. For a thin linear elastic rod the stress–strain relations take classical form

𝑁 = 𝐸𝐹𝜀, 𝑄 = 𝑘𝑠𝐺𝐹𝛾, 𝑀 = 𝐸𝐼𝜅, (3)

where 𝐸 and 𝐺 denote the Young and shear moduli, 𝐹 area of the rod cross-section, 𝐼 moment of inertia, and 𝑘𝑠 shear correction
factor, respectively.

From (2) and applying standard variational procedure the complete set of field equations and boundary conditions can easily be
derived. It is essential to the subsequent analysis that this rod theory is geometrically exact in the sense that neither displacements
nor rotation are limited in whatever magnitude.

2.2. Lagrange family of finite elements

An attractive feature of this theory is that only 𝐶0-continuity of 𝐮 is required. Thus, following the standard finite element
procedure the rod is discretized into a finite number of 𝑛-node elements. Within an isoparametric concept the typical element
is defined as a smooth image of the standard element 𝜋𝑒 = [−1,+1], and the displacements are interpolated according to

𝐮(𝜉) =
⎧

⎪

⎨

⎪

⎩

𝑢(𝜉)
𝑤(𝜉)
𝜓(𝜉)

⎫

⎪

⎬

⎪

⎭

=
𝑛
∑

𝑎=1
𝐿𝑎(𝜉)

⎧

⎪

⎨

⎪

⎩

𝑢𝑎
𝑤𝑎
𝜓𝑎

⎫

⎪

⎬

⎪

⎭

≡
𝑛
∑

𝑎=1
𝐿𝑎(𝜉)𝘂𝑎, 𝘂𝑎 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑎
𝑤𝑎
𝜓𝑎

⎫

⎪

⎬

⎪

⎭

(4)

where 𝜉 ∈ [−1, 1] now denotes the natural coordinate and 𝐿𝑎(𝜉) are the Lagrange shape functions which for the 𝑛-node element are
given by

𝐿𝑎(𝜉) =
𝑛
∏

𝑎,𝑏=1
𝑎≠𝑏

𝜉 − 𝜉𝑎
𝜉𝑎 − 𝜉𝑏

, 𝑎, 𝑏 = 1, 2,… , 𝑛. (5)

It is a basic concept of the isoparametric finite elements that the initial geometry of the rod is interpolated using the same scheme
5). Substituting the interpolation (5) into the principle of virtual work (2) and following the standard finite elements procedure
ne gets

𝐺[𝗾; 𝛿𝗾] ≡ 𝛿𝗾𝑇 𝗳 (𝗾) = 0. (6)

Here 𝗾 denotes the global vector of nodal displacements and 𝗳 (𝗾) = 𝟎 is the discrete form of the equilibrium equations. The element
atrices resulting from the consistent linearization of (2) or equivalently (6) can next be calculated in the standard way. The results
resented in the following were obtained using 2-, 3-, and 4-node elements. To avoid locking effects using 2- and 3-node elements
he reduced integration (RI) was applied with 1 and 2 sampling points, respectively. As 4-node element practically does not exhibit
ocking, the full 4-points integration procedure (FI) was utilized. Let us note that used here 𝐶0 beam elements were developed
s a collateral result of the finite element modelling within six-parameter theory of shells in Chróścielewski, dellIsola, Eremeyev,
nd Sabik (2020), Chróścielewski, Makowski, and Pietraszkiewicz (2004), Chróścielewski, Sabik et al. (2019) and Daszkiewicz,
itkowski, Burzyński, and Chróścielewski (2019). In fact, beam elements could be treated as a reduction of two-dimensional shell

lements to one dimension. In particular, this was mentioned in the last section by Chróścielewski, Makowski, and Stumpf (1992).

. Non shear-deformable beam

.1. Governing equations

Our ultimate goal is to expose the complexity of highly nonlinear problems and of the related problem of the accuracy of finite
lement approximations. To gain deeper insight into this we shall carry out parallel analysis based on the beam theory in which
he shear strain is constrained to vanish 𝛾 = 0. By implication the mean rotation 𝜓 is no longer independent variables but it can be
xpressed in terms of the displacements of the beam axis. In this case it is more convenient to resolve the displacement vector of
he beam axis into the tangential 𝑢𝑡 and normal 𝑢𝑛 components relative to the undeformed axis. As before we set 𝐮 = {𝑢𝑡, 𝑢𝑛}𝑇 and
= {𝜀, 𝜅}𝑇 with the strains 𝜀 and 𝜅 previously defined and subjected to the constraint 𝛾 = 0. Then the strain–displacement relations

ake the form

𝜺(𝜉) =
{

𝜀(𝜉)
𝜅(𝜉)

