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Abstract
Diabetes mellitus type 2 (DM2) is the most common chronic disease worldwide, characterized mainly by increased glucose 
concentration in the blood and affecting several organs’ functionality. The daily consumption of probiotic bacteria can help 
control diabetes and reduce the damage caused. Cell immobilization techniques are a powerful tool that provides physical 
cell protection to such probiotic bacteria against gastrointestinal conditions. We suggest that cell immobilization could be a 
significant vector for delivering a high quantity of viable probiotics to the gut, helping attenuate hyperglycemia in diabetic 
rats. Seventy male Wistar rats were used in this work. Nicotinamide was administrated via intraperitoneal injection 15 min-
utes before inducing type 2 diabetes (DM2), followed by a second intraperitoneal injection of streptozotocin to induce DM2. 
Rats were divided into seven groups. For 45 days, a specific treatment was applied to each group. The group of rats, supplied 
with immobilized Lactobacillus casei, showed a serum glucose concentration of 137 mg/dL, which was close to the one 
observed in the groups of healthy rats (117 mg/dL) and rats treated with metformin (155 mg/dL). The diabetic rats without 
treatment presented a higher serum glucose concentration (461 mg/dL). In the rats treated with immobilized L. casei, there 
was no biochemical parameter alteration, and the cell morphology of the analyzed tissues was similar to those of the healthy 
group. The consumption of immobilized L. casei could allow a high quantity of viable probiotics to be delivered to the gut, 
reducing serum glucose concentration by up to 70% compared to diabetic rats and reducing organ damage caused by diabetes.

Keywords  Cell immobilization · Lactobacillus casei · Probiotic · Diabetes · Antihyperglycemic effect · Murine model

Introduction

Diabetes mellitus (DM) is a degenerative metabolic disorder, 
representing one of the leading causes of mortality and mor-
bidity worldwide. By 2045, about 578 million people world-
wide will suffer from this disease [1, 2]. The development of 
DM2 has been linked to an intestinal microbiota imbalance; 
apparently, some intestinal pathogenic microorganisms trig-
ger inflammatory processes that reduce insulin sensitivity 
and stimulate the immune response that destroys the β-cells 
in the pancreas [3–9]. An alternative to restoring the intes-
tinal microbiota is the consumption of probiotics from the 
genera Lactobacillus and Bifidobacterium. When ingested in 
adequate quantities, these bacteria benefit the host; probiot-
ics compete with pathogenic microorganisms for adhesion 
sites and nutrients in the colon. However, they must remain 
viable during transit in the gastrointestinal system [10–12]. 
Cell immobilization techniques are a powerful tool that pro-
vides physical cell protection against digestive conditions 
[13–15]. Therefore, this study aims to demonstrate the effect 
of immobilized cells of Lactobacillus casei subsp. casei, 
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which was used as a diet complement in diabetic rats. We 
suggest that cell immobilization could be a significant vector 
for delivering a high quantity of viable probiotics to the gut, 
which could help attenuate the DM2 complications.

Materials and Methods

Culture of Lactobacillus casei and Obtention of Free 
and Immobilized Cells

Lactobacillus. casei subsp. casei NRRL-1922 (L. casei) 
was donated by the Department of Agriculture of the USA. 
The strain was cultivated in MRS medium for 24 h at 37 °C 
and 120 rpm; the culture was then centrifuged at 6000 rpm 
for 10 min at 4 °C; the biomass concentration recovered 
was 1012 CFU/100 μL, which was suspended in phosphate-
buffered saline (PBS). The cell immobilization procedure 
was carried out under aseptic conditions, as follows: The 
biomass from a liquid culture of L. casei previously incu-
bated for 24 h at 37 °C was recovered by centrifugation at 
6000 rpm for 10 min at 4 °C. The biomass was suspended 
in a 2% sodium alginate solution (Sigma-Aldrich). Subse-
quently, using a peristaltic pump adapted with an injector 
hose, the L. casei cell suspension in sodium alginate was 
added dropwise with gentle agitation into a CaCl2 solu-
tion (0.3 M). Each drop of the L. casei cell suspension in 
sodium alginate formed a microparticle of calcium algi-
nate gel upon contact with the CaCl2 solution [16]. Spheri-
cal calcium alginate microparticles with a diameter of 
2.1 ± 0.08 mm containing 1012 CFU/100 μL gel of L. casei 
were obtained from the cell immobilization process. Once 
the microparticles were formed, they were quantified, and it 
was established that 100 μL of sodium alginate containing 
the biomass formed 12 spherical microparticles containing 
a total of 1012 CFU of L. casei.

