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Abstract

The effect of higher order continuity in the solution field by using NURBS basis function in isogeometric

analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It

is based on the Hu-Washizu variational principle considering geometrical and material nonlinearities.

Here we present a reduced degree of basis functions for the additional fields of the stress resultants and

strains of the beam, which are allowed to be discontinuous across elements. This approach turns out

to significantly improve the computational efficiency and the accuracy of the results. We consider a

beam formulation with extensible directors, where cross-sectional strains are enriched to avoid Poisson

locking by an enhanced assumed strain method. In numerical examples, we show the superior per

degree-of-freedom accuracy of IGA over conventional finite element analysis, due to the higher order

continuity in the displacement field. We further verify the efficient rotational coupling between beams,

as well as the path-independence of the results.

Keywords: Beam structures, Mixed formulation, Isogeometric analysis, Nonlinearity, Rotational

continuity, Path-independence

1. Introduction

Beam models have been widely utilized for an efficient and accurate mechanical simulation of slender

rods, rod-like bodies, and their assemblies, across many application areas, see e.g., simulations of Brow-

nian dynamics of microstructures (Cyron and Wall, 2012), atomistic structures (Schmidt et al., 2015),

and entangled materials (Durville, 2005). Accordingly, many beam models have been developed, whose

applicability is, however, often limited by a certain range of geometrical characteristics of the beam, e.g.

the slenderness ratio, and the cross-sectional shape. For an extensive classification of linear and nonlinear

beam theories, we refer readers to the recent review in Meier et al. (2019). In this paper, we aim at

expanding the applicability of our nonlinear beam formulation from previous work (Choi et al., 2021)
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to the thin beam limit, with much improved robustness and efficiency. In this paper, we particularly

investigate the effect of higher order continuity in the displacement, and director fields, in the framework

of isogeometric analysis (IGA), using non-uniform rational B-splines (NURBS) basis functions.

Isogeometric analysis was presented by Hughes et al. (2005) to incorporate the exact geometrical

description, inherent in computer-aided design (CAD) model, into analysis, by employing the same

spline basis functions utilized in CAD system. This approach enables not only the exact description of

the initial geometry, but also the higher order continuity in the solution field. In this study, we focus

on the superiority of the k-version of mesh refinement (smooth degree elevation) in IGA in terms of per

DOF accuracy in elastostatic nonlinear beam problems. We compare the results with conventional FEA

with Lagrange shape functions. For further extension to dynamic problems like structural vibration and

wave propagation, one may refer to Hughes et al. (2008). The smoothness property in IGA enables

us to use much less DOFs per element, compared with conventional FEA. To simply illustrate this

attractive property, we consider a mesh in a one-dimensional domain. For C0-continuous finite elements,

the number of nodes (or basis functions) is expressed by

nnd = p · nel + 1, (1)

where p and nel denote the degree of basis functions, and the number of elements, respectively. In

contrast, for Cp−1-continuous IGA, the number of control points (or basis functions) is

ncp = nel + p. (2)

That is, as we increase the number of elements (nel), the increase in the number of nodes in FEA is much

larger than that in IGA, and this gap increases as we choose higher p. This property simply extends to

multi-dimensional cases, see, e.g., Cottrell et al. (2006). However, it turns out that IGA also suffers from

numerical locking (Echter and Bischoff, 2010) in constrained problems like bending-dominated slender

beams. It was also shown that the higher order continuity in the displacement and rotation fields may

accenuate the locking (Adam et al., 2014).

Locking can be attributed to a field-inconsistency in the approximated strains in the conventional

displacement-based finite element formulation (Prathap, 2013). In order to alleviate locking, many

approaches have been developed, which include reduced integration methods, and mixed variational

formulations. In the framework of IGA, they can be divided into local (element-wise) and global (patch-

wise) approaches. An element-wise selective and reduced integration (SRI) method falls into the first

category. A SRI rule for quadratic NURBS basis functions was presented in Bouclier et al. (2012), and

it was generalized by Adam et al. (2014) in terms of the degree of basis functions and the inter-element

continuity. A key observation of the latter work is that additional constraints in the stiffness matrix may

arise due to higher inter-element continuity in the membrane and transverse shear strain fields, which

can also lead to a significant spurious increase of the bending stiffness. Thus, for IGA, a local approach

always needs to be combined with an additional treatment, e.g., further reduction of the number of

quadrature points in the SRI, see Adam et al. (2014). A local approach can be also found in the context

of B̄ projection methods for IGA. For example, Hu et al. (2016) presented a selective reduction of the
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degree of basis in the local (element-wise) projection space, which was extended to shell problems in Hu

et al. (2020). On the other hand, a patch-wise quadrature rule, which falls into the global approach,

was initiated by an observation that the conventional element-wise quadrature rule for FEA may not be

optimal for IGA (Hughes et al., 2010). Patch-wise reduced integration approaches to alleviate locking

were also developed, e.g., SRI in Adam et al. (2015), and a Greville quadrature rule in Zou et al. (2022).

A global approach in mixed formulations suffers from a significant increase of the computational cost due

to the inversion of the global Gram matrix, and the resulting dense global stiffness matrix, see, e.g., the

B̄ projection method in Bouclier et al. (2012). To overcome this, a local least square (LLSQ) method

(Govindjee et al., 2012) was employed in Bouclier et al. (2013). We first recall the solution process in

LLSQ1. It converts the given least square problem to find the solution uF into an approximated problem,

which can be solved much more efficiently.

GuF = p ⇔ GEA
TuF = pE + �q, q ∈ ker(A) ⇒ GEA

TuS = pE ⇔ uS =
(
AAT

)︸ ︷︷ ︸
diag.

−1
AG−1

E pE , (3)

where GE is a block diagonal matrix, whose blocks are element-wise Gram matrices, and A denotes

the assembly operator (Boolean matrix). By neglecting q, which is a kernel of the matrix A, a set of

independent element-wise equations is obtained, whose solution uS is an approximation of the original

solution uF , i.e., uS ̸= uF . Note that in the calculation of uS , the matrices that need to be inverted are the

diagonal matrix, AAT, and the element Gram matrices, which is much more efficient than inverting the

global Gram matrix G. Although neglecting q gives a significant improvement in the efficiency, the error

∥uS − uF ∥ may increase, as degree of basis p and the inter-element continuity increase. A similar concept

was employed in the mixed formulation for alleviating membrane locking in plane Kirchhoff rods by Greco

et al. (2017). This approach was extended to shell problems in Kikis and Klinkel (2022), based on the

Hellinger-Reissner variational principle, where the test functions are allowed to have discontinuities, so

that the finite element equations for the test functions of the additional solution fields can be treated

independently from each other. This enables an efficient element-wise static condensation. However, this

selection of different function spaces for the test functions and solutions leads to unsymmetric stiffness

matrix. A mixed formulation was also developed in the context of isogeometric collocation method

for nonlinear beams, e.g., Marino (2017) and Weeger et al. (2017), where the control variables of the

additional fields are not condensed out, which may significantly increase the number of DOFs, but the

stiffness matrix is still sparse. A more intuitive way to achieve field-consistency, in geometrically linear

problems, is to utilize one degree lower bases for the rotation field, e.g., see Da Veiga et al. (2012) for

plate problems and Kikis et al. (2019) for plate and shell problems.

A beam can be regarded as a spatial curve with attached deformable director vectors (or directors).

This curve is then also called directed or Cosserat curve. In this paper, the mixed formulation is based

on the first order beam kinematics in Choi et al. (2021), where it was shown that the displacement-based

beam formulation suffers from transverse shear, membrane, and curvature-thickness locking. For an

illustration of the curvature-thickness locking, one may refer to Betsch and Stein (1995). It was also

1Here we recall Eqs. (8) and (9) in Govindjee et al. (2012), and use (•)T for the matrix transpose.
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observed that the tangent stiffness matrix becomes ill-conditioned in the thin beam limit, which leads

to instability in the Newton-Raphson solution process. In our present study, a Hu-Washizu variational

principle is employed, where we introduce additional solution fields for the stress resultants and strains

of the beam. This provides the following advantages:

• Alleviation of transverse shear, membrane, and curvature-thickness locking,

• Improved convergence of the Newton-Raphson iteration for larger load increments (Klinkel et al.,

2006), and in the thin beam limit,

• In contrast to the Hellinger-Reissner principle, the stress resultants and strain of the beam are

independent from each other, so that we can use nonlinear constitutive laws (Santos et al., 2010).

Our mixed formulation is basically a local approach, and we alleviate the additional artificial constraints

due to the higher order continuity, by reducing the degree of basis functions in the additional solution

fields, i.e., the beam’s stress resultants and strains. This approach has the following novelties over

previous local and global approaches:

• It enables an element-wise static condensation.

• It reduces the number of internal variables, and the size of relevant stiffness (sub-)matrices, which

also makes the matrix operations in the condensation process computationally more efficient.

• It uses the same function space for the test and solution functions of the additional fields, so that

the resulting stiffness matrix is always symmetric.2

The remainder of this paper is organized as follows. In Section 2, we briefly review the beam kine-

matics with extensible directors, and recall the expressions of the strains, and the stress resultants of

the beam. In Section 3, we present a mixed finite element formulation, based on the Hu-Washizu vari-

ational principle. In Section 4, we present the isogeometric finite element discretization. In Section 5,

we present a formulation for imposing the rotational continuity between beams. In Section 6, several

numerical examples are presented. Section 7 concludes the paper.

2. Beam kinematics

Two transverse directions of the beam are defined by the principal directions of the second moment

of inertia tensor in the initial (undeformed) cross-section. The origin of the transverse coordinates

ζα (α ∈ {1, 2}) is defined by the geometrical center of the initial cross-section, which coincides with

the mass center under the assumption of constant mass density in the initial configuration. The line

connecting these center points of the cross-sections is called an axis, whose position is denoted by φ(s, t).

2Here we assume conservative loads, and no rotational coupling conditions. The relevant discussions are given in Sections

3 and 5, respectively.
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Here, s denotes the arc-length coordinate along the initial center axis, and t denotes time. In this paper,

the argument t is often omitted for brevity. The initial beam configuration is expressed by

x0(ζ
1, ζ2, s) = φ0(s) + ζγDγ(s), (4)

where φ0(s) denotes the position of the beam’s initial center axis, and the initial cross-sectional plane is

spanned by two initial directors Dγ(s) ∈ R3 (γ ∈ {1, 2}). Here and hereafter, unless stated otherwise,

repeated Greek indices like α, β, and γ imply summation over 1 to 2, and repeated Latin indices like

i and j imply summation over 1 to 3. We define a covariant basis Gi := ∂x0/∂ζ
i (i ∈ {1, 2, 3}) with

ζ3 ≡ s, and a contravariant basis
{
G1,G2,G3

}
is defined by the orthogonality condition Gi ·Gj = δji ,

where δji denotes the Kronecker-delta. According to the first order beam kinematics (Rhim and Lee,

1998; Choi et al., 2021), the position vector is a linear function of the coordinates ζγ along the transverse

directions, i.e.

x(ζ1, ζ2, s, t) = φ(s, t) + ζγdγ(s, t), (5)

where φ(s, t) denotes the current position of the center axis, and the current cross-sectional plane is

spanned by two current directors dγ(s, t) ∈ R3 (γ ∈ {1, 2}). Fig. 1 schematically illustrates this beam

kinematics. Fig. 2 shows a reference domain in the case of a rectangular cross-section, where {E1,E2,E3}

denotes the standard Cartesian basis in R3, with E3 along the axial direction, and E1 and E2 along two

transverse directions.

Figure 1: An illustration of the beam kinematics in the initial and current configurations, whose domains are

denoted by B0 and Bt, respectively. C0 and Ct indicate the initial and current center axes, respectively. A0 and

At indicate the initial and current cross-sections, respectively. {e1, e2, e3} denotes the standard Cartesian basis

in R3. This figure is redrawn with modifications from Choi et al. (2021).

Figure 2: An example of the reference domain B having a rectangular cross-section with dimension h1 × h2. A

denotes the reference domain of the cross-section. This figure is redrawn with modifications from Choi et al.

(2021).