}

=

{

𝜆 − 1
𝛼−1𝜉 𝜆−2

[

−𝜑,𝜉 (1 + 𝜗) + 𝜑𝜗,𝜉
]

}

, (7)

here
√

(1 + 𝜗)2 + 𝜑2 (8)
3

𝜆(𝜉) =

http://mostwiedzy.pl


International Journal of Engineering Science 194 (2024) 103968J. Chróścielewski and V.A. Eremeyev

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

denotes the stretch along the beam axis and 𝜑 and 𝜗 are linearized parameters defined in terms of displacements by

𝜗(𝜉) = 𝛼−1𝜉 𝑢𝑡,𝜉 −𝐾𝑢𝑛, 𝜑(𝜉) = 𝛼−1𝜉 𝑢𝑛,𝜉 +𝐾𝑢𝑡 (9)

Here 𝐾 = 𝛼−1𝜉 𝜙,𝜉 is the curvature of the undeformed beam axis. The work-conjugate stress measures are 𝐒 = {𝑁,𝑀}𝑇 and the
equilibrium conditions are again expressed in the form of the principle of virtual work

𝐺[𝐮; 𝛿𝐮] ≡ ∫ 𝛿𝜺𝑇 𝐒 𝛼𝜉d 𝜉 − 𝛿𝑊 = ∫ (𝑁𝛿𝜀 +𝑀𝛿𝜅)𝛼𝜉d 𝜉 − 𝛿𝑊 = 0. (10)

The stress–strain relations take now the same form for 𝑁 and 𝑀

𝑁 = 𝐸𝐹𝜀, 𝑀 = 𝐸𝐼𝜅, (11)

whereas 𝑄 plays the role of a Lagrange multiplier for constraint 𝛾 = 0 and should be determined from the equilibrium equations. In
(11) 𝐸, 𝐹 and 𝐼 have the meaning previously defined in (3). The derivation of the resulting field equations and boundary conditions
follows then in a classical way. It is only essential to point it out that like in the case of shear-deformable beam model there are
nor restrictions whatsoever as the magnitude of the displacements and rotation concerns.

3.2. Finite element discretization

From the numerical point of view, the non-shear-deformable beam model has this distinguishing feature that it requires
𝐶1-interelement continuity (Hermitian interpolation) to obtain a conforming finite element method. To ensure this continuity
requirement we consider the two-node element with four degrees of freedom at each node resulting in the interpolation scheme

𝐮(𝜉) =
{

𝑢𝑡(𝜉)
𝑢𝑛(𝜉)

}

=
2
∑

𝑎=1
𝖧𝑎(𝜉)𝘂𝑎, (12)

𝖧𝑎(𝜉) =
[

𝐻𝑎(𝜉) 𝛼𝜉𝐻 ′
𝑎(𝜉) 0 0

0 0 𝐻𝑎(𝜉) 𝛼𝜉𝐻 ′
𝑎(𝜉)

]

, 𝘂𝑎 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡𝑎
𝑢′𝑡𝑎
𝑢𝑛𝑎
𝑢′𝑛𝑎

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where 𝜉 ∈ [−1, 1] denotes the natural coordinate and 𝐻𝑎(𝜉) and 𝐻 ′
𝑎(𝜉) are the Hermitian shape functions which for the two node

element are given by

𝐻1(𝜉) = 1 − 3𝜉2 + 2𝜉3, 𝐻 ′
1(𝜉) = 𝜉 − 2𝜉2 + 𝜉3,

𝐻2(𝜉) = 3𝜉2 − 2𝜉3, 𝐻 ′
2(𝜉) = −𝜉2 + 𝜉3.

Here a prime (⋅)′ stands for the derivative with respect to the arc length parameter along the undeformed rod axis so that 𝑢′𝑡 and
𝑢′𝑛 are dimensionless quantities. Substituting the interpolation (12) into the principle of virtual work (10) and following again the
standard finite elements procedure one gets

𝐺[𝗾; 𝛿𝗾] ≡ 𝛿𝗾𝑇 𝗳 (𝗾) = 0. (13)

Here 𝗾 denotes the global vector of nodal degrees of freedom and 𝗳 (𝗾) = 0 is the discrete form of the equilibrium conditions. In
contrast to the finite element approximation, within the element we represent exactly the initial geometry of the beam. Moreover,
this element does not exhibit the locking effects and no reduced integration is needed. Thus, in evaluation of element matrices we
apply the Gauss–Legendre numerical integration with three sampling points.