Evaluation of the Viability Loss of Lactobacillus casei  
Under In Vitro Simulated  
Gastrointestinal Conditions

Free and immobilized cells of L. casei were subjected to 
in vitro simulated physicochemical conditions of the stom-
ach and small intestine; the composition of the digestive 
juices was set as follows:

In the stomach stage (100 mL): PBS (80 mL), mucin 
(4 g/L), pepsin (3 g/L), and cow’s milk (20 mL); the pH was 
adjusted to 2 by the addition of 5 M HCl; the duration of this 
stage was 90 min.

In the small intestine stage (100 mL): PBS (100 mL), pan-
creatin (1 g/L), hepatic bile (3 g/L), and mucin (4 g/L), the 
pH was adjusted to 6.8 by adding 1.5 N NaOH; the duration 
of this stage was 150 min. During the kinetics of viability 

loss, samples of 1 mL were taken every 30 min, either free or 
immobilized cells, to quantify, through dilutions, the number 
of viable cells in Petri dishes containing MRS culture media 
and agar, which were incubated for 48 h at 37 ºC. The gas-
trointestinal simulation was performed nine times.

Streptozotocin‑Nicotinamide‑Induced Type 2 
Diabetes Mellitus in Rats

We used adult male Wistar rats of 8 weeks and 250 ± 50 g 
of weight; rodents were purchased from the FES Iztacala-
UNAM. All rats were maintained under standard conditions 
of temperature (22–23 °C), light-dark cycles of 12 h/12 h, 
conventional food (LabDiet 500I) (Table 1), and purified 
water ad  libitum. The experiments were done under the 
Official Mexican Standards (NOM-062-ZOO-1996 [17] and 
NOM-087-SEMARNAT-SSA1-2002 [18]). The National 
School of Medicine and Homeopathy Ethics Committee of 
the National Polytechnic Institute of Mexico verified that the 
study complied with international regulations and standards 
(approval number: CBE/024/2019).

To induce type 2 diabetes, the rats were deprived of 
food and water for 12 h. An intraperitoneal injection of 

Table 1   Composition of Lab 
Diet 5001 Rodent Diet

a Minerals: calcium, 9.5  g/kg; 
phosphorus, 6.8  g/kg; phos-
phorus (non-phytate), 42  g/kg; 
potassium, 12.1  g/kg; magne-
sium, 2.1  g/kg; sulfur, 3.3  g/
kg; sodium, 3.9  g/kg; chloride, 
6.4 g/kg; fluoride, 15 ppm; iron, 
240 ppm; zinc, 76 ppm; manga-
nese, 70  ppm; copper, 13  ppm; 
cobalt, 0.91  ppm; iodine, 
0.99  ppm; chromium (added), 
0.01 ppm; selenium, 0.41 ppm
b Vitamins: carotene, 2.3  ppm; 
vitamin K, 1.3  ppm; thiamin, 
16  ppm; riboflavin, 4.7  ppm; 
niacin, 130  ppm; pantothenic 
acid, 24  ppm; choline chloride, 
2250  ppm; folic acid, 7.1  ppm; 
pyridoxine, 6.1  ppm; biotin, 
0.3  ppm; vitamin B12, 51  μg/
kg; vitamin A, 18 IU/g; vitamin 
D3 (added), 4.6 IU/g; vitamin E, 
42 IU/kg; ascorbic acid, 0.0 g/kg