The covariant components of the Green-Lagrange strain tensor E = EijG
i ⊗Gj can be expressed in
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terms of the beam strains, as (Choi et al., 2021)

E =



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 ζ1 ζ2 ζ1ζ1 ζ2ζ2 ζ1ζ2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 ζ1 ζ2 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 ζ1 ζ2 0 0 0





ε

ρ

κ

δ

γ

χ


=: Aε, (6)

with E := [E11, E22, E33, 2E12, 2E13, 2E23]
T
, where we have defined the beam strain arrays

ρ :=

 ρ1

ρ2

 , κ :=


κ11

κ22

2κ12

 , δ :=

 δ1

δ2

 , γ :=



γ11

γ12

γ21

γ22


, and χ :=


χ11

χ22

2χ12

 ,

with

ε :=
1

2
(
∥∥φ,s∥∥2 − 1) (axial stretching strain), (7a)

ρα := φ,s ·dα,s −φ0,s ·Dα,s (bending strain), (7b)

δα := φ,s ·dα −φ0,s ·Dα (transverse shear strain), (7c)

γαβ := dα ·dβ,s −Dα ·Dβ,s (couple shear strain), (7d)

χαβ :=
1

2
(dα ·dβ −Dα ·Dβ) (cross-section stretching and in-plane shear strains), (7e)

καβ :=
1

2
(dα,s ·dβ,s −Dα,s ·Dβ,s) (high-order bending strain). (7f)

Remark 2.1. Constant in-plane cross-sectional strains in the beam kinematics. Two extensible directors can

represent constant in-plane cross-sectional strains according to Eq. (7e), and the work-conjugate stress resultants

may not vanish as well. That is, the conventional zero-stress condition is not imposed here. The inability to

represent linear in-plane (cross-sectional) strains may artificially increase the bending stiffness, which is so called

Poisson locking. In Section 3.1, we discuss the further enrichment of the cross-sectional strain, based on the EAS

method.

3. Mixed finite element formulation

3.1. Variational formulation

We assume that the strain energy density (defined as the strain energy per unit undeformed volume)

is expressed in terms of the Green-Lagrange strain tensor E = E(u) with u := x− x0, as

Ψ = Ψ(E). (8)

Then the total strain energy of the beam is obtained from

U :=

∫
B0

ΨdB0 =

∫ L

0

∫
A
Ψ j0 dAds, (9)
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where j0 denotes the Jacobian of the mapping x0(ζ
1, ζ2, s) : B → B0, such that dB0 = j0 dB. In the

Hu-Washizu variational principle, the total strain energy is expressed by

UHW :=

∫ L

0

∫
A
ΨHW j0 dAds, (10)

with the strain energy density,

ΨHW = ΨHW(E(u),Ep,Sp) = Ψ(Ep) + Sp : {E(u)−Ep} , (11)

where we have three independent solution fields, the displacement vector u, the physical Green-Lagrange

strain tensor Ep, and the physical second Piola-Kirchhoff stress tensor Sp. E(u) denotes the geometrical

(or compatible) Green-Lagrange strain tensor. The physical Green-Lagrange strain can be decomposed

into the physical kinematic part, and the enhanced part, as (Simo and Rifai, 1990)

Ep = Ec
p︸︷︷︸

kinematic

+ Ẽ︸︷︷︸
enhanced

, (12)

where the additional strain part Ẽ is intended to enrich higher-order cross-sectional strains. It is noted

that, in contrast to the beam formulation of Wackerfuß and Gruttmann (2009), which considers no

cross-sectional strains (rigid cross-section) in the kinematic assumption, the kinematic part in Eq. (12)

includes a constant in-plane strain field, see Remark 2.1. From Eq. (6), the physical kinematic part can

be further decomposed into

Ec
p(ζ

1, ζ2, s) = A(ζ1, ζ2) εp(s), (13)

where εp(s) denotes the array of physical (kinematic) beam strains, i.e. εp :=
[
εp,ρ

T
p ,κ

T
p , δ

T
p ,γ

T
p ,χ

T
p

]T
.

Note that we use (•) to denote the Voigt notation of a second order tensor. The enhanced part is

decomposed into

Ẽ(ζ1, ζ2, s) = Γ(ζ1, ζ2)α(s). (14)

In order to alleviate Poisson locking, we enrich the linear and bilinear strains in the cross-section, using

the polynomial basis functions

Γ(ζ1, ζ2) :=



ζ1 ζ2 ζ1ζ2 0 0 0 0 0 0

0 0 0 ζ1 ζ2 ζ1ζ2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ζ1 ζ2 ζ1ζ2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (15)

with nine coefficient functions αi(s), i ∈ {1, 2, ..., 9} (Choi et al., 2021). Here, we enrich only the linear

and bilinear in-plane cross-sectional strains, i.e. E11, E12, and E22. For further enrichment of higher

order strains including the out-of-plane ones, one may refer to Wackerfuß and Gruttmann (2009) and

Wackerfuß and Gruttmann (2011). Using Eqs. (13) and (14), Eq. (12) can be rewritten, as

Ep =
[
A(ζ1, ζ2) Γ(ζ1, ζ2)

]  εp(s)

α(s)

 . (16)
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Then, from Eq. (10), we obtain the modified total strain energy for beams, as

ŨHW =

∫ L

0

{ψ(εp,α) + ε(y) · rp − εp · rp −���α · r̃p} ds, (17)

where we have defined the strain energy density per unit undeformed length (i.e. line energy density)

ψ(εp,α) :=

∫
A
Ψ(Ep(εp,α)) j0 dA, (18)

and the physical stress resultants

rp :=

∫
A
ATSp j0 dA, (19)

and

r̃p :=

∫
A
ΓTSp j0 dA. (20)

The stress resultant field r̃p is removed from Eq. (17) by assuming that r̃p is orthogonal to α, such that

the enhanced cross-sectional strain field does not contribute to the internal virtual work (Simo and Rifai,

1990). Therefore, we finally have the following five independent solution fields along the center axis:

• center axis position φ(s),

• directors dα(s) (α ∈ {1, 2}),

• physical stress resultant rp(s),

• physical (kinematic) strain εp(s),

• (physical) enhanced strain α(s).

Hereafter, for brevity, we use the notation y := [φ,d1,d2]
T
. The first variation of the beam strains can

be expressed by (Choi et al., 2021, Section A4.2)

δε(y) = Btotal δy. (21)

Taking the first variation of Eq. (17) and substituting Eq. (21) yields

GHW
int ≡ δŨHW =

∫ L

0



δy

δrp

δεp

δα


·



BT
totalrp

ε(y)− εp
∂εp

ψ(εp,α)− rp
∂αψ(εp,α)


ds, (22)

where we have defined

∂εpψ(εp,α) :=

∫
A
AT∂EpΨ j0 dA, (23)

∂αψ(εp,α) :=

∫
A
ΓT∂EpΨ j0 dA, (24)

with ∂Ep
Ψ := ∂Ψ/∂Ep. The external virtual work is given by (Choi et al., 2021)

Gext (δy) =

∫ L

0

δyTR̄ ds+
[
δyTR̄0

]
s∈ΓN

, (25)
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with R̄ :=
[
n̄T, ¯̃m1T, ¯̃m2T

]T
and R̄0 :=

[
n̄0

T, ¯̃m1
0
T
, ¯̃m2

0
T
]T

, where n̄ and ¯̃mα (α ∈ {1, 2}) denote the

external stress resultants from the external load on the lateral surface of the beam. n̄0 and ¯̃mα
0 denote

the prescribed stress resultants at the boundary s ∈ ΓN. Here, ΓN ∈ ∅ ∪ {0, L} denotes the Neumann

boundary, where ∅ denotes the empty set. Then, we obtain the following variational equation: Find

y ∈ V, rp, εp ∈ Vp, and α ∈ Va such that

GHW
int (y, rp, εp, δy, δrp, δεp) = Gext (δy) , ∀ δy ∈ V̄, δrp, δεp ∈ Vp, and δα ∈ Va, (26)

with the solution space given by

V :=
{
y ∈

[
H1(0, L)

]d∣∣∣φ = φ̄0, d1 = d̄10, and d2 = d̄20 on s ∈ ΓD

}
, (27)

where ΓD denotes the Dirichlet boundary, such that ΓD ∪ ΓN = {0, L} and ΓD ∩ ΓN = ∅. φ̄0 and

d̄α0 (α ∈ {1, 2}) denote the prescribed center axis position and director vectors, respectively, and the

variational space is given by

V̄ :=
{
δy ∈

[
H1(0, L)

]d∣∣∣ δφ = δd1 = δd2 = 0 on s ∈ ΓD

}
, (28)

with d = 9, which is the number of independent components in y. It is chosen such that the physical

stress resultants and physical strains belong to Vp :=
[
L2(0, L)

]dp
, and the enhanced strain belong to

Va :=
[
L2(0, L)

]da
, where the number of independent functions are dp = 15, and da = 9. This means that

no inter-element continuity is required for those additional fields, so that we can locally (element-wisely)

condense out those corresponding nodal degrees-of-freedom after the finite element approximation. Those

condensed coefficients are kept as internal variables, which requires additional computer storage. It is

noted that we simply follow the conventional treatment to consider the physical stress and strain fields in

the open domain (0, L) ∋ s, without any extra boundary conditions, see, e.g. Wackerfuß and Gruttmann

(2009). A further investigation on this aspect remains future work.

3.2. Linearization

The internal virtual work GHW
int of Eq. (22) contains geometrical or material nonlinearities. Therefore,

we employ a Newton-Raphson method to solve the variational equation of Eq. (26). An external load is

incrementally applied, and using the equilibrium configuration at the previous nth load step as an initial

guess, the solution at the next, (n + 1)th load step is found. The iterative scheme to find the solution

is stated as follows: For a given solution n+1η(i−1) :=
{
n+1y(i−1), n+1r

(i−1)
p , n+1ε

(i−1)
p , n+1α(i−1)

}
∈

V × Vp × Vp × Va at the (i − 1)th iteration in the (n + 1)th load step, find the solution increment

∆η := {∆y,∆rp,∆εp,∆α} ∈ V̄ × Vp × Vp × Va such that

∆GHW
int

(
n+1η(i−1), δη,∆η

)
= Gext (δy)−GHW

int

(
n+1η(i−1), δη

)
,

∀ δy ∈ V̄, δrp, δεp ∈ Vp, and δα ∈ Va. (29)
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The solution is then updated by

n+1y(i) = n+1y(i−1) +∆y, n+1y(0) = ny,

n+1r
(i)
p = n+1r

(i−1)
p +∆rp,

n+1r
(0)
p = nrp,

n+1ε
(i)
p = n+1ε

(i−1)
p +∆εp,

n+1ε
(0)
p = nεp,

n+1α(i) = n+1α(i−1) +∆α, n+1α(0) = nα,


(30)

where the initial guess is given by the converged solution in the previous (nth) load step. We obtain the

increment of the internal virtual work ∆GHW
int by taking the directional derivative of Eq. (22), as

∆GHW
int =

∫ L

0



δy

δrp

δεp

δα



T 
Y TkGY BT

total 09×15 09×na

015×15 −115×15 015×na

Cp CaeT
p

sym. Caa
p





∆y

∆rp

∆εp

∆α


ds, (31)

with the operator (Choi et al., 2021, Section A.4.4)

Y :=



(•),s13×3 03×3 03×3

03×3 (•),s13×3 03×3

03×3 03×3 (•),s13×3

03×3 13×3 03×3

03×3 03×3 13×3


15×9

. (32)

Here we have defined the constitutive matrices

Cp :=

∫
A
ATCpA j0 dA, (33)

Caa
p :=

∫
A
ΓTCpΓ j0 dA, (34)

Cae
p :=

∫
A
ΓTCpA j0 dA, (35)

where

Cp :=
∂2Ψ

∂Ep ∂Ep
, (36)

and (•) denotes the Voigt notation of a fourth-order tensor.

