
LSA Is not Dead: Improving Results of Domain-Specific Information
Retrieval System Using Stack Overflow Questions Tags

Szymon Olewniczak1,3 a, Julian Szymanski1 b, Piotr Malak2,3 c, Robert Komar1,3 d and
Agnieszka Letowska3

1Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
2Institute of Media and Information Science, University of Wroclal, Wroclaw, Poland

3Scalac sp. z o.o., Gdansk, Poland

Keywords: Word Embeddings, Latent Semantic Analysis, Information Retrieval, Neural Information Retrieval.

Abstract: The paper presents the approach to using tags from Stack Overflow questions as a data source in the process
of building domain-specific unsupervised term embeddings. Using a huge dataset of Stack Overflow posts,
our solution employs the LSA algorithm to learn latent representations of information technology terms. The
paper also presents the Teamy.ai system, currently developed by Scalac company, which serves as a platform
that helps match IT project inquiries with potential candidates. The heart of the system is the information
retrieval module that searches for the best-matching candidates according to the project requirements. In the
paper, we used our pre-trained embeddings to enhance the search queries using the query expansion algorithm
from the neural information retrieval domain. The proposed solution improves the precision of the retrieval
compared to the basic variant without query expansion.

1 INTRODUCTION

The idea of combining neural networks with classi-
cal information retrieval algorithms has become more
and more popular in recent years (Mitra et al., 2018).
The spectacular success of neural networks in many
natural language processing tasks (Deng and Liu,
2018), inspired search engine authors to apply those
techniques to the information retrieval field. Cur-
rently, the neural networks-based solutions are not
only used in upstream IR tasks such as named entity
recognition (Li et al., 2020) or part-of-speech tagging
(Chiche and Yitagesu, 2022), but they are also gain-
ing popularity in many downstream problems, such
as relevance matching (Guo et al., 2016; Mitra et al.,
2017), ranking (Liu et al., 2009) and representation
creating (Huang et al., 2013; Mitra et al., 2016), that
until now were the domain of the classical machine
learning algorithms.

One of the very promising topics in the domain of

a https://orcid.org/0000-0002-9387-8546
b https://orcid.org/0000-0001-5029-6768
c https://orcid.org/0000-0002-8701-1831
d https://orcid.org/0000-0003-2657-1744

neural information retrieval is the usage of semantic
term embeddings for document and query representa-
tions. The term embeddings, popularized by Miklov’s
word2vec (Mikolov et al., 2013) and then further im-
proved in gloVe (Pennington et al., 2014) and fastText
(Bojanowski et al., 2016), can be used in search en-
gines to go beyond the exact matching between query
and document terms and capture the similarity not
only literally but also on the semantic level.

These popular pre-trained term embeddings serve
well for general-purpose search engines, but may not
give satisfactory results for domain-oriented informa-
tion retrieval systems. In this paper, we present the
Teamy.ai system which works in the specific realm
of information technology where general term em-
beddings are not sufficient. To tackle the problem
we demonstrate an alternative solution for training
the domain-oriented latent term representations and
prove its relevance to our system.

The paper makes the following contributions:

1. We present the Teamy.ai system which imple-
ments a domain-specific IR pipeline to match IT
project prospects with potential candidates.

2. We propose a method of creating domain-specific

446
Olewniczak, S., Szymanski, J., Malak, P., Komar, R. and Letowska, A.
LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags.
DOI: 10.5220/0012358400003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 446-453
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

IT-related terms embeddings using Stack Over-
flow question tags.

3. We extend the proposed IR baseline method with
an additional Query Expansion step that improves
the results of the system.

4. We evaluate the extended pipeline with the
human-created gold standard. We show that pro-
posed embeddings improve the IR system results.

The paper is organized as follows. Section 2 de-
scribes the most important aspects of the Teamy.ai
system. Section 3 outlines the IR component that
matches the candidates with the projects. In the next
section, we provide a relevant theory for utilizing the
term embeddings in the context of information re-
trieval. Section 5 presents the formal definition of
the algorithm for calculating candidates’ relevance.
Section 6 describes the issues that we facing in the
specific context of Teamy.ai and the problem with
general-purpose embeddings. The next section de-
scribes our training procedure for domain-oriented
embeddings based on Stack Overflow question tags.
In Section 8 we describe the evaluation procedure for
our IR system. The next section compares the results
of our IR algorithm with the gold standard dataset. Fi-
nally, we conclude our results and present some ideas
for the future.