As in the case of 𝐶0 beam elements, 𝐶1 beam finite elements can be treated as 2D-to −1D reductions of shell elements developed
for Kirchhoff–Love shells, see e.g. Makowski and Stumpf (1986), Nolte, Makowski, and Stumpf (1986) and Stumpf and Makowski
(1987) and their numerical implementation discussed in Chróścielewski and Nolte (1985) and Nolte and Chróścielewski (1986).

4. Numerical analysis of a simply supported circular arch

The problem to be examined in the sequel consists of the circular arch simply supported at both ends and loaded by a downward
concentrated force applied at the apex. The geometry and material date, being exactly those assumed by Wriggers and Simo (1990),
are shown in Fig. 1. Hereinafter the following values of parameters were used: 𝐸𝐴 = 𝐺𝐴 = 𝐸𝐼 = 106, 𝑅 = 100, 𝛼 = 210◦. Other types
of boundary conditions could be studied in a similar way as well as other geometrical parameters. For example, in the case of linear
analysis some results on critical force as a function of the span can be found in Bažant and Cedolin (2010) and Timoshenko and
Gere (1963). Let us note that in the case of a clamped–clamped arch we have less complex behaviour of the load–deflection curves
as in this case the structure becomes more stiff, in general. So in the following we consider a most complex case of non-shallow
flexible arch.

The solutions presented in the following were obtained using the finite element method shortly described in Sections 2 and 3.
0

4

We present the solutions for four different discretizations denoted by 20e2, 20e4, 36e4, 72e4, etc., for the 𝐶 element type, and

http://mostwiedzy.pl
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Fig. 1. Circular arch under point load at the apex.

Fig. 2. Load–deflection curves, the first A and secondary B paths (on the left); load–deflection curve, the first path (on the right). After Wriggers and Simo
(1990).

20e2, 160e2 for the 𝐶1 element type, respectively. The meaning of these designations is the following: the first number denotes
the assumed number of elements, the second one stands for the number of nodes per element. For example, 20e4 denotes the
discretization of the arch into twenty 4-node elements.

It should be emphasized that the discussed highly nonlinear problems require effective control methods. The algorithm developed
by us takes into account three ways of control, that are control of loads, displacements and arc length, respectively. We use, among
others, to overcome the problem with different units and orders of magnitudes of coordinate vectors, the technique of selective
elimination or scaling of the arc-length and norms for convergence control, which were first proposed by Chróścielewski and
Nolte (1985); and the control window technique was presented by Chróścielewski and Schmidt (1985). A current description of
the algorithm can be found in Chróścielewski, Schmidt et al. (2019) among others.

For comparison we adopted the discretization 20e2 𝐶0-elements which was used in Simo, Hjelmstad, and Taylor (1984) and
Wriggers and Simo (1990). In the presentation of results we shall show the displacements in Fig. 2.

Let us note that on the postbifurcation path B there is another bifurcation point. As a result, path B given by Wriggers and
Simo (1990) consists of two paths B and C, see Figs. 13–15 for comparison. The latter gives a solution in the case of symmetric
deformations. This was discussed earlier by Chróścielewski and Lubowiecka (2001).

4.1. Symmetric solutions using 𝐶0 elements

Figs. 3–4 show the load–deflection curve for the apex and Figs. 5–7 for the rotation angle at a support. These curves are related
to symmetric deformations (i.e. to the primary equilibrium path A) of the arch and show typical loops during a snap-through. The
solution for the apex deflection obtained with the 20e2 discretization is exactly the same as the one given by Wriggers and Simo
(1990). Here it is compared with solutions obtained by 20e4, 36e4 and 72e4 discretizations. One observes large qualitative and
quantitative differences with an increasing number of degrees of freedom and/or elements. It is seen that the form and the number
of loops change considerably with the mesh refinement. Large quantitative differences can be observed especially in the graphs for
the rotation angle at a support, the range of which decreases drastically with increasing number of elements.

Fig. 8 shows some arch configurations in different loops of the load–deflection curve obtained with the 72e4 𝐶0-elements
discretization. In Fig. 9 the left half of several deformed configurations are presented, which the arch assumes during various loops
passing upwards or downwards through the line connecting the supports. Here it is seen that during the snap-through the wave length
of the deformation pattern becomes very small. As long as the element length is not small enough to model such a deformation
pattern, one cannot expect correct results. Since the birth of each wave in the deformation pattern is reflected as a loop in the
5
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Fig. 3. Deflection 𝑤0 vs. load 𝜆 calculated with 20 2-node (20e2) and 36 4-node (36e4) 𝐶0-finite elements.