4. An isogeometric finite element discretization

4.1. NURBS curve: An exact representation of the initial geometry

The initial geometry of the beam’s center axis can be represented by a spline curve. In the framework

of IGA, we utilize the same spline basis functions utilized in the CAD model. Here we summarize the

construction of NURBS curves. More detailed explanation on the properties of NURBS, and algorithms

for the knot insertion and degree elevation can be found in Piegl and Tiller (1996). Those two opera-

tions are not commutative. The knot insertion followed by a degree elevation maintains the maximum
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continuity of the original curve, which is so called k-refinement. The other way around, increasing the

degree of each curve segment after the knot insertion, corresponds to the classical p-refinement. For a

specific example of these mesh refinement processes, see Hughes et al. (2005). For a given patch of a

NURBS curve, we have the knot vector Ξ̃ =
{
ξ1, ξ2, ..., ξncp+p+1

}
, where ξi ∈ R is the ith knot, p is the

degree of basis functions, and ncp is the total number of basis functions (or control points). B-spline

basis functions are recursively defined (Piegl and Tiller, 1996). For p = 0, they are defined by

B0
I (ξ) =

1 if ξI ≤ ξ < ξI+1,

0 otherwise,

(37)

and for p = 1, 2, 3, ..., they are defined by

Bp
I (ξ) =

ξ − ξI
ξI+p − ξI

Bp−1
I (ξ) +

ξI+p+1 − ξ

ξI+p+1 − ξI+1
Bp−1

I+1(ξ), (38)

where ξ ∈ Ξ ⊂ R denotes the parametric coordinate, and Ξ :=
[
ξ1, ξncp+p+1

]
represents the parametric

domain. We employ NURBS to exactly represent the initial geometries from a conic section like circle

and ellipse. From the B-spline basis functions, the NURBS basis functions are defined by

Np
I (ξ) =

Bp
I (ξ)wI

ncp∑
J=1

Bp
J(ξ)wJ

, (39)

where wI denotes the given weight of the Ith control point. If the weights are equal, the NURBS becomes

a B-spline. The geometry of the beam’s initial center axis can be represented by a NURBS curve, as

X(ξ) =

ncp∑
I=1

Np
I (ξ)XI , (40)

where XI are the control point positions. The arc-length parameter along the initial center axis can be

expressed by the mapping s(ξ) : Ξ → [0, L], defined by

s(ξ) :=

∫ η=ξ

ξ1

∥X,η(η)∥dη. (41)

Then the Jacobian of the mapping is derived as

j̃ :=
ds

dξ
= ∥X,ξ(ξ)∥ . (42)

In the discretization of the variational form, we often use the notation Np
I,s for brevity, which is defined

by

Np
I,s := Np

I,ξ

dξ

ds
=

1

j̃
Np

I,ξ, (43)

where Np
I,ξ denotes the differentiation of the basis function Np

I (ξ) with respect to ξ.

4.2. Discretization of the variational form

We may choose different degrees of basis functions for the displacements of the center axis, and

directors, which are denoted by p and pd, respectively. In this paper, we propose to use pd = p − 1 for
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the field consistency in the finite element approximation of the transverse shear strain of Eq. (7c). In the

entire domain of a curve patch, we have the approximated current center axis position

φh(s(ξ)) =

ncp∑
I=1

Np
I (ξ)φαI , ξ ∈ Ξ, (44)

and total director displacement d̄α := dα −Dα (α ∈ {1, 2})

d̄
h
α (s(ξ)) =

nd
cp∑

J=1

Npd

J (ξ) d̄αJ , α ∈ {1, 2} , ξ ∈ Ξ, (45)

where ndcp denotes the total number of control coefficients for the director displacement field in the patch.

In IGA, we define an element by a half-open interval between two distinct knots, i.e. a non-zero knot

span. Let Ξe := [ξe1, ξ
e
2) ∋ ξ denote the eth element, such that Ξ = Ξ1 ∪ Ξ2 ∪ · · · ∪ Ξnel

, where nel

denotes the total number of elements. For the last element of an open curve (i.e. e = nel), we consider

a closed interval Ξnel
:= [ξnel

1 , ξnel
2 ] to include the end point. We use the same number of elements for

both displacement fields of the axis, and directors. We have ne = p+ 1, and nde = pd + 1 local support

basis functions in every element, for the axis and director displacement fields, respectively. Then, we can

rewrite Eqs. (44) and (45) in each element, as

φh(s(ξ)) =

ne∑
I=1

Np
I (ξ)φ

e
I , ξ ∈ Ξe. (46)

and

d̄
h
α (s(ξ)) =

nd
e∑

I=1

Npd

I (ξ) d̄
e
αI , ξ ∈ Ξe. (47)

Combining Eqs. (46) and (47), we obtain

yh =


φh

d̄
h
1

d̄
h
2

 = Ne(ξ)y
e, ξ ∈ Ξe, (48)

with

Ne :=

 Np
1 13×3 · · · Np

ne
13×3 03×6nd

e

06×3ne Npd

1 16×6 · · · Npd

nd
e
16×6

 , (49)

and ye :=
[
φeT

1 , · · · ,φeT
ne
, d̄

eT
1 , · · · , d̄eT

nd
e

]T
, where φI ∈ R3, and d̄J :=

[
d̄
T
1J , d̄

T
2J

]T
∈ R6 denote the con-

trol coefficient vectors for the current axis position, and the total displacement of directors, respectively.

In the approximation of physical stress resultants, and strains, we allow for inter-element discontinuity

for an element-wise static condensation process, and use Lagrange interpolation functions. We first de-

fine a mapping from a parametric domain [−1, 1] ∋ ξ̄, where the Lagrange functions are defined, to the

closed interval Ξ̄e := [ξe1, ξ
e
2] ∋ ξ, as

ξ̄ = 1− 2

(
ξe2 − ξ

ξe2 − ξe1

)
. (50)

The physical stress resultants are approximated, using the Lagrange polynomial functions of degree pp,

as

rhp(s(ξ)) =
[
L
pp

1 (ξ̄)115×15 · · · L
pp

np
e
(ξ̄)115×15

]
re1
...

re
np
e

 =: Lpp
e (ξ̄) re, ξ̄ ∈ [−1, 1] , (51)
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where reI ∈ R15 denotes the coefficient array for the physical stress resultants. L
pp

i denotes the ith

Lagrange polynomial functions of degree pp in each element, and npe = pp + 1 denotes the number of

basis functions in eth element. Similarly, the physical beam strains are approximated by

εhp(ξ(ξ̄)) = Lpp
e (ξ̄) ee, with ee :=


ee1
...

ee
np
e

, ξ̄ ∈ [−1, 1] , (52)

where eI ∈ R15 denotes the coefficient vector for the physical beam strains, I ∈ {1, 2, ..., np
e}, and

npe = pp+1 denotes the number of basis functions for the approximation of physical beam strains within

the element. The physical enhanced strain parameters are approximated by linear Lagrange polynomial

bases within each element (i.e. pa = 1), as (Choi et al., 2021)

αh(ξ̃) =
[
Lpa

1 (ξ̄)19×9 Lpa

2 (ξ̄)19×9

] αe
1

αe
2

 =: Lpa
e (ξ̄)αe, (53)

where αe are the nodal vectors of the enhanced strain parameters. Substituting Eq. (52) into Eq. (22),

the internal virtual work is approximated by

GHW
int ≈

nel∑
e=1

∫
Ξe



δye

δre

δee

δαe


· Fe

int j̃ dξ = δy∗T

(
nel

A
e=1

Fe
int

)
, (54)

with the elemental internal load vector, Fe
int :=

[
feTy , feTr , feTε , feTa

]T
, defined by

[
fey
]
9ne×1

:=

∫
Ξe

BeT
total r

h
p j̃ dξ, (55a)

[fer ]15n̄e×1 :=

∫
Ξe

LT
e

{
ε(yh)− εhp

}
j̃ dξ, (55b)

[feε ]15n̄e×1 :=

∫
Ξe

LT
e

{
∂εp

ψ(εhp,α
h)− rhp

}
j̃ dξ, (55c)

[fea ]15n̄e×1 :=

∫
Ξe

LT
e ∂αψ(ε

h
p,α

h) j̃ dξ. (55d)

A denotes the finite element assembly operator, and y∗ denotes the global array of the coefficients in

the center axis position, director displacement, and the additional stress and strain fields. Similarly, the

increment of internal virtual work is also approximated by

∆GHW
int ≈

nel∑
e=1



δye

δre

δee

δαe


·Ke

int



∆ye

∆re

∆ee

∆αe


= δy∗T

(
nel

A
e=1

Ke
int

)
∆y∗, (56)
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and the element tangent stiffness matrix

Ke
int :=



ke
yy keT

ry 0dne×dpn
p
e

0dne×dana
e

0dpn
p
e×dpn

p
e

ke
rε 0dpn

p
e×dana

e

ke
εε keT

aε

sym. ke
aa


, (57)

with

ke
yy :=

∫
Ξe

YT
e kGYe j̃ dξ, (58a)

ke
ry :=

∫
Ξe

LT
e Be

total j̃ dξ, (58b)

ke
rε := −

∫
Ξe

LT
e Le j̃ dξ, (58c)

ke
εε :=

∫
Ξe

LT
e CpLe j̃ dξ, (58d)

ke
aε :=

∫
Ξe

LT
e Caε

p Le j̃ dξ, (58e)

ke
aa :=

∫
Ξe

LT
e Caa

p Le j̃ dξ. (58f)

Detailed expressions of kG and Ye can be found in Appendix A.1. The external virtual work of Eq. (25)

is also approximated by

Gext(δy) ≈ δyTFext, with Fext :=
nel

A
e=1

Fe
ext +A

[
R̄0

]
s∈ΓN

, (59)

where y denotes the global array of the control coefficients for the center axis position, and director

displacement field. We have also defined

Fe
ext :=

∫
Ξe

NT
e R̄ j̃ dξ. (60)

Substituting Eqs. (54) and (56) into Eq. (29) gives

δy∗T

(
nel

A
e=1

Ke
int

)
∆y∗ = δyT Fext − δy∗T

(
nel

A
e=1

Fe
int

)
. (61)

4.2.1. Element-wise static condensation

Since the physical strain and stress resultants may have discontinuities between adjacent elements,

Eq. (61) can be rewritten as

nel∑
e=1

δyeT
(
ke
yy∆ye + keT

ry ∆re
)
= δyT Fext −

nel∑
e=1

δyeTfey , (62a)

ke
ry∆ye + ke

rε∆ee = −fer , e ∈ {1, · · · , nel} , (62b)

keT
rε ∆re + ke

εε∆ee + keT
aε ∆α

e= −feε , e ∈ {1, · · · , nel} , (62c)

ke
aε∆ee + ke

aa∆α
e = −fea , e ∈ {1, · · · , nel} . (62d)
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Since, the matrices ke
rε and ke

aa are invertible, we obtain from Eqs. (62b)-(62d)

∆ee = −ke −1
rε

(
fer + ke

ry∆ye
)
, (63a)

∆αe = −ke −1
aa (fea + ke

aε∆ee) , (63b)

∆re = −ke −T
rε

(
feε + ke

εε∆ee + keT
aε ∆α

e
)
. (63c)

Then, Eq. (62a) can be rewritten as

δyTK̄∆y = δyTF̄, (64)

where we define

K̄ :=
nel

A
e=1

K̄int, (65)

and

F̄ :=
nel

A
e=1

(
Fe

ext − F̄
e
int

)
+A

[
R̄0

]
s∈ΓN

, (66)

with

K̄
e
int := ke

yy + keT
ry ke −T

rε

(
ke
εε − keT

aε k
e−1
aa ke

aε

)
ke−1
rε ke

ry, (67)

and

F̄
e
int := fey − keT

ry ke−T
rε

{
feε − ke

εεk
e−1
rε fer − keT

aε k
e−1
aa

(
fea − ke

aεk
e−1
rε fer

)}
. (68)

The only matrices which need to be inverted are ke
rε and ke

aa. By applying the homogeneous displacement

boundary conditions, we finally have the following reduced system of linear equations at ith iteration in

the (n+ 1)th load step

n+1K̄
(i−1)
r ∆yr =

n+1F̄
(i−1)
r , (69)

where (•)r denotes the reduced vector or matrix.