Protein (g/kg) 241
Fat (ether extract) (g/kg) 50
Carbohydrate (nitrogen-

free extract) (g/kg)
487

Fiber (crude) (g/kg) 52
Mineralsa (g/kg) 69
Vitaminsb -
Gross energy (KJ/g) 17.11
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nicotinamide (150 mg/kg) (Sigma-Aldrich) was adminis-
tered to the rats 15 min before inducing type 2 diabetes. 
After this period, a second intraperitoneal injection of strep-
tozotocin (50 mg/kg) (Sigma-Aldrich) was given [19]. After 
72 h, the blood glucose concentration was measured with a 
glucometer (Optium Xceed); the rats were considered dia-
betic when the blood glucose concentration was higher than 
125 mg/dL. Then, the rats were randomly divided into seven 
groups to evaluate the antihyperglycemic effect, each of 10 
animals. The groups were as follows: group healthy control 
(H); group diabetic control (D); group diabetic treated daily 
with the first vehicle (300 μL PBS/day) (DPBS); group dia-
betic treated daily with a second vehicle (12 microparticles 
of calcium alginate plus 200 μL PBS/day) (DPBSA); group 
diabetic treated daily with metformin (100 mg/kg) (DMET); 
group diabetic treated daily with free cells of L. casei 
(1012 CFU in 300 μL PBS/day) using a gastric tube (DFLC); 
finally, group diabetic treated daily with immobilized cells 
of L. casei (12 calcium alginate microparticles containing a 
total of 1012 CFU in 200 μL PBS/day) using a gastric tube 
(DILC). After 45 days of treatment and food deprivation for 
12 h, the rats were euthanized by CO2-induced asphyxia; 
then, blood, liver, kidney, large intestine, and pancreas sam-
ples were collected from the animals.

Biochemical Analyses

A blood sample was taken through a cardiac puncture with 
a syringe; the blood was centrifuged at 570 × g for 10 min at 
4 °C and processed in the San Rafael Laboratory (Mexico 
City) in Autokem 11-KONTROLab equipment. The glucose 
concentration was determined. Also, a hepatic profile was 
performed. The direct, indirect, and total bilirubin were 
evaluated. The aspartate aminotransferase (AST), the ala-
nine aminotransferase (ALT), and the alkaline phosphatase 
(ALP) were determined. On the other hand, lipidic profiles 
(cholesterol (Cl), triglycerides (Tg), high-density lipoprotein 
(HDL), low-density lipoprotein (LDL), and very low lipo-
protein (VLDL)) and renal profiles (urea (Ur) and creatinine 
(Cr)) were determined as well. Each parameter was evalu-
ated in triplicate.

Histopathological Analysis

After dissecting the animals, small sections of the different 
organs, such as the liver, kidney, large intestine, and pan-
creas, were placed in 10% formaldehyde in PBS solution. 
Subsequently, samples of 4–6 µm were prepared, stained 
with hematoxylin-eosin (H&E), and examined by a micro-
scope (×400). The histological samples obtained from all 
the experimental groups of rats were observed by the micro-
scope set in 5 different sections in triplicate.

Statistical Analysis

Data statistical analysis was performed in GraphPad 
PRISM v8.0a software. A t-student analysis was carried 
out for the kinetics of the viability loss of L. casei. A one-
way analysis of variance (ANOVA) was performed, and 
a post hoc Bonferroni test (p ≤ 0.05) was accomplished 
when there were significant statistical differences from the 
evaluation of the antihyperglycemic effect.

Results and Discussion

Kinetics of Viability Loss of Free and Immobilized 
Lactobacillus casei Under In Vitro Simulated 
Physicochemical Conditions of the Stomach 
and Small Intestine

Free and immobilized cells of L. casei were subjected for 
90 min to in vitro simulated stomach conditions and then 
subjected to 150 min to in vitro simulated physicochemical 
small bowel conditions. The results obtained are shown 
in Fig. 1.

At the beginning of the kinetics, the free and immo-
bilized L. casei concentration was 12.55 ± 0.04 log10 
CFU/mL and 12.25 ± 0.03 log10 CFU/mL of alginate gel, 
respectively, which represented 100% of viability. At the 
end of the stomach stage, it was observed that the viability 
percentage decreased in both cases. There were 22.57% 
(11.90 ± 0.11 log10 CFU/mL) of free viable cells and 
80.83% (12.16 ± 0.01 log10 CFU/mL of alginate gel) of 
immobilized viable cells. At the end of the small intestine 
stage, only 2.1% of free cells (10.87 ± 0.01 log10 CFU/
mL) and 51.9% of immobilized cells (11.97 ± 0.002 log10 
CFU/mL alginate gel) remained viable. While at the end of 
the viability kinetics, the concentration of L. casei viable 
cells presented statistically significant differences between 
both treatments.