Fig. 4. Deflection 𝑤0 vs. load 𝜆 calculated with 20 2-node (20e2) and 74 4-node (74e4) 𝐶0-finite elements.

Fig. 5. The rotation angle at the left support 𝜙𝐿 vs. load 𝜆 calculated with 20 2- and 4-node 𝐶0-finite elements, (20e2 and 20e4 schemes).

load–deflection curve, it is understandable that results obtained by a poor discretization show less loops. In view of these results
it should be emphasized that the different number of loops for different number of elements and/or degrees of freedom is only a
result of the finite element approximation. Hence, for problems whose load–deflection curve exhibits such loops the question arises,
how many elements and/or degrees of freedom are necessary to model the physical phenomenon properly. Furthermore, it can be
observed that the number of such loops increases e.g. with increasing span to rise ratio. Therefore, independently of the solution
method applied the additional question arises, if the number of loops is finite for generalized arch data (geometrical, material, etc.)
and if it is possible at all to obtain the complete and fully correct solution by discrete methods.
6

http://mostwiedzy.pl


International Journal of Engineering Science 194 (2024) 103968J. Chróścielewski and V.A. Eremeyev

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 6. The rotation angle at the left support 𝜙𝐿 vs. load 𝜆 calculated with 20 2-node (20e2) and 36 4-node (36e4) 𝐶0-finite elements.

Fig. 7. The rotation angle at the left support 𝜙𝐿 vs. load 𝜆 calculated with 20 2-node (20e2) and 72 4-node (72e4) 𝐶0-finite elements.

Fig. 8. Selected arch configurations in the vicinity of buckling, calculated with 72e4 𝐶0 elements.

4.2. Symmetric solutions using 𝐶1 elements

In view of the problems which we have encountered in the preceding section during the analysis of the arch using 𝐶0-elements,
we now check the possibilities of a higher-order element with 𝐶1-continuity presented in Section 3. Since this element is based on
the Bernoulli hypothesis, it does not take into account transverse shear deformations. The arch under consideration is so flexible
that shear deformations should not play any role, as long as the wavelength of the deformation pattern is sufficiently large. For the
primary equilibrium path it can be expected that this is the case during the initial and final snap-through loops. Hence, for these
regions of the load–deflection curve we can expect that in a comparative finite element analysis with 𝐶0- and 𝐶1-elements we really
7
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Fig. 9. Selected arch configurations calculated with 72e4 𝐶0 elements.

Fig. 10. Deflection 𝑤0 vs. load 𝜆 calculated with 20 2-node 𝐶1-finite elements.

Fig. 11. Arch configurations in the vicinity of buckling, calculated with 20e2 𝐶1 and 72e4 𝐶0 elements.

compare these two types of elements and not the underlying theories (i.e. shear-deformable beams and Bernoulli beams theories,
respectively).

Fig. 10 shows results for the centre deflection obtained with a discretization of 20e2 𝐶1-elements. If these are compared to the
𝐶0-element solutions, we observe large qualitative differences as far as higher-order loops are concerned, which assume a completely
irregular shape of equilibrium shapes as well as deformations, as shown in Fig. 11. Such irregular forms disappear if the finite element
mesh is refined, as can be seen in Fig. 12, where 160e2 𝐶1-elements have been used. In contrast to Fig. 10 we have observed here
8
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Fig. 12. Deflection 𝑤0 vs. load 𝜆 calculated with 160e2-node 𝐶1 and 74e4 𝐶0-finite elements. Begin of calculations.

Fig. 13. Load–deflection curves, various paths, calculated with 160 2-node 𝐶1-finite elements.

also completely regular deformation patterns. This shows that the arch discretization has lost the capability to model the deformed
arch, because the wavelength is already too short. Apparently 𝐶1-continuity is not so flexible in discretizations as 𝐶0-continuity is.

In Fig. 12 we have compared the initial parts of the load–deflection curves obtained with 160e2 𝐶1- and 72e4 𝐶0-element
discretizations (which have approximately the same number of degrees of freedom) up to such loops where significant quantitative
differences can be observed. At the beginning there is a very good agreement between these two solutions. Increasing differences can
be observed during the development of the deformation process where the 𝐶0-element solution predicts a softer response. Here the
question arises, if this is already an effect of decreasing wavelength of the deformation pattern where the effect of shear deformation
becomes significant, or just a result of different finite element approximations.