4.2.2. Update of the configuration and internal variables

Using the solution increment ∆yr obtained by solving Eq. (69), we update the control coefficients φI

and d̄J by the following procedure: At the ith iteration in the (n+ 1)th load step, we update

n+1φ
(i)
I = n+1φ

(i−1)
I +∆φ

(i)
I , I ∈ {1, 2, · · · , ncp} , (70a)

n+1d̄
(i)
J = n+1d̄

(i−1)
J +∆d

(i)
J , J ∈

{
1, 2, · · · , ndcp

}
, (70b)

with the initial guesses n+1φ
(0)
I ≡ nφI , and

n+1d̄
(0)
J ≡ nd̄J , from the equilibrium configuration in the

previous (nth) load step. Further, from ∆yr, ∆ye can be simply extracted for each element, and is

substituted into Eq. (63) to obtain the increment of internal variables ∆ee, ∆re, and ∆αe. Then, for

every element e ∈ {1, · · · , nel}, we update

n+1ee (i) = n+1ee (i−1) +∆ee, (71a)

n+1re (i) = n+1re (i−1) +∆re, (71b)

n+1αe (i) = n+1αe (i−1) +∆αe, (71c)

with the initial guesses n+1ee (0) ≡ nee, n+1re (0) ≡ nre, and n+1αe (0) ≡ nαe, from the converged solution

in the previous (nth) load step.
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5. Imposition of rotational continuity between beams

In order to facilitate the connection of multiple beams with an arbitrary initial intersection angle

and rotational continuity, we introduce rotational degrees-of-freedom for directors at the ends of beam.

Here we are only concerned with the rigid joint condition, that is, all the connected beams’ cross-sections

may have only three-rotational degrees-of-freedom. However, in contrast to the conventional rigid joint,

our formulation may still allow stretching along the two directors in each cross-section. The presented

formulation is limited to the finite element basis functions having Kronecker-delta property at the end

points of the beam. Therefore, for IGA, we only use clamped knot vectors, so that the NURBS basis

functions have Kronecker-delta property at the end points of the beam. This enables us to simply

consider only the director coefficients corresponding to the end points, as in the conventional finite

element formulation, e.g., see Romero and Armero (2002).

5.1. Multiplicative decomposition of the directors

The director vectors can be decomposed into a unit director and a scalar stretch, as

dα(s) = λα(s) tα(s), (72)

with the stretch λα(s) := ∥dα(s)∥ > 0, where no summation is implied on α ∈ {1, 2}. Further, the unit

vectors can be expressed by rotational transformation as

tα(s) = Λα(s)Eα with Λα(s) ∈ S2α, α ∈ {1, 2} , (73)

where we define (Simo and Fox, 1989)

S2α :=
{
Λ ∈ SO(3)|Λψ = ψ, and ψ ∈ R3 satisfies ψ ·Eα = 0

}
. (74)

SO(3) defines the set of proper orthogonal tensors in three-dimensional space, and S2α is a subset of

SO(3) such that the axis of rotation is orthogonal to Eα ∈ R3. At an admissible perturbed configuration,

Eq. (73) can be rewritten as

tαε(s) = Λαε(s)Eα, ε ∈ R, (75)

where the subscript (•)ε indicates the dependence of (•) to the perturbation amount ε. Hereafter, we

often omit the argument s for brevity. Taking the directional derivative of Eq. (75) yields

δtα :=
d

dε
tαε|ε=0 = δ̂θα tα, α ∈ {1, 2} , (76)

where δ̂θα := δΛαΛ
T
α (without summation on α) is a skew-symmetric tensor, so that we have

δtα = δθα × tα, α ∈ {1, 2} . (77)

We use the notation (̂•) to represent the skew-symmetric tensor associated with a given vector (•) ∈ R3,

such that (̂•)h = (•)×h, ∀h ∈ R3. Note that δθα is constrained by the condition, δθα · tα = 0 (no sum

on α ∈ {1, 2}) (Simo and Fox, 1989). Thus, each unit director has only two rotational DOFs. Here, for

simplicity, we restrict our discussion by the further constraint

δθ1 = δθ2 ≡ δθ. (78)
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Thus, we eventually have three-rotational DOFs of the cross-section at a selected end point. Note that

the stretches along the directors, λα (α ∈ {1, 2}) are kinematically not constrained. Then, substituting

Eq. (78) into Eq. (77), we have

δtα = δθ × tα, α ∈ {1, 2} . (79)

Then, the orthogonal tensor Λαε at the perturbed configuration can be expressed using an exponential

map by (Simo and Vu-Quoc, 1986)

Λαε = exp
[
ε δ̂θ

]
Λα, ε ∈ R, α ∈ {1, 2} . (80)

Taking the first variation of the director in Eq. (72), and substituting Eq. (79) gives

 δd1

δd2

 = Ξ


δθ

δµ1

δµ2

 , (81)

where µα := lnλα/λα (no sum on α ∈ {1, 2}) defines the logarithmic stretch ratio, and we also define

the operator,

Ξ :=

 −d̂1 d1 0T

−d̂2 0T d2

 . (82)

5.2. Isogeometric finite element formulation

Fig. 3 illustrates two cases of junction positions in a curve patch, where we can apply the joint

condition to

• Case 1 (joint at the left-end): the first control point (K = 1) having local support at the first

element e = 1, or

• Case 2 (joint at the right-end): the last control point (K = ndcp) having local support at the last

element nel,

where K denotes the index of control points in a given curve patch. Here, for simplicity, we consider

that an end element has a joint condition only at one end.

Figure 3: Illustration of two cases of joint positions. The curve patch (solid line) of pd = 3 consists of three

elements, and □ and △ indicate the control points having local support at the first (e = 1) and the last element

(e = nel) of the patch, respectively. A joint condition can be imposed at the left end (the first control point, i.e.

K = 1) of the first element (top figure) or the right end (last control point, i.e. K = nd
cp) (bottom figure).

We also denote a set of indices of elements having a joint condition by J . That is, if eth element has

a joint condition, e ∈ J , otherwise, e ̸∈ J . At the end control point of the patch, using Eq. (81), we
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reduce the six director DOFs to five, three rotation parameters and two logarithmic stretch ratios, such

that

δdK :=

 δd1K

δd2K

 = ΞK


δΘK

δµ1K

δµ2K

 , (83)

with

ΞK :=

 −d̂1K d1K 03×1

−d̂2K 03×1 d2K


6×5

, (84)

where K = 1 for e = 1 (i.e. Case 1), and K = ndcp for e = nel (i.e. Case 2), see also TableA.1. Here, we

also define dαK := dhα(0) for K = 1, and dαK := dhα(L) for K = ndcp.

Remark 5.1. In our computer implementation, for convenience, we introduce a fictitous DOF (δΘ∗
K) to have

the same number of control coefficients at the selected boundary control points as we have at internal control

points. The matrix ΞK is also modified to have an additional sixth column of zeros accordingly, as

δdK = Ξ∗
Kδd∗

K , with Ξ∗
K :=

[
ΞK 06×1

]
6×6

, and δd∗
K :=



δΘK

δµ1K

δµ2K

δΘ∗
K


, K ∈

{
1, nd

cp

}
(85)

Note that the fictitious DOF (δΘ∗
K) is associated with the change of the angle between two directors, which is not

allowed in the rigid joint condition. The artificial DOFs are removed, together with the constrained displacement

DOFs, so that they are not considered in the final reduced system of linear equations.

Thus, if the first or last element of the given NURBS patch contains a junction, we apply the transfor-

mation

δde = Ξeδd∗e, e ∈ J , (86)

with

Ξe :=



 Ξ∗
1 06×6(nd

e−1)

06(nd
e−1)×6 16(nd

e−1)×6(nd
e−1)

 , if e = 1, (Case 1)

 16(nd
e−1)×6(nd

e−1) 06(nd
e−1)×6

06×6(nd
e−1) Ξ∗

nd
cp

 , if e = nel, (Case 2)

(87)

and we define

δd∗e :=



[
δd∗T

1 , δdeT
2 , · · · , δdeT

nd
e−1, δd

eT
nd
e

]T
, if e = 1, (Case 1)

[
δdeT

1 , δdeT
2 , · · · , δdeT

nd
e−1, δd

∗T
nd
cp

]T
, if e = nel. (Case 2)

(88)

For convenience, we further define

Ξ̃
e
:=

 13ne×3ne
03ne×6nd

e

06nd
e×3ne

Ξe

 , and δỹe :=

 δφe

δd∗e

 , (89)
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such that

δye = Ξ̃
e
δỹe. (90)

The same transformation applies to the increment,

∆ye = Ξ̃
e
∆ỹe. (91)

For an element that contains a junction at the end (e ∈ J ), the internal force vector of the element is

transformed, as

δyeTF̄
e
int = δỹeTF̃

e

int with F̃
e

int := Ξ̃
eT

F̄
e
int, (92)

where F̄
e
int is given in Eq. (68). In the same way, the elemental external load vector is also transformed

by

δyeTFe
ext = δỹeTF̃

e

ext with F̃
e

ext := Ξ̃
eT

Fe
ext. (93)

5.2.1. Linearization

The transformation of Eq. (86) also contributes to the geometric tangent stiffness, due to its depen-

dence on the current directions at the junction. Applying a perturbation to the transformation matrix,

Eq. (92) can be rewritten as

δyeT
ε fey = δỹeTΞ̃

eT

ε fey , ε ∈ R, e ∈ J . (94)

Then, the directional derivative is obtained by

d

dε

(
δỹeTΞ̃

eT

ε fey

)∣∣∣
ε=0

=


δΘK

δµ1K

δµ2K


T

KK


∆ΘK

∆µ1K

∆µ2K

 = δd∗T
K K∗

K∆d∗
K , (95)

where

KK =


dαK ⊗ m̃α

K − (dαK · m̃α
K)13×3 m1

K m2
K

m1T
K d1K · m̃1

K 0

m2T
K 0 d2K · m̃2

K


5×5

, (96)

with a repeated index α ∈ {1, 2}, and no summation implied on K ∈
{
1, ndcp

}
. m̃α

K denotes the director

stress couple at the junction, which is simply obtained by the components, conjugate to δdαK , in the

elemental array fey . Note that δdαK ≡ δde
αI , based on the correspondence between indices e, I, and K in

each of the cases 1 and 2, see TableA.1. We also define the moment at the junction, mα
K := dαK × m̃α

K

(no sum on α ∈ {1, 2}). In the second equality of Eq. (95), we also introduce the fictitious fifth row and

columns of zeros,

K∗
K =

 KK 05×1

01×5 0


6×6

. (97)

Then, the geometrical element tangent stiffness matrix due to the joint condition for the eth element

(e ∈ J ) is obtained by

K̃
e
=

 03ne×3ne 03ne×6nd
e

06nd
e×3ne

Ke

 , (98)
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with

Ke :=



 K∗
1 06×6(nd

e−1)

06(nd
e−1)×6 06(nd

e−1)×6(nd
e−1)

 , if e = 1, (Case 1)

 06(nd
e−1)×6(nd

e−1) 06(nd
e−1)×6

06×6(nd
e−1) K∗

nd
cp

 , if e = nel. (Case 2)

(99)

Applying the transformation of Eqs. (90) and (91), and adding the additional geometric tangent stiffness

of Eq. (98), we obtain the tangent stiffness matrix of the element containing the joint, as

K̄e
int = Ξ̃

eT
K̄

e
int Ξ̃

e
+ K̃

e
, e ∈ J , (100)

where K̄
e
int is given in Eq. (65). Then, considering the joint condition, Eq. (64) can be rewritten as

δỹTK̄∆ỹ = δỹTF̄, (101)

where

K̄ := A
e̸∈J

K̄
e
int + A

e∈J
K̄e

int, (102)

and

F̄ := A
e̸∈J

(
Fe

ext − F̄
e
int

)
+ A

e∈J

(
F̃

e

ext − F̃
e

int

)
+A

[
R̄0

]
s∈ΓN

. (103)

After removing the rows and columns corresponding to the DOFs of homogeneous boundary conditions

and fictitious DOFs (see Remark 5.1) in the joint conditions, we obtain the system of linear equations

K̄r ∆ỹr = F̄r, (104)

where the subscript (•)r in Eq. (104) denotes the reduced vector or matrix.