Evaluation of the Antihyperglycemic Effect of Free 
and Immobilized Lactobacillus casei in Diabetic Rats

Table 2 shows that after 45 days of treatment, the serum 
glucose concentration in the DILC group was similar to that 
of the H and DMET groups. Conversely, the serum glucose 
concentration was much higher in the D, DPBS, DPBSA, 
and DFLC groups with significant statistical differences. It 
is important to note that the group treated with immobilized 
L. casei (DILC group) showed a 67.8% reduction in serum 
glucose concentration compared to the group treated with 
free L. casei (DFLC group).
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Hepatic, Lipidic, and Renal Profiles

Hepatic Profile

Table 3 shows the data obtained from the hepatic pro-
file. Direct bilirubin presented normal values in groups 
H and DILC; on the contrary, it increased in groups D, 
DPBS, DPBSA, DMET, and DFLC. Regarding indirect 
bilirubin, the H group presented normal values; in con-
trast, it increased in the groups D, DPBS, DPBSA, DMET, 
DFLC, and DILC. It is important to note that the increase 
in indirect bilirubin was less steep in the DILC group. As 
for total bilirubin, it was found to be normal in the H and 
DILC groups; in contrast, it increased in the D, DPBS, 

DPBSA, DMET, and DFLC groups. On the other hand, 
AST enzyme activity was found to be normal in groups 
H, DPBS, DMET, and DILC. Particularly, there was an 
increase in groups D, DPBSA, and DFLC, showing sig-
nificant statistical differences. ALT enzyme activity was 
slightly increased in groups H and DILC, while in groups 
D, DPBS, DPBSA, DMET, and DFLC, enzyme activity 
was higher, showing significant statistical differences. 
Finally, the enzymatic activity of ALP showed normal val-
ues in groups H and DILC; on the contrary, it increased in 
groups D, DPBS, DPBSA, and DFLC, showing significant 
statistical differences.

Lipidic Profile

Table 4 shows the data obtained from the lipid profile analy-
sis. Total cholesterol concentration was found to be normal 
in groups H, DPBS, DPBSA, and DMET, while there was 
a slight increase in groups D, DFLC, and DILC. In par-
ticular, HDL showed similar concentrations in groups H 
and D; however, in groups DPBS, DPBSA, DMET, DFLC, 
and DILC, there was a slight decrease. Regarding LDL, 
the H, D, DPBS, and DPBSA groups showed very simi-
lar concentrations; on the contrary, they increased in the 
DMET, DFLC, and DILC groups. VLDL showed similar 
values in the H, DPBS, DMET, and DILC groups. On the 
other hand, the concentration of VLDL increased in the D, 
DPBSA, and DFLC groups, with statistically significant 
differences observed in the DFLC group only. Finally, Tg 
concentrations were found in similar and normal values in 
the H, DMET, and DILC groups; they increased in the D, 
DPBS, DPBSA, and DFLC groups, presenting significant 
statistical differences.

Fig. 1   Viability of free and 
immobilized L. casei subjected 
to in vitro simulated phys-
icochemical conditions of the 
stomach and small intestine. 
The results presented are the 
average of nine repetitions ± the 
mean standard deviation (n = 9)

Table 2   The serum glucose concentration of different rat groups

The results are the average treatments performed in triplicate ± the 
mean standard deviation, n = 3. A one-way ANOVA and Bonferroni’s 
post hoc analysis p ≤ 0.0001 were performed
H  healthy, D  diabetic, DPBS  diabetic + PBS, DPBSA  diabetic + cal-
cium alginate, DMET  diabetic + metformin, DFLC  diabetic + free L. 
casei, DILC diabetic + immobilized L. casei
a Statistically significant differences vs. healthy
b Statistically significant differences vs. metformin
c Statistically significant differences vs. treated groups

Group Glucose (mg/dL)

Healthy (H) 116 ± 24
Diabetic (D) 461 ± 23a,b

Diabetic + PBS (DPBS) 450 ± 9a,b

Diabetic + PBS + sodium alginate (DPBSA) 458 ± 14a,b

Diabetic + metformin (DMET) 155 ± 22
Diabetic + free L. casei (DFLC) 426 ± 73a,b,c

Diabetic + immobilized L. casei (DILC) 137 ± 36

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Probiotics and Antimicrobial Proteins	

1 3

Renal Profile

Table 5 reports the data obtained from the renal profile 
analysis. Urea concentration showed normal values in the 
H, D, DMET, DFLC, and DILC groups; however, in the 
DPBS and DPBSA groups, it increased, presenting sig-
nificant statistical differences. All groups showed normal 
values regarding creatinine; however, only in the DPBS 
group was there an increase, showing statistically signifi-
cant differences.