4.3. Secondary symmetric and nonsymmetric solutions

For the analysis of the arch deformations we are also interested in secondary solutions presented in Figs. 13–17. In order to limit
our discussion on influence of discretization on the results, we restrict ourselves to the 160 2-node 𝐶1-finite elements. Fig. 13 shows
deflection 𝑤0 vs. load 𝜆, whereas horizontal displacement 𝑢0 at the apex is given in Fig. 14. Rotation angles at the arch ends are
presented in Fig. 15. Selected arch static configurations for secondary paths are given in Figs. 16 and 17. What is interesting here is
that there exist next the bifurcation point AD on the primary path A and related postbifurcation path D, that was not known in the
literature, see Fig. 17 for corresponding equilibrium shapes. Let us underline that in the case of arches their height (or the angle
for circular arches) plays an essential role. Indeed, for deep arches one can expect nonsymmetric buckling first even in the case of
symmetric geometry and boundary conditions. This make the picture of postbifurcation deformations much more complex as we
can see in these figures.

Conclusions

We discussed postcritical behaviour of a shear deformable and non-shear deformable circular non-shallow arch using various
types of finite elements and various approximations. Summarizing one can say that like in the analysis of the arch using 𝐶0 and 𝐶1-
elements and also here during the developing deformation process the solution changes qualitatively with increasing number of 𝐶0
9
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Fig. 14. The horizontal displacement 𝑢0 in the arch apex calculated with 160 2-node 𝐶1-finite elements.

Fig. 15. The rotation angles at the arch ends calculated with 160 2-node 𝐶1-finite elements.

Fig. 16. Selected arch configurations calculated with 160 2-node 𝐶1-finite elements, paths B and C.

and 𝐶1-elements. This shows that for both types of elements the obtained solutions only in limited parts of the range of deformation
are rational. On the basis of such comparative numerical investigations in literature often conclusions are drawn concerning the
validity, accuracy, performance, and other characteristics of theories and algorithms. In the light of the results presented here this
should be done with great carefulness, because it may lead easily to wrong conclusions. In particular, considering a relatively simple
problem we found another equilibrium path D previously unknown.
10
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Fig. 17. Selected arch configurations calculated with 160 2-node 𝐶1-finite elements, path D.

Let us also note that FEM represents discrete models, so a correspondence between FEM model and its continuum counterpart
may be generalized up to the level of correspondence between discrete and continuum models of mechanics in the case of buckling
analysis. Well-posed continuum models have countable spectrum, i.e. bifurcations are countable, whereas by definition discrete
models possess only a finite number of eigen-modes. It means that any discrete model cannot describe the whole spectrum of the
continuum model, but usually this is not necessary. For example, von Mises truss introduced one hundred years ago (Mises, 1923) can
be interpreted as a finite discretization of an arch using only two elements. Nevertheless, it demonstrates rather complex behaviour
including symmetric and non-symmetric buckling, snap-through and snap-back behaviour (Feodosiev, 2005; Perelmuter & Slivker,
2013; Pignataro, Rizzi, & Luongo, 1991), especially for trusses with large height. Obviously, it cannot describe all possible solutions
for the arch but at least some initial bifurcations could be predicted.

It is also well-known that arches and shells are very sensitive to imperfections. As any discretization provides some imperfections
in comparison with the continuum model, this also may result in difficulties in convergence of the discrete solution to the continuum
one. It could be even impossible without proper analysis as in the case of the polygon-circle paradox (Babuška & Pitkäranta, 1990;
Simmonds, 2010). Similar sensitivity of critical loads also relates to boundary conditions. For example, for other types of boundary
conditions we will have different behaviour after bifurcation, in general.

On the other hand, considering lattice dynamics (Born & Huang, 1985; Ostoja-Starzewski, 2002) we can see that it brings more
than some continuum limits. Moreover, for a discrete model one can propose various continuum limits. For example, considering
discrete and continuum models of elastica discussed by Challamel, Kocsis, and Wang (2015), Kocsis and Challamel (2016) and Zhang,
Challamel, Wang, and Zhang (2019), it was shown that extended continuum model can give only a part of bifurcation behaviour. So
the title question can be transformed not only into ‘‘Discrete is it enough?’’ as in Turco (2018) or into ‘‘Continuum is it enough?’’.
Answers for both questions constitute a rather interesting topic for future investigations.
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