Remark 5.2. Symmetry of tangent stiffness matrix at equilibrium. It appears that this additional geometric

tangent stiffness matrix due to the joint condition is generally non-symmetric due to the term dαK ⊗ m̃α
K . It has

been discussed in Simo and Vu-Quoc (1986) that the presence of a rotation group, which is a nonlinear manifold,

in configuration space leads to the non-symmetry; however, they also proved that the skew-symmetric part of the

geometric tangent stiffness operator vanishes at the equilibrium configuration. In a similar manner, we further

examine the skew-symmetric part of the tangent stiffness matrix, i.e., K̃
A

K := 1
2

(
K̃K − K̃

T

K

)
, which gives

δΘK · K̃A

K∆ΘK = δΘK · 1
2
(dαK ⊗ m̃α

K − m̃α
K ⊗ dαK)∆ΘK =

1

2
δΘK ×mα

K ·∆ΘK . (105)

Then, for multiple beams (NURBS patches) connected to a joint with rotational continuity condition, we rewrite

Eq. (105) as
N∑
i=1

(
δΘK · K̃A

K∆ΘK

)
i
= δΘ×

N∑
i=1

(mα
K)i ·∆Θ, (106)

where the subscript (•)i denotes that the quantity belongs to i-th constituent beam (patch), and N denotes the

total number of connected beams. We also use (δΘK)1 = · · · = (δΘK)N =: δΘ and (∆ΘK)1 = · · · = (∆ΘK)N =:

∆Θ due to the rotational continuity. By the moment equilibrium at the joint,

N∑
i=1

(
mK

α

)
i
= 0. (107)
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Therefore, the skew-symmetric part of the tangent stiffness matrix vanishes at equilibrium. That is, in the

equilibrium configuration, the symmetry of the global tangent stiffness matrix solely depends on whether the

external loading is conservative. In non-equilibrium configurations, the additional geometrical tangent stiffness

due to the rotational continuity conditions leads to an unsymmetric tangent stiffness matrix.

5.2.2. Configuration update procedure

For an end control points under the joint condition, the update process in Eq. (70b) should be replaced

by a multiplicative one for an exact update. Using Eq. (45), the end directors are decomposed into

n+1d
(i)
αK = n+1λ

(i)
αK

n+1t
(i)
αK , (108)

where the finite rotation of the unit director, due to the (finite) incremental rotation ∆Θ(i), can be

expressed by (Argyris, 1982)

n+1t
(i)
αK = exp

[
∆̂Θ(i)

]
n+1t

(i−1)
αK , n+1t

(0)
αK ≡ ntαK , (109)

with

exp
[
∆̂Θ

]
= 1+

sinΘ

Θ
∆̂Θ+

1− cosΘ

Θ2
∆̂Θ

2
, with Θ := ∥∆Θ∥ ̸= 0, (110)

which becomes the identity tensor if Θ = 0. The stretch ratio is also updated by the (finite) increment

of the logarithmic stretch ∆µ
(i)
αK , as

n+1λ
(i)
αK = exp

[
n+1µ

(i)
αK

]
, (111)

with

n+1µ
(i)
αK = n+1µ

(i−1)
αK +∆µ

(i)
αK ,

n+1µ
(0)
αK ≡ nµαK . (112)

Remark 5.3. It should be noted that the presented configuration update procedure does not require any sec-

ondary storage for the cross-sectional orientation and stretch at the previous iteration step, i.e. n+1t
(i−1)
αK , and

n+1µ
(i−1)
αK , respectively. This is due to the fact that they can be simply calculated by using the primary control

coefficients of director displacement d̄K (K ∈
{
1, nd

cp

}
) in Eq. (45), that is, the displacement of directors at the

joint.

6. Numerical examples

In the subsequent numerical examples, we compare the following two approaches in the proposed

mixed formulation within the framework of IGA:

• a global approach (“glo”) using NURBS basis functions of degree pp = p− 1 for the physical

stress resultant and strain fields having Cpp−1 inter-element continuity, which is combined with a

patch-wise static condensation,

• a local approach (“loc”) allowing inter-element discontinuity of the physical stress resultant and

strain fields, which is combined with an element-wise static condensation.

In FEA, we use only the local approach. In both approaches, we use full Gauss integration along the

axis (“FI”). For the integration over the cross-section, we also use Gauss integration considering 3 × 3

quadrature points.
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6.1. Cantilever beam under bending moment

We consider an initially straight beam of length L = 10m with a rectangular cross-section of width

w = 1m and thickness h. A St.Venant-Kirchhoff type material is considered, with Young’s modulus

E = 1.2 × 107 Pa, and Poisson’s ratio ν = 0. The beam’s left-end is constrained, and the other end

is subject to a moment load M = 2πEI/L, where I = wh3/12 denotes the second area moment of

inertia of the cross-section, see Fig. 4. The moment load is applied by a distributed follower load on the

cross-section at the right-end, whose expressions of the external virtual work and its increment can be

found in Choi et al. (2021). At the left-end, the cross-section’s translation and rotation are constrained,

but the transverse normal (through-the-thickness) stretching is allowed, so that

φ = φ0, ∆d11 = ∆d12 = 0, and ∆d13 is free, (113)

where ∆dαi := ∆dα · ei. For the given problem, we have an analytical solution for the thin beam limit

(pure bending condition), such that the moment M deforms the beam’s axis into a circle with radius

R = EI/M .

Figure 4: Cantilever beam under bending moment. Geometry and boundary conditions. Note that the thickness

stretch (∆d13) is free at s = 0.

6.1.1. Alleviation of locking for p = 2 in IGA by reducing pd

Figs. 5a and 5b show the distribution of the transverse shear strain along the beam’s axis resulting

from FEA and IGA, respectively. In both cases, we use uniformly reduced integration (URI). The FEA

result shows that the positions of the Gauss quadrature points in every element coincide with the zeros

of the transverse shear strain, which is discontinuous across the elements. Thus, transverse shear locking

can be alleviated by URI in FEA. However, in the IGA results, it is seen that the continuous strain

distribution vanishes in other locations than the Gauss quadrature points. This means that an element-

wise reduced integration is not an effective tool for IGA to alleviate transverse shear locking. Transverse

shear locking can be explained by the field-inconsistency paradigm (Prathap, 2013). To circumvent this

inconsistency, we may consider to use one degree lower basis functions for the director field. In Fig. 6,

we investigate the effectiveness of using pd = p − 1 to alleviate the transverse shear locking. Note that

it is combined with full Gauss integration along the axis (“FI”).
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0 5 10
-0.1

0

0.1

(a) FEA, p = pd = 2, URI

0 5 10
-0.5

0

0.5

(b) IGA, p = pd = 2, URI

Figure 5: Cantilever beam under bending moment: Comparison of the transverse shear strain distribution along

the beam’s axis according to FEA and IGA. The slenderness ratio is L/h = 102. In both cases, we use quadratic

basis functions, and five elements. In every element, we use two Gauss quadrature points (nG = 2), i.e. uniformly

reduced integration (URI). The hollow red circles represent the positions of the Gauss quadrature points, and

the dashed vertical lines represent the element boundaries. All results are obtained from the displacement-based

formulation.

We first recall the expressions of the bending, membrane (axial), and transverse normal (through-the-

thickness) strain energies in Choi et al. (2021),

Πρ :=

∫ L

0

m̃1ρ1 ds ∼ h3, (114)

Πε :=

∫ L

0

ñ εds ∼ h5, (115)

and

Πχ :=

∫ L

0

l̃
11
χ11 ds ∼ h5, (116)

respectively. Therefore, the ratios Πε/Πρ and Πχ/Πρ should decrease quadratically with decreasing the

initial cross-sectional thickness h. Further, the transverse shear strain energy should also be proportional

to h5, i.e.

Πδ :=

∫ L

0

q̃1δ1 ds ∼ h5. (117)

In the calculation of the strain energies in Eqs. (115)-(117), we use

• compatible strains in Eq. (7), with the approximated displacements, for the displacement-based

formulation,

• approximated physical stress resultants in Eq. (51), and physical strains in Eq. (52) for the mixed

formulation.
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(a) Bending strain
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10-20

10-15

10-10

10-5

100

(b) Transverse shear strain
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10-5

100

(c) Membrane strain

102 103 104 105
10-15

10-10

10-5

100

(d) Transverse normal strain

Figure 6: Cantilever beam under bending moment: Comparison of the strain energies resulting from different

selection of pd, including the cases of using (i) the same degree of basis p = pd = 1, 2 with the uniformly reduced

integration (URI), and (ii) different degree of basis p = 2 and pd = 1 with three Gauss quadrature points per

element (nG = 3), i.e. full integration (FI). Note that IGA using p = 1 gives the same result as FEA using p = 1.

All results are from the displacement-based formulation.

Fig. 6a shows that the FEA results with p = 2 and URI (black curve) exhibits a cubic rate of decrease of

the bending strain energy, as expected by Eq. (114). However, the result from IGA with p = 2 and URI

(red curve) shows, as expected, slight deviation from the analytical rate of decrease due to locking. In

IGA, only in the case of p = 1, it shows the correct decrease rate, since it has no inter-element continuity

in the strain fields, as in FEA. It is also seen that IGA with p = 2 and pd = 1 (blue curve) suffers

from severe locking. We compare the decrease rate of the strain energy with the analytical solution in

Eqs. (115)-(116). In Fig. 6b, it is seen that the approach of using pd = p − 1 (blue curve) yields much

smaller transverse shear strain energy than that from IGA (p = 2) with URI (red curve). In Figs. 6c

and 6d, it is seen that the IGA results show spurious increase in both of the membrane, and transverse

normal strains. In contrast, the results having no inter-element continuity in the strain fields (black

curves) show the quadratic rate of decrease in both cases. This adverse effect of higher order continuity
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in IGA can be also observed in results from the mixed formulation. In Fig. 7, we investigate the decrease

rate of the strain energy, obtained by using the mixed formulation, for different cases of pd and the

inter-element continuity of the strains.

102 103 104 105
10-8

10-6

10-4

10-2

100

102

104

(a) Bending strain

102 103 104 105
10-40

10-30

10-20

10-10

100

(b) Transverse shear strain

102 103 104 105
10-15

10-10

10-5

100

(c) Membrane strain

102 103 104 105
10-14

10-12

10-10

10-8

10-6

10-4

10-2

(d) Transverse normal strain

Figure 7: Cantilever beam under bending moment: Comparison of the strain energies resulting from different

selection of pd, including the cases of using (i) the same degrees of bases p = pd = 2, and (ii) different degrees of

bases p = 2 and pd = 1, and pp = 1. All results are from the mixed formulation with pp = 1, combined with the

local approach (“loc”), and full integration along the axis (nG = 3).

In Fig. 7, it is seen that the IGA using the mixed formulation, combined with a local (element-wise)

static condensation (red curve), suffers from severe locking, see spurious strain energy in Figs. 7b-7d, and

the spuriously higher decrease rate of the bending strain energy in Fig. 7a. This is due to the fact that it

does not consider the locking effect arising from the continuity condition of the strain fields. Surprisingly,

if we reduce pd to 1, the transverse shear strain vanishes at fifth order rate, as in the FEA result, and

all the other spurious strain energies also vanish.

In order to further investigate the alleviation of locking, we compare the distribution of the axial (ε),

transverse shear (δ1), transverse normal (χ11), and couple shear (γ11) strains along the axis, resulting

from three different finite element approximations of the mixed formulation using p = 2. Fig. 8 compares
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the distribution of the transverse shear strain. In every case shown in Fig. 8, the physical strain agrees

very well with the element-wise average of the geometrical strain (black hollow circles), which means the

compatibility condition is weakly satisfied well. For the polynomial basis functions of p = pd = 2, the

transverse shear strain δ1 of Eq. (7c) is a cubic polynomial. In Fig. 8a, the FEA result (Case 1) clearly

shows the cubic (black) curve within each element; however, in the IGA result (case 2), the geometric

strain field in each element (black curve) is very close to a quadratic function. This is attributed to

the additional constraints in IGA for the inter-element C0-continuity of δ1, and it eventually leads to

oscillatory distribution of the physical strains to satisfy the compatiblity condition. In the FEA result

(Case 1), the geometric strain does not vanish, but the corresponding physical strain, using the degree

of basis pp = 1, vanishes properly, see also the physical strain distribution (green square markers) in

Fig. 8b. In contrast, the IGA results with the same degrees of bases p = pd = 2, and pp = 1 (case 2)

shows a significant amount of the transverse shear strain, which leads to a severe (artificial) increase of

the bending stiffness. By decreasing the degree pd in case 3, the transverse shear locking is effectively

alleviated. It is noticeable that the geometrical strain also vanishes, in contrast to the FEA result using

pd = p = 2 (Case 1).