Histological Analysis of Liver, Pancreas, Kidney, 
and Large Intestine

A histopathological examination was performed to demon-
strate the effect of the consumption of free and immobilized 
L. casei in reducing the organ damage caused by diabetes 
in rats. Micrographs of the liver, pancreas, kidney, and 
large intestine were analyzed for the different experimental 
groups. For instance, Fig. 2 shows micrographs of liver his-
tological sections, showing the central vein, sinusoid, and 

Table 3   Hepatic profile analysis of different rat groups

The results are the average treatments performed in triplicate ± the mean standard deviation, n = 3. A one-way ANOVA and Bonferroni’s post 
hoc analysis p ≤ 0.0001, *p ≤ 0.0001, **p ≤ 0.12, ***p ≤ 0.0003, and ****p ≤ 0.01 were performed
The reference values were obtained from the Canadian Council on Animal Care Conseil Canadien de Protection des Animaux (CCA​CCC​PA) 
[20] and Research in Surgery, Supplement [21]. Reference data is shown for evidence of normal values in a healthy individual
H  healthy, D  diabetic, DPBS  diabetic + BPS, DPBSA  diabetic + calcium alginate, DMET  diabetic + metformin, DFLC  diabetic + free L. casei, 
DILC diabetic + immobilized L. casei
a Statistically significant differences vs. healthy
b Statistically significant differences vs. metformin
c Statistically significant differences vs. treated groups with L. casei

Parameter/
group

Reference 
values

H D DPBS DPBSA DMET DFLC DILC

Direct bilirubin 
(mg/dL)

0.03–0.06 0.07 ± 0.02 0.43 ± 0.01a,b* 0.26 ± 0.1a*** 0.14 ± 0.04 0.14 ± 0 0.13 ± 0.04 0.04 ± 0.01

Indirect bilirubin 
(mg/dL)

0–0.1 0.15 ± 0.05b* 1.1 ± 0.01a,b* 0.34 ± 0.13b**** 0.35 ± 0.07b* 0.64 ± 0.1a* 0.28 ± 0.08b* 0.25 ± 0.02b*

Total bilirubin 
(mg/dL)

0.04–0.2 0.22 ± 0.01b* 1.6 ± 0a* 0.5 ± 0.1b* 0.49 ± 0.03b* 0.98 ± 0.3a* 0.47 ± 0.01b**** 0.21 ± 0.06b*

AST (U/L) 63–175 126 ± 45 326 ± 36a,b* 140 ± 19 265 ± 29a,b*** 160 ± 23 233 ± 9a,c**** 128 ± 22
ALT (U/L) 17–50 66 ± 27 282 ± 28a,b* 126 ± 11 167 ± 74a,b** 67 ± 10 259 ± 56a,b,c*** 54 ± 4
ALP (U/L) 39–216 192 ± 8b* 672 ± 225a* 797 ± 87a* 244 ± 99b 754 ± 211a**** 651 ± 62a,c* 168 ± 6b

Table 4   Lipidic profile analysis of different rat groups

The results are the average treatments performed in triplicate ± the mean standard deviation, n = 3. A one-way ANOVA and Bonferroni’s post 
hoc analysis p ≤ 0.0001, *p ≤ 0.01, **p ≤ 0.06, and ***p ≤ 0.0004 were performed
The reference values were obtained from the Canadian Council on Animal Care Conseil Canadien de Protection des Animaux (CCA​CCC​PA) 
[20] and Research in Surgery, Supplement [21]. Reference data is shown for evidence of normal values in a healthy individual
H  healthy, D  diabetic, DPBS  diabetic + BPS, DPBSA  diabetic + calcium alginate, DMET  diabetic + metformin, DFLC  diabetic + free L. casei, 
DILC diabetic + immobilized L. casei, NR not reported
a Statistically significant differences vs. healthy
b statistically significant differences vs. metformin
c statistically significant differences vs. treated groups with L. casei