0 1 2 3 4 5 6 7 8 9 10
-5

0

5
10-6

0 1 2 3 4 5 6 7 8 9 10
-2

0

2
10-5

0 1 2 3 4 5 6 7 8 9 10
-1

0

1
10-13

(a) Comparison of the geometrical and physical strains

0 1 2 3 4 5 6 7 8 9 10
-5

0

5
10-7

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1
10-13

(b) Physical strains (bottom: cases 1 and 3 only)

Figure 8: Cantilever beam under bending moment: Distribution of the transverse shear strain δ1 along the axis.

(a) Comparison of the geometrical (black curves) and physical strains (colored curves) along the axis, obtained

by three different formulations (Cases 1-3). In the result of Case 3, the black and red curves are overlapping. (b)

Those physical strains in (a) are re-plotted in the common ordinate. In all results, we use ten elements (nel = 10),

and the selected slenderness ratio is L/h = 105. The dashed lines represent the element boundaries, and the

hollow circles in (a) represent element-wise average of the geometric strain.

Fig. 9 compares the distribution of the transverse normal strain (through-the-thickness stretch), and the

couple shear strain along the axis. For degree pd = p = 2 polynomial bases of director displacements, the

transverse normal strain χ11 in Eq. (7e) is a quartic polynomial. Similar to the previous case of transverse

shear strain distribution, it is observed in Fig. 9a that the geometric strain field in the result of case 2
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is closer to a cubic function within each element, but the FEA result shows a quartic distribution of the

geometric strain in each element. In case 3, we use pd = p−1 = 2, so that χ11 is a quadratic polynomial,

see the parabolic (black) curve in the result of case 3 in Fig. 9a. The geometrical couple shear strain γ11

is one degree lower than χ11, due to γ11 = χ11,s, see the geometric strains (black curves) in Fig. 9b. Here

we observe an inconsistency between the strain fields γ11 and χ11,s, i.e. γ11 ̸= χp
11,s, in both cases 1 and

3. However, this couple shear strain is a higher order strain than the transverse shear strain, in terms of

the transverse coordinate ζ1 in the Green-Lagrange strain component E31, see Eq. (6). Thus, it may not

significantly affect the overall response in thin beams. Further alleviation of this inconsistency remains

future work.
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0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10
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4 10-4

(a) Transverse normal strain
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0 1 2 3 4 5 6 7 8 9 10
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5 10-6

0 1 2 3 4 5 6 7 8 9 10
-2

0

2 10-3

(b) Couple shear strain

Figure 9: Cantilever beam under bending moment: Distribution of the transverse normal (χ11), and couple

shear (γ11) strains along the axis. The geometrical (black curves) and physical (colored curves) strains in the

three cases of the mixed formulation are compared. The hollow circles represent the element-wise average of the

geometrical strain. In all results, nel = 10, and L/h = 105. The dashed lines represent the element boundaries.

Fig. 10 compares the distribution of the axial (membrane) strain along the axis. For the degree p

polynomial bases of the axial displacement, the axial strain is a quadratic polynomial, see the parabolic

(black) curves for the geometric strains in Fig. 10a. In Fig. 10a, the physical strain in case 2 shows slight

discontinuities across the elements, which can be more clearly seen in Fig. 10b. Thus, in full Gauss

integration along the axis, the spurious membrane strain is evaluated, which also contributes to the

artificial increase of the bending stiffness. It is remarkable that, when we reduce the degree pd, the

spurious physical axial strain vanishes. Although the director is not explicitly associated with the axial

strain, the alleviation of the other spurious strain may affect the axial deformation as well in geometrically

nonlinear problems.
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(a) Comparison of the geometrical and physical strains
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(b) Comparison of the physical strains only

Figure 10: Cantilever beam under bending moment: Distribution of the axial strain ε along the axis. (a)

Comparison of the distribution of the geometrical (black curves) and physical (colored curves) axial strains along

the axis in the three cases. The hollow circles in (a) represent element-wise average of the geometric strain. (b)

Those physical strains in (a) are re-plotted in the common ordinate. In all results, nel = 10, and L/h = 105. The

dashed lines represent the element boundaries.

However, in the following, it will be shown that the system is again significantly over-stiffened, as we

increase the order of basis functions, p, and pd = p − 1. To alleviate this, for p > 2, we additionally

adjust the degree pp of the basis functions for the additional fields, physical stress resultants and strains.

6.1.2. Alleviation of locking for p = 3 and pd = 2 in IGA by reducing pp

Fig. 11 compares the convergence rate of strain energies resulting from using pp = p − 1 = 2 and

pp = 1. In both cases, we use the mixed formulation with IGA, p = 3 and pd = 2, combined with the

local approach. In the results from using pp = p − 1 = 2, deteriorated convergence is clearly observed

in Figs. 11b-11d (black curves). Interestingly, the decrease rate of the transverse shear strain energy

approaches the analytical one (fifth order), as we increase the slenderness ratio. This shows the effect

of using the reduced pd = p − 1. It is remarkable that, when we choose the degree pp = 1, the correct

decrease rate is achieved in all cases (red curves).
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Figure 11: Cantilever beam under bending moment: Comparison of the strain energy from the different pp, (i)

pp = 1, and (ii) pp = 2. All results are from the mixed formulation with p = 3 and pd = 2, combined with local

(element-wise) static condensation (“loc”), and full integration (nG = 4).

In the following two sections, we verify the advantanges of IGA in terms of the computational accu-

racy and efficiency over the conventional FEA, due to the higher order continuity in the NURBS basis

functions.

6.1.3. Verification of the superior convergence behavior of IGA in h-refinement

We verify the convergence rate of the presented mixed isogeometric beam formulation, with the

reduced degrees of bases, pd and pp. We compare the IGA results with the FEA results using the Lagrange

polynomial bases of degree p. In FEA, we use p = pd, and the following two different formulations to

alleviate locking,

• the displacement-based formulation with a uniform reduced integration along the axis (URI) with

nG = p,

• the mixed formulation with the degree of bases pp = p− 1 for the additional fields of the physical

stress resultants and strains.
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For all the IGA and FEA results based on the mixed formulation, we use nG = p+ 1 Gauss integration

points for the exact (full) integration. For the given problem, we have an analytical solution in the thin

beam limit (pure bending condition), in which the X-displacement of the center axis is expressed by

uref = R sin
X

R
− L. (118)

For the following verification of the numerical solutions, we utilize the relative L2 norm of the difference

in the X-displacement (u) along the center axis

∥eu∥L2 :=

√√√√∫ L

0
(u− uref)

2
ds∫ L

0
uref 2 ds

. (119)

Fig. 12 compares the convergence of this quantity between the results of FEA and IGA. Figs. 12a and

12b plot the same results with different abscissae: the number of elements, and the number of DOFs,

respectively. In Fig. 12a, it is seen that the FEA results using the displacement-based formulation with

URI (black curves with hollow markers) shows the same rate of convergence with as FEA results using

mixed formulation (black curves with filled markers) for all degrees of bases, p = 1, 2, 3, but the mixed

formulation gives more accurate results due to more accurate numerical integration. Further, in cases

of very high beam slenderness ratio, the URI requires much more iterations in the Newton-Raphson

process, compared with the mixed formulation, which will be shown in Section 6.1.5. In the IGA results

(red and magenta curves), even though we use pd = p− 1, one degree lower than that of FEA (pd = p),

the convergence rate still agrees very well with the analytical (asymptotic) rate (order p + 1). Fig. 12b

clearly shows that IGA gives superior per DOF accuracy, compared with conventional FEA. It should be

noted that the number of DOFs in Fig. 12b only contains the displacement DOFs. In the case of p = 3,

IGA uses much fewer internal DOFs than FEA, due to the lower pp for the former, and the difference is

proportional to the number of elements.

101 102 103
10-10

10-8

10-6

10-4

10-2

100

(a) Comparison of per element accuracy

102 103 104
10-10

10-8

10-6

10-4

10-2

100

(b) Comparison of per DOF accuracy

Figure 12: Cantilever beam under bending moment: Comparison of the relative difference ∥eu∥L2 in FEA and

IGA results. The dashed lines in (a) represent the analytical solution of asymptotic convergence rate, order

p + 1 = 2, 3, 4. The selected slenderness ratio is L/h = 105. In all IGA results, we use pp = 1, but for FEA

results, we use pp = p− 1.
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6.1.4. Further comparison: k-refinement in IGA vs. p-refinement in FEA

We verify the superior convergence behavior of IGA in k-refinement (smooth degree elevation) over

classical p-refinement (degree elevation) in FEA. The advantage of k-refinement is that it enables to

maintain the maximum Cp−1-continuity in the displacement field with bases of degree p, in contrast to

the C0-continuity from p-refinement (Hughes et al., 2005). We also observe an instability of IGA with

uniform reduction of the degree pp for very high degree p ≥ 8, but this turns out to be alleviated by

increasing the number of elements. In Fig. 13, we compare the following three different approaches of

the IGA-based mixed formulation with the FEA-based one,

• the global approach (“glo”),

• the local approach (“loc”) with pd = p, and pp = p− 1,

• the local approach (“loc-r”) with the reduced degrees pd = p− 1, and pp = 1.

In Fig. 14, we further compare the sparsity patterns and the number of nonzero components (#nzc) of

the tangent stiffness matrix in the four chosen cases. We choose the cases giving the relative difference

around 10−7 in Fig. 13 (dashed line): (i) FEA with p = pd = 5 and pp = 4, (ii) IGA (glo) with p = pd = 6

and pp = 5, and (iii) IGA (loc) with p = 7, pd = 6 and pp = 1, and (iv) IGA (loc) with p = 6, pd = 5

and pp = 1. Fig. 13 shows that the IGA-based mixed formulation (loc) without reducing the degrees pd

and pp (black curve with triangle markers) exhibits severe locking, which arises due to the discontinuous

fields of physical stress resultants and strains, which cannot resolve the parasitic strains from the higher

order continuity conditions in the displacement field. Even though the global approach of IGA-based

mixed formulation (blue curve with square markers) gives remarkable improvement of the accuracy, it is

computationally prohibitive, due to (i) the inversion of the full (global) Gram matrix in the condensation

process, and (ii) the resulting dense tangent stiffness matrix, see Fig. 14b. In contrast, the presented

IGA-based mixed formulation (loc-r) with reduced degrees pd = p − 1 and pp = 1 (red curve with star

markers) gives comparable accuracy as the global IGA approach, at much lower computational cost,

due to (i) element-wise (local) condensation, (ii) sparsity of the resulting tangent stiffness matrix, see

Figs. 14c and 14d, and (iii) much fewer number of displacement and internal DOFs due to the reduced

degrees pd and pp. However, in the results of IGA (loc-r) with nel = 10, we observe that the performance

(i.e. convergence rate with increasing degree p) is much better in the range of degree 5 ≤ p ≤ 7, compared

with other degrees. In cases of very high degrees, p = 9, 10, the solution process even diverges. This

result indicates that in the range 2 ≤ p ≤ 4, the system3 is over-constrained, whereas, in the range of

8 ≤ p ≤ 10, the system is under-constrained. This can be alleviated by increasing the number of elements

(nel), see the results from nel = 20 (cyan curve), which exhibit remarkable per DOF accuracy.

3the system of linear equations in the iterative solution process
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Figure 13: Cantilever beam under bending moment: Comparison of the results from the k-refinement in IGA

with the p-refinement in FEA for the relative difference of the X−displacement per displacement DOF. In each

graph, the markers represent the results of using p = 2, 3, ..., 10. In all cases we use the mixed formulation. IGA

(loc-r) diverges from p = 9 and p = 10 onward for nel = 10 and nel = 20, respectively, so those data are not

shown. The slenderness ratio is L/h = 105.
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(a) FEA (loc), p = pd = 5, pp = 4, nel = 10
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(b) IGA (glo), p = pd = 6, pp = 5, nel = 10
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(c) IGA (loc-r), p = 7, pd = 6, pp = 1, nel =

10
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(d) IGA (loc-r), p = 7, pd = 6, pp = 1, nel =

20

Figure 14: Cantilever beam under bending moment: comparison of the sparsity pattern in the tangent stiffness

matrix at the first iteration of the last (10th) load step. Here #nzc denotes the number of nonzero components.

Figures (b) and (c) are shown in the same scale as (a) for comparison.

In order to further investigate the stability of the proposed mixed formulation with pd = p − 1 and

pp = 1, we calculate the natural frequencies of the straight beam by solving an eigenvalue problem at

the initial configuration. We solve a generalized eigenvalue problem without any displacement boundary

conditions

K̄∆y = ω2 M∆y, (120)

where ω denotes the angular (natural) frequency, and K̄ denotes the global tangent stiffness matrix in

Eq. (65), and M denotes the global mass matrix (see Appendix B for its detailed expression). As we

consider no displacement boundary conditions, i.e. free-free ends of the beam, the eigenvalue problem

of Eq. (120) correctly reproduces the first six zero eigenvalues, associated with the rigid body motions.

Here, all the results are calculated by the proposed mixed isogeometric beam formulation (“IGA, loc-r”),

with pd = p − 1 and pp = 1. Fig. 15 shows the convergence of the first four non-zero eigenvalues with

increasing element number, for two different cases with degrees p = 2 and p = 3. The reference solution
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(“Ref.”) is obtained by numerically solving4 the frequency equations for Euler-Bernoulli beam model,

presented in Han et al. (1999). In all cases with p = 2 and p = 3, the eigenfrequencies fi := ωi/2π

(i = 7, 8, 9, 10) converge, and the converged values agree very well with the reference solutions.

101 102 103
0

0.01

0.02

0.03

(a) p = 2, pd = 1, pp = 1

101 102 103
0

0.01

0.02

0.03

(b) p = 3, pd = 2, pp = 1

Figure 15: Eigenvalue analysis of a straight beam: Convergence of the first four non-zero eigenfrequencies,

f7 ∼ f10, with increasing number of elements (i.e. h-refinement). The generalized eigenvalue problem is solved

at the initial configuration. The dashed lines (“Ref.”) represent the Euler-Bernoulli beam solution for each

eigenmode, presented in Han et al. (1999).

Fig. 16 shows the convergence of the smallest four non-zero eigenfrequencies with increasing the degree

of basis p and pd = p − 1, for two different cases of element numbers, nel = 10 and 20. In both cases,

pp = 1. It is seen that the eigenfrequencies drastically decrease in very high degrees p ≥ 8, which means

that selecting those degrees may suffer from severe numerical instability, as we also observe in the result

(red curve) of Fig. 13. However, as we increase the number of elements to nel = 20, we obtain much

better accuracy of f8 and f9, which eventually leads to very accurate results even for those two degrees

p = 8 and 9 (cyan curve) in Fig. 13. For a further treatment of the locking and instability, one may

consider an adjustment of the degree pp selectively, in a similar way to the SRI method in Adam et al.

(2014). This, together with a general test for stability in the mixed formulation (see e.g., the generalized

inf-sup test in Krischok and Linder (2019)) remains future work.

4For this purpose, we use the function fsolve in MATLAB.
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Figure 16: Eigenvalue analysis of a straight beam: Convergence of the first four non-zero eigenfrequencies,

f7 ∼ f10, with increasing degree p and pd = p − 1 (i.e. k-refinement). The generalized eigenvalue problem is

solved at the initial configuration. The dashed lines (“Ref.”) represent the Euler-Bernoulli beam solution for

each eigenmode, presented in Han et al. (1999).

6.1.5. Improved convergence in the thin beam limit

We show that the advantage of the mixed formulation improves the convergence in the Newton-

Raphson iteration. Table 1 compares the convergence history at the last load step between the

displacement-based formulation with uniformly reduced integration (URI) and the mixed formulation.

A very high slenderness ratio L/h = 105 is considered. As seen, the mixed formulation needs much fewer

iterations for the convergence than the displacement-based one. Further the mixed formulation shows

monotonic convergence, but the displacement-based one exhibits severe oscillations during the iteration.
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Table 1: Cantilever beam under bending moment: History of the Newton-Raphson iteration at the last (10th)

load step, in case of the slenderness ratio L/h = 105.

Displacement-based formulation Mixed formulation

FEA, p = 2, nel = 10, URI IGA, p = 2, nel = 10, FI

Iteration#
Euclidean norm

of residual

Energy

norm

Euclidean norm

of residual

Energy

norm

1 6.3E-08 3.8E-08 6.3E-08 4.1E-08

2 4.1E+02 1.5E+02 4.8E+02 1.9E+02

3 5.6E+01 3.2E+00 2.3E+02 4.4E+01

4 2.1E+00 3.6E-03 7.7E+01 5.9E+00

5 3.9E-03 8.7E-09 1.2E+01 1.6E-01

6 4.0E-03 2.3E-08 2.8E-01 8.0E-05

7 2.8E-01 3.1E-05 4.6E-04 2.2E-10

8 6.5E-03 7.1E-08 1.5E-10 2.4E-23
...

...
...

299 9.9E-05 1.8E-11

300 1.5E-11 8.9E-19

301 3.0E-09 1.6E-20

302 1.5E-11 3.2E-26

6.2. 45◦-arc cantilever beam

We consider the initial beam center axis lying on the XY -plane and describing an 1/8 of a full circle

with radius R = 100m and square cross-section of dimension h = w = 1m, see Fig. 17. One end face is

fixed, and a distributed Z-directional force of F = 600 e3 [N/m
2] is applied on the other end face. Two

different cases with isotropic material properties are considered:

• Case 1: St. Venant-Kirchhoff type material without Poisson effect (ν = 0).

• Case 2: Compressible Neo-Hookean type material with Poisson effect, ν = 0.3.

In both cases the Young’s modulus is E = 10MPa. This example aims at verifying the following: (i)

the improved agreement of the beam solution with the brick element one, due to the enriched cross-

sectional strains, (ii) the robustness of the developed mixed finite element formulation in terms of stable

Newton-Raphson convergence.
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Figure 17: 45◦-arc cantilever beam: Undeformed configuration and boundary conditions. Point A indicates the

loaded end (tip) of center axis.

6.2.1. Case 1: Linear elastic material without Poisson effect

We compare the displacement at the tip of the center axis (point A in Fig. 17) with the brick element

solution. For the IGA-based brick element solution, the following three different levels of mesh refinement

in the cross-section is considered, with the same 320 NURBS elements (nonzero knot spans) along the

center axis:

• a single linear element, i.e. deg. = (3, 1, 1), and nel = 320× 1× 1,

• a single quadratic B-spline element, i.e. deg. = (3, 2, 2), and nel = 320× 1× 1,

• 8× 8 cubic B-spline elements, i.e. deg. = (3, 3, 3), and nel = 320× 8× 8.

Here, the notation deg.=(pL, pH, pW), and nel=nL × nH × nW denotes the degrees of basis functions, and

the number of elements along the axial (L), and two transverse directions (H,W), respectively. TableC.1

shows the convergence of the brick element solution. In Table 2, we compare the tip displacements

of the presented beam formulation with reference solutions from literature. It is noticeable that the

presented beam formulation (“IGA,mixed, loc-r”) gives much better agreement with the brick element

solution using a single quadratic element in the cross-section, compared with other reference solutions.

However, it still deviates from the brick element solution with multiple elements in the cross-section

(i.e. “IGA, brick, deg. = (3, 3, 3)”). This can be further improved by enriching the higher order cross-

sectional strains including the out-of-plane ones (cross-sectional warpings), which remains future work.

It is seen that the enrichment of the linear and bilinear in-plane cross-sectional strains by the EAS

method (i.e. “IGA,mixed, loc-r, EAS”) improves the agreement slightly.
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Table 2: 45◦-arc cantilever beam (case 1): Comparison of the tip displacements.

uX uY uZ

IGA, brick, deg.=(3, 3, 3), nel=320×8×8 13.730631 -23.825817 53.609888

IGA, brick, deg.=(3, 1, 1), nel=320×1×1 13.604502 -23.568020 53.477701

IGA, brick, deg.=(3, 2, 2), nel=320×1×1 13.604269 -23.567644 53.477296

IGA, displacement-based, p = 4, nel = 80 13.604255 -23.567612 53.477268

IGA, mixed, (loc-r), p = 4, nel = 80 13.604255 -23.567611 53.477267

IGA, mixed, (loc-r, EAS), p = 4, nel = 80 13.604256 -23.567616 53.477273

Frischkorn and Reese (2013) 14.11 -23.38 53.50

Rhim and Lee (1998) 13.70 -23.64 53.46

Crisfield (1990) 13.40 -23.50 53.40

Cardona and Geradin (1988) 13.69 -23.87 53.71

Dvorkin et al. (1988) 13.50 -23.48 53.37

Simo and Vu-Quoc (1986) 13.74 -23.67 53.50

Bathe and Bolourchi (1979) 13.60 -23.50 53.30

Further, Fig. 18 compares the convergence behavior between different finite element approximations of

the independent solution fields, i.e. the global or local approach, and different degree of bases p, pd, and

pp. We utilize the relative difference in the tip displacement,

ereli :=

∣∣∣∣ubeami − ubricki

ubricki

∣∣∣∣ , i ∈ {1, 2, 3} , (121)

where ubeami and ubricki denote the displacement component ui := u · ei of the beam and brick elements,

respectively. The black curves show the results from the global approach of the IGA-based mixed

formulation (“glo”), which exhibits the highest level of accuracy among all the shown results, but is

computationally very expensive. The blue curves show the results from the local approach of the IGA-

based mixed formulation (“loc”) using the degree pd = p, and pp = p − 1. It is the same formulation

as the global approach for a single element (nel = 1), so their results coincide then. However, as we

increase the number of elements to nel = 2, which has an interface between elements, “loc” suffers from

a serious locking due to the Cp−1 continuity condition in the displacement field, see the drastic increase

of the relative difference in all components erel1 , erel2 , and erel3 , as we increase nel from 1 to 2. The red

curves show the beam solutions with the IGA-based reduced local formulation (“loc-r”) pd = p− 1 and

pp = 1. It is seen that the reduction of pd leads to significant locking due to the artificial couple shear

strains, see the lower convergence rate in the red curves with circular markers (loc-r), compared with the

results from using pd = 2 (blue curves with circular markers). However, in cases of higher p = 3, 4, and

pd = p− 1 (red curves with triangle and square markers), the per DOF accuracy improves significantly,

and shows much lower error, compared with the local approach (“loc”).
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Figure 18: 45◦-arc cantilever beam (Case 1): Relative difference of the displacement at the tip between beam and

brick element solution. The latter is for a single quadratic B-spline element in the cross-section (i.e. “IGA, deg.=

(3, 2, 2), and nel = 320 × 1 × 1”). The numbers in the bracket [•] denotes the degrees, [p, pd, pp]. All the beam

solutions are obtained by the IGA-based mixed formulation.

Table 3 shows that the presented mixed formulation allows much larger load steps, and eventually

requires much fewer number of iterations, compared to various reference formulations, including the

displacement-based one (i.e. “IGA, displacement-based”).
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Table 3: 45◦-arc cantilever beam (Case 1): Comparison of the number of load steps and Newton-Raphson

iterations.