Parameter/group Reference values H D DPBS DPBSA DMET DFLC DILC

Total cholesterol (mg/dL) 33–50 40 ± 9 57 ± 4 45 ± 4 37 ± 8 51 ± 7 53 ± 2 57 ± 2
HDL (mg/dL) NR 17 ± 7 16 ± 2 12 ± 2 11 ± 4 11 ± 4 10 ± 2 14 ± 6
LDL (mg/dL) NR 15 ± 3 13 ± 3 16 ± 2 17 ± 1 24 ± 5 23 ± 2 28 ± 7
VLDL (mg/dL) NR 11 ± 3 18 ± 3 15 ± 2 17 ± 4 13 ± 1 21 ± 2a,b,c* 12 ± 1
Triglycerides (mg/dL) 55–115 58 ± 16 121 ± 39a,b* 102 ± 28a,b** 139 ± 5a,b* 60 ± 7 170 ± 22a,b,c*** 78 ± 14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


	 Probiotics and Antimicrobial Proteins

1 3

hepatocytes. In group H, the typical morphology of the liver 
was observed, while in groups D, DPBS, DPBSA, DMET, 
and DFLC, there was an increase in the size of the sinusoids; 
on the contrary, in group DILC, the tissue morphology was 
very similar to that observed in group H.

Figure  3 provides micrographs of kidney histologi-
cal sections where the renal corpuscle, the medullary ray, 
the proximal convoluted tubule, and the capsule can be 
observed. In group H, the typical morphology of the kid-
ney was observed. On the other hand, in groups D, DPBS, 
DPBSA, DMET, and DFLC, deformation of the corpuscles 
and an increase in the size of the capsule can be seen; on the 
contrary, in group DILC, the tissue morphology was very 
similar to that observed in group H.

Figure 4 represents micrographs of pancreas histological 
sections showing the islet of Langerhans, the serous acini, 
and the intralobular duct. Group H presented a typical pan-
creas morphology, while groups D, DPBS, DPBSA, and 
DMET showed small islets and were even broken, so it was 
difficult to observe them. The islets in the DFLC and DILC 
groups were similar to those observed in group H.

Finally, Fig. 5 shows micrographs of large intestine his-
tological sections. The mucosa, which comprises the lamina 
propria, the crypt of Lieberkühn, the goblet cells, and the 
muscularis mucosae, can be observed. In group H, the typi-
cal morphology of the large intestine was observed, while in 
groups D, DPBS, DPBSA, and DMET, there was deforma-
tion in the upper part of the crypts and some disintegration. 

Table 5   Renal profile analysis of different rat groups

The results are the average treatments performed in triplicate ± the mean standard deviation, n = 3. A one-way ANOVA and Bonferroni’s post 
hoc analysis p ≤ 0.0001, *p ≤ 0.01, **p ≤ 0.1, and ***p ≤ 0.02 were performed
The reference values were obtained from the Canadian Council on Animal Care Conseil Canadien de Protection des Animaux (CCA​CCC​PA) 
[20] and Research in Surgery, Supplement [21]. Reference data is shown for evidence of normal values in a healthy individual
H, healthy; D, diabetic; DPBS, diabetic + BPS; DPBSA, diabetic + calcium alginate; DMET, diabetic + metformin; DFLC, diabetic + free L. 
casei; DILC, diabetic + immobilized L. casei
a Statistically significant differences vs. healthy
b Statistically significant differences vs. metformin

Parameter/group Reference values H D DPBS DPBSA DMET DFLC DILC

Urea (mg/dL) 68.5–115.8 57 ± 17 95 ± 24b* 121 ± 8a,b** 106 ± 29b*** 45 ± 13 69 ± 14 42 ± 15
Creatinine (mg/dL) 0.71–2.29 1.2 ± 0.2 1.6 ± 0.3 1.7 ± 0.1b 1.5 ± 0.6 1.1 ± 0.4 0.9 ± 0 0.9 ± 0.2

Fig. 2   Hematoxylin-eosin stain-
ing micrographs of histological 
liver sections (×400) of differ-
ent rat groups. H, healthy; D, 
diabetic; DPBS, diabetic + PBS; 
DPBSA, diabetic + calcium 
alginate; DMET, diabetic + met-
formin; DFLC, diabetic + free L. 
casei; DILC, diabetic + immobi-
lized L. casei 
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On the other hand, the DFLC and DILC groups presented 
tissue morphology similar to that observed in group H.

Discussion

A crucial fact for probiotic bacteria to provide health ben-
efits to the host is their viability at the end of their pas-
sage through the digestive system [15, 22, 23]. The cell 

immobilization approach represents one way to mitigate the 
damage caused by gastrointestinal physicochemical condi-
tions while preventing the losses of cell viability [13, 14, 
22–25]. According to the results, after the in vitro simu-
lation of the gastrointestinal conditions (CGI), the immo-
bilized L. casei viable bacteria count was higher than the 
free form. The recommended daily intake of probiotics is 
at least 10 log10 CFU/mL to 12 log10 CFU/mL [26]; thus, 

Fig. 3   Hematoxylin-eosin stain-
ing micrographs of histological 
kidney sections (×400) of dif-
ferent rat groups. H, healthy; D, 
diabetic; DPBS, diabetic + PBS; 
DPBSA, diabetic + calcium 
alginate; DMET, diabetic + met-
formin; DFLC, diabetic + free L. 
casei; DILC, diabetic + immobi-
lized L. casei 

Fig. 4   Hematoxylin-eosin stain-
ing micrographs of different rat 
groups’ histological sections 
of the pancreas (×400). H, 
healthy; D, diabetic; DPBS, 
diabetic + PBS; DPBSA, dia-
betic + calcium alginate; DMET, 
diabetic + metformin; DFLC, 
diabetic + free L. casei; DILC: 
diabetic + immobilized L. casei 
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cell immobilization meets the recommended probiotic dose. 
Similar results have been reported using free and immobi-
lized L. delbrueckii, L. acidophilus, L. johnsonii, L. casei 
Shirota, and L. rhamnosus [23, 27, 28].

As for dysbiosis, it is defined as an imbalance of the 
intestinal microbiota, i.e., an increased number of patho-
genic microorganisms in the intestines triggers biological 
processes, which potentiate the development and severity of 
diabetes [5, 7–9]. In this study, the rat’s intestinal microbiota 
was selectively modified by consuming free and immobi-
lized L. casei. The results demonstrate that the treatments 
with L. casei reduce serum glucose concentration in diabetic 
rats. However, the decrease in serum glucose levels in dia-
betic rats treated with free L. casei (DFLC group) was only 
7.5% compared to the diabetic group (D group), which was 
not significant; in similar studies carried out with various 
probiotic strains in free form, the reduction in serum glucose 
was found to be between 14.8 and 45.4% [29–39]. The serum 
glucose reduction in the group treated with immobilized L. 
casei (DILC group) was 70.3% compared to the diabetic 
group (D group). This reduction was significantly higher 
compared to the treatment with free L. casei (DFLC group) 
and exceeded the outcomes reported in previous studies 
involving free-form probiotics [3, 30–39]. L. casei immo-
bilized showed similar serum glucose concentrations to the 
healthy group; we associate this behavior to cell immobili-
zation with sodium alginate, as it provides physical protec-
tion to the probiotics [23, 24, 40] so that L. casei supported 
the CGI of the rats’ organism. A greater number of viable 

bacteria effectively carried out their beneficial actions, con-
tributing to the mitigation of hyperglycemia.

To the best of our knowledge, no previous studies have 
explored the utilization of immobilized probiotics as a sup-
plement for treating diabetes. Therefore, this research rep-
resents, for the first time, a pioneering effort to investigate 
and address this approach. The findings establish that cell 
immobilization serves as an important vector to protect pro-
biotics from gastrointestinal challenges, enabling them to 
deliver their therapeutic benefits effectively.