#load steps #iterations

IGA, mixed, (loc-r, EAS), p = 4, nel = 80 1 8

IGA, displacement-based, p = 4, nel = 80 1 18

IGA, brick, deg.=(3, 1, 1), nel=320×1×1 1 18

IGA, brick, deg.=(3, 2, 2), nel=320×1×1 1 18

Frischkorn and Reese (2013) 1 19

Wackerfuß and Gruttmann (2009) 1 9

Rhim and Lee (1998) 1 13

Crisfield (1990) 3 17

Cardona and Geradin (1988) 6 47

Dvorkin et al. (1988) 10 34

Simo and Vu-Quoc (1986) 3 27

Bathe and Bolourchi (1979) 60 -

We further show the path-independence of the proposed beam formulation employing the finite el-

ement approximation of the total displacements in the extensible directors. We investigate if the dis-

placement at the tip (point A) vanishes after unloading. We also compare the results with those from

the beam formulation of Simo and Vu-Quoc (1986). In the present paper, we approximate their field

variables, displacement of the axis, and the incremental rotations by NURBS basis functions, in the

framework of IGA, see Choi and Cho (2019) for more details. Fig. 19 shows the X-, Y - and Z-directional

displacements at the tip after unloading. The beam formulation based on Simo and Vu-Quoc (1986)

exhibits significant displacement error, which decreases with element number (black curves). In con-

trast, the proposed beam formulation yields vanishing displacements to machine precision, in both the

displacement-based and the mixed formulations.
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Figure 19: 45◦-arc cantilever beam (Case 1): Displacement at the tip (point A) after unloading. All results are

obtained by IGA. The missing data points in the blue curves in (a) and (b) are due to their values being exact

zeros.
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6.2.2. Case 2: nonlinear material with Poisson effect

In Case 2, we consider a compressible Neo-Hookean type material with Poisson’s ratio ν = 0.3, and

Young’s modulus E=1.2× 107 Pa. The same boundary conditions as in Case 1 are considered. Table 4

compares the displacement at the tip (point A in Fig. 17), with various brick element solutions. Severe

artificial stiffening is observed in the brick element solution with a single linear quadrilateral element in

the cross-section (“IGA, brick, deg.= (3, 1, 1), nel =320 × 1 × 1”), due to the lack of linear transverse

normal strain, coupled with the bending deformation. The beam solution without any enrichment of the

cross-sectional strains “IGA, mixed, loc-r”) suffers from even larger stiffening, since it lacks not only the

quadratic but also the bilinear in-plane displacement field (i.e. trapezoidal cross-section deformations).

After enriching the in-plane crosss-sectional strains by the EAS method, the beam solution (“IGA, mixed,

loc-r, EAS”) shows a good agreement with the brick element solution based on a single quadratic element

in the cross-section. Its deviation from the brick element solution using a single cubic element (“IGA

brick deg.=(3, 3, 3), nel=320×1×1”) shows the significance of the cross-sectional warping effect, which

our current beam formulation does not account for. This remains future work.

Table 4: 45◦-arc cantilever beam (Case 2): Comparison of the tip displacements.

u1 [m] u2 [m] u3 [m]

IGA brick deg.= (3, 1, 1), nel = 320× 1× 1 12.5816 -21.6881 51.5348

IGA brick deg.= (3, 2, 2), nel = 320× 1× 1 13.8087 -23.9547 53.6642

IGA brick deg.= (3, 3, 3), nel = 320× 1× 1 13.9947 -24.2610 53.8291

IGA, mixed (loc-r), p = 4, pd = 3, pp = 1, nel = 80 11.3090 -19.3285 49.1188

IGA, mixed (loc-r, EAS), p = 4, pd = 3, pp = 1, nel = 80 13.8148 -23.9790 53.6901

In Fig. 20, we compare the convergence of the relative difference in the tip displacements, ereli in Eq. (121),

between several different finite element approximations for independent solution fields. As observed in

Case 1, the results from using p = 2, and pd = p − 1 = 1 exhibit severe locking due to the spurious

couple shear strain (red curves with circular markers), in comparison to the results from the same degree

p = 2 with higher degree pd = p = 2 (blue curves with circular markers). However, in the cases of higher

p = 3, 4 and pd = p − 1 (red curves with triangle and square markers), the accuracy improvement is

noticeable.
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Figure 20: 45◦-arc cantilever beam (Case 2): Relative difference of the displacement at the tip between beam and

brick element solution. The latter is for a single quadratic B-spline element in the cross-section (i.e. “IGA, deg.=

(3, 2, 2), and nel = 320 × 1 × 1”). The numbers in the bracket [•] denotes the degrees, [p, pd, pp]. All the beam

solutions are obtained by the IGA-based mixed formulation.

6.3. L-shape frame

In this example, we show the path-independence of the presented mixed isogeometric beam formu-

lation, considering two beams connected by a rotational continuity condition. We consider a L-shape
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frame with two straight beams having the initial length L = 10m and a square cross-section of dimension

h = w = 0.5m. We select compressible Neo-Hookean type material with Young’s modulus E = 107 Pa

and Poisson’s ratio ν = 0.3. A distributed force T̄0 = −200N/m is applied in Z-direction on the upper

edge of the end face, and the other end is fixed, see Fig. 21. The load is applied in five load steps

with uniform increments. In order to test the path-independence of the beam formulation, we impose

a prescribed rotation at the fixed end keeping the applied load fixed, such that the force maintains

the negative Z-direction, and does not rotate along θ̄. This procedure is inspired by a similar test in

Ibrahimbegovic and Taylor (2002). The rotation is prescribed about the X-axis, and we choose the total

rotation angle θ̄ = 200π, i.e. 100 turns around the X-axis. In the additional prescribed rotation, we use

103 load steps in total, such that each full (360◦) turn is uniformly divided by 10 increments, i.e. 36◦

rotation is prescribed in each load step. Here, all the results are obtained by the proposed isogeometric

mixed formulation (“IGA-r”) with p = 3, pd = 2, pp = 1. We also use nel = 5 for each beam, so that we

have 10 elements in total.

(a) (b)

Figure 21: L-shape frame. (a) Undeformed configuration and boundary conditions. (b) Center axes of two

connected beams, where A and B indicate selected points where displacements are evaluated to test path-

independence.

Fig. 22 shows a periodic change of the displacements at the points A and B along the turns. Here, u,

v, and w indicate the X-, Y -, and Z-displacements, respectively. It is seen that the displacement at every

full turn exhibits the same value, which demonstrates the path-independence of our beam formulation.

For a more thorough investigation, in Fig. 23, we plot the change of the displacements at points A and B

along the 100 full turns. u0A, v
0
A, and w

0
A denote the displacements due to the applied force T̄ 0 at θ̄ = 0.

For all displacement components, the difference vanishes up to machine precision. A linearly increasing

small error is due to the accumulated numerical error by the limited machine precision.
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Figure 22: L-shape frame: Displacements at points A and B due to the additional prescribed rotation. The

horizontal red dashed line marks the displacements at the deformed configuration by the applied force T̄ 0 and

θ̄ = 0, and the vertical dashed lines mark every full turn, i.e. n̄ := θ̄/2π = 1, 2, ..., 10.
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Figure 23: L-shape frame. Difference of displacements at point A and B due to the additional prescribed rotations

θ̄ = 2n̄π with n̄ = 1, 2, ..., 100. The subscript A and B denote the displacements at point A and B, respectively,

and the superscript 0 denotes the displacements at the turn number n̄ = 0.

7. Conclusion

This paper presents an isogeometric mixed finite element formulation for nonlinear beams with exten-

sible directors. We particularly investigate a selective reduction of the degree of bases for the independent

solution fields of axis displacement, directors, and additional stress and strain fields. We propose to use

pd = p − 1 and pp = 1, for all degrees p ≥ 2. This approach effectively alleviates additional lock-

ing phenomena due to the higher order continuity of the displacement field in IGA. Based on this, we

show the superior per DOF accuracy of IGA over conventional FEA. Further the developed method is

computationally efficient, due to its local (element-wise) static condensation process, and the symmetry

of the tangent stiffness matrix under conservative loads, and much less internal DOFs due to the re-

duced degree of bases. It is also shown that the mixed formulation yields improved convergence in the

Newton-Raphson iteration in the thin beam limit, compared to the displacement-based one. Important
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extensions of this work are expected in the following directions:

• Further investigation on the numerical stability in proposed selection of degree pp = 1, based on a

generalized inf-sup test for multi-field variational principle, e.g. see Krischok and Linder (2019),

• An optimal selection of degrees for pp for each component of the beam strain and stress resultant,

• Further enhancement of the out-of-plane cross-sectional strain including the torsion-induced warp-

ing effect.

A. Appendix to the beam formulation

A.1. Operator expressions in geometric tangent stiffness part

In Eq. (58a), we utilize the following operators from Choi et al. (2021) with the original stress resul-

tants replaced by the physical (independent) stress resultants.

kG :=


kε kρ kδ

kκ kγ

sym. kχ


15×15

, (A.1.1)

with

kε := ñp13×3, (A.1.2a)

kρ :=
[
m̃1

p13×3 m̃2
p13×3

]
, (A.1.2b)

kδ :=
[
q̃1p13×3 q̃2p13×3

]
, (A.1.2c)

kκ :=

 h̃
11

p 13×3 h̃
12

p 13×3

sym. h̃
22

p 13×3

 , (A.1.2d)

kγ :=

 m̃11
p 13×3 m̃21

p 13×3

m̃12
p 13×3 m̃22

p 13×3

 , (A.1.2e)

kχ :=

 l̃
11

p 13×3 l̃
21

p 13×3

sym. l̃
22

p 13×3

 , (A.1.2f)

and Ye :=
[
Y1 · · · Yne

]
15×9ne

, with

YI :=



NI,s13×3 03×3 03×3

03×3 NI,s13×3 03×3

03×3 03×3 NI,s13×3

03×3 NI13×3 03×3

03×3 03×3 NI13×3


15×9

. (A.1.3)
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A.2. Imposition of rotational continuity between beams

Table A.1 shows the global control coefficient index K for the director displacement field, corre-

sponding to given the local coefficient index I in eth element, in two different cases of the location of

junction.

Table A.1: Two cases of the joint condition: Correspondence between the local coefficient index I in eth element,

and the global coefficient index K.

Element number e Local index I Global index K

Case 1 1 1 1

Case 2 nel ne ndcp

B. Appendix: Consistent mass matrix

We have the kinetic energy bilinear form for a three-dimensional body, as

d(x, δx) =

∫
B
ρ0 δx · x,tt j0 dB, (B.0.1)

where x,tt denotes the second order derivative of the material point position x with respect to the time

t. The increment of the kinetic energy form is simply obtained by

∆d(x, δx) = d(∆x, δx) =

∫
B
ρ0 δx ·∆x,tt j0 dB. (B.0.2)

Applying the beam kinematics, we have

d(∆y, δy) =

∫ L

0

δyTIρ ∆y ds, (B.0.3)

where Iρ is an inertia matrix, defined by

Iρ =


ρA13 03×3 03×3

I11ρ 13 I12ρ 13

sym. I22ρ 13


, (B.0.4)

with

Iγδρ =

∫
A

ρ0ζ
γζδj0 dA. (B.0.5)

It should be noted that the inertia matrix is constant during deformation, and it depends only on the

initial geometry and the initial mass density distribution. Applying the spatial discretization using

NURBS basis functions, we have

d(∆yh, δyh) = δyTM∆y, with M :=
nel

A
e=1

me, (B.0.6)

where the element mass matrix is obtained as

me :=

∫
Ξe

Ne(ξ)
T
Iρ Ne(ξ) j̃ dξ. (B.0.7)

Note that the mass matrix is constant in deformation.
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C. Appendix to numerical examples

C.1. 45◦-arc cantilever beam

Table C.1 presents the convergence test results of the brick element solution of the tip displacement

for Case 1.

Table C.1: 45◦-arc cantilever beam (Case 1): In all cases, we use IGA.

Brick, deg. = (3, 3, 3) Tip displacements

nel uX [m] uY [m] uZ [m]

1× 40× 1 1.3729E+01 -2.3822E+01 5.3607E+01

1× 80× 1 1.3730E+01 -2.3825E+01 5.3609E+01

1× 160× 1 1.3731E+01 -2.3826E+01 5.3610E+01

5× 240× 5 1.3731E+01 -2.3826E+01 5.3610E+01

8× 240× 8 1.3731E+01 -2.3826E+01 5.3610E+01

8× 320× 8 1.3731E+01 -2.3826E+01 5.3610E+01
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