To some extent, the right mechanism declaring probiotic 
effects in preventing and treating diabetes is unknown so 
far [41, 42]. However, it has been speculated that probiotic 
bacteria avoid synthesizing nitric oxide, which causes the 
formation of free radicals that lead to the deterioration of 
pancreatic β-cells [41, 43, 44]. On the other hand, Gram-
negative bacteria membrane contains lipopolysaccharides 
(LPS) related to the production of endotoxins capable of 
crossing the intestinal barrier, causing inflammation and 
deterioration of the pancreas, liver, and kidney [45]. The 
consumption of probiotics balances the intestinal micro-
biota, inhibiting the proliferation of Gram-negative bacteria  
and reducing the permeability of the intestine [6, 45–50]. Pro-
biotics also produce short-chain fatty acids (SCFA), such as 
propionate, acetate, and butyrate [3, 25, 30, 44, 45, 51–53], 
in which the latter compound interacts with intestinal L 
cells, leading to the overexpression of glucagon-like peptide 
(GLP-1), which is responsible for stimulating insulin secre-
tion in the pancreas [6, 43, 45, 47, 51, 54–57]. Knowing that 

Fig. 5   Hematoxylin-eosin stain-
ing micrographs of different rat 
groups’ histological sections 
of the large intestine (×100). 
H, healthy; D, diabetic; DPBS, 
diabetic + PBS; DPBSA, dia-
betic + calcium alginate; DMET, 
diabetic + metformin; DFLC, 
diabetic + free L. casei; DILC, 
diabetic + immobilized L. casei 
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there is still some insulin production in DM2, it is likely that 
this mechanism occurred in our study.

When evaluating the liver profile, bilirubin concentra-
tion along with AST, ALT, and ALP enzyme activities, as 
reported in Table 2, the group treated with free L. casei 
(DFLC group) showed higher values than the group treated 
with immobilized L. casei (DILC group); other authors 
reported similar results when using probiotics in the free 
form [31, 33, 39]. This behavior is expected since diabetes is 
related to liver disease [58, 59]. Moreover, it can be affirmed 
that liver damage is indirectly reduced by enriching the diet 
with immobilized L. casei.

Concerning the lipid profile, the groups of rats treated 
with free and immobilized L. casei showed changes in lipid 
metabolism; this behavior has been already observed by sev-
eral authors [3, 30–32, 37, 39, 43, 48, 60–62]. For instance, 
these results could be attributed to a metabolic disorder 
characteristic of diabetes known as dyslipidemia, caused by 
increased free fatty acids in the body, insulin resistance, and 
an increase in inflammatory adiposity [63].

We believe that the increase in urea concentration in the 
group treated with free L. casei was due to the high serum 
glucose concentration leading to the onset of renal damage; 
other authors have described similar behaviors using free 
probiotics [31, 32].

Although the group of rats treated with free L. casei did 
not show statistically significant differences in certain evalu-
ated parameters, the results differed from the typical values. 
An opposite fact was observed in the group treated with 
immobilized L. casei, where only cholesterol was slightly 
increased. Although there are no reports of similar studies 
using immobilized probiotics, the data show that treatment 
with immobilized L. casei was more efficient than treatment 
with free L. casei.

As observed in the histopathological analysis, the micro-
scopic morphology of the kidney, liver, pancreas, and large 
intestine of the DILC group showed no visual differences 
compared to the H group; similar behaviors have been 
reported in various studies using free probiotics [37]; how-
ever, in our work, the treatment with immobilized probiot-
ics significantly reduced organ damage. In the micrographs 
of the pancreas, no differences were observed between the 
DFLC and DILC groups. However, according to the CGI sim-
ulations, the viability of free L. casei was strongly affected; 
for this reason, although the islet was observed, there was 
no significant reduction in the serum glucose concentration.

Conclusions

The results obtained in this work demonstrate that cell 
immobilization is an important vector to provide physi-
cal protection for probiotics, such as L. casei, from simu-
lated gastrointestinal conditions in vitro, and quite possibly 

in vivo. Interestingly, the consumption of immobilized L. 
casei could allow delivering a high quantity of viable pro-
biotics into the gut, reducing serum glucose concentration 
by up to 70% compared to diabetic rats and reducing organ 
damage caused by diabetes. The results also suggest that 
the consumption of immobilized L. casei may help control 
and treat DM2 by reducing glucose concentration, maintain-
ing biochemical parameters at nominal values, and reducing 
the damage that DM2 generally causes to organs. However, 
further investigation into the mechanism of action needs to 
be addressed. To some extent, all these findings provide a 
basis for future clinical trials.
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