2 TEAMY.AI

Teamy.ai is a web-based application that helps soft-
ware houses match possible team members and
projects. The main motivation behind the application
is to facilitate the process of composing the project
team, which can consist of many people from differ-
ent countries, time zones, and with diverse skills.

There are two main objects in Teamy.ai. First is
the candidate which represents a possible team mem-
ber. The second is the project prospect which defines
the project requirements that the team is built for.

Each candidate has one or many professions as-
signed (for example frontend, backend, tester). The
possible professions are software house specific. Fur-
ther, each profession consists of skills (for the back-
end profession this might be Java, PHP, Python, etc.).
Every candidate ranks his or her knowledge for each
skill (on a 0 to 10 scale, where 0 means no knowledge
and 10 means an expert). Optionally he or she can
also rank skill for enjoyment (from -10 to 10, where
-10 means that he or she hates the technology, 0 is
neutral, and 10 is the most positive). The example
candidate object may looks like this:
{

"professionRatings": {
"frontend": {
"angularjs": {
"knowledge": 6,
"enjoyment": 2

},
"reactjs": {
"knowledge": 8,
"enjoyment": 8

}, ...
},
"quality_assurance": {...}

}
}

Another important object of Teamy.ai is the
project prospect which defines the skills required by
the project. Since the project might require many can-
didates with different professions and skills, the skills
are grouped in separate need objects. Each prospect
can consist of one or more needs. Each need de-
fines the required profession and skills. The skills are
grouped in two sets: mustHaveTechStack and niceTo-
HaveTechStack which defines respectively the skills
that are required for the project and skills that might
be useful but are less important. The example project
prospect may look like this:
"needs": [
{
"profession": "frontend",
"quantity": 4,
"mustHaveTechStack": [
"emberjs",
"angular7",
"javascript"

],
"niceToHaveTechStack": [
"typescript"

]
}

]

3 CANDIDATES RETRIEVAL IN
TEAMY.AI

Candidates matching problem can be considered an
IR problem where the prospect need forms the query
q over the set of all possible candidates that might be
treated as documents in our IR system: D. The set of
all possible terms that may appear in query and candi-
date profiles (often called dictionary) will be denoted
as T . Our task is to find the ranked list of candidates
that match best the given need.

LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags

447

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.1 Exact Matching Algorithm

The exact matching algorithm is the simplest Candi-
date Ranking algorithm that we developed in our re-
trieval component and it can serve as a good baseline
for testing the query expansion. For each candidate
on the list, we calculate the matching score using the
following metric:

exact(d,q) =
∑
|q|
i=1 widqi

∑
|q|
i=1 wi

(1)

where q is the set of must-have and nice-to-have
skills defined in need plus the additional skills pro-
vided by the Query Expansion component. qi is the
ith skill in the query. wi is the weight of the ith
skill. For must-have skills, it equals 1.0 and for
nice-to-have and expanded skills, it is defined by
global hyper-parameters: nice to have factor and ex-
pand factor, which will be explained later. Finally,
dqi is the candidate’s knowledge for the qi skill, nor-
malized between 0 and 1.

After calculating the matching score for each can-
didate on the list, we return the top N results with the
highest metric.

4 TERM EMBEDDINGS FOR IR

One of the promising idea for using the term embed-
dings in IR is based on the concept of query expan-
sion. In this approach, we use term embeddings to ex-
tend the original query and then perform the classical
exact matching algorithm between the extended query
and the documents in the corpus. One of the possible
metrics that allow us to calculate the candidate term t
relevance to the query is based on the arithmetic av-
erage of cosines distances between the candidate and
all terms in the original query (Roy et al., 2016):

relt(t,q) =
1
|q| ∑tq∈q

cos(−→vt ,
−→vtq) (2)

To perform the query expansion, we calculate the
score for each term in our dictionary and then select
n-top results.

We must also remember that all algorithms using
term embeddings are as good, as good are the em-
beddings themselves. There are two primary kinds of
similarity that the embeddings can capture. The first
is typical similarity, while the second is topical. The
embeddings that capture the typical similarity group
together the words that are of a similar type. For ex-
ample, in the context of information technology, this
may mean that terms such as Python and PHP (which

are both programming languages and hence are of the
same type) may be closer to each other than Python
and Django (the first is the programming language
while the other is web framework). On the other
hand, the topical similarity may consider the Python
and Django closer to each other than Python and PHP
since they are parts of the same programming ecosys-
tem.

The type of similarity that is captured by different
embeddings is determined by the way they are built.
The models that represent documents in the training
corpus as bag-of-words (bag-of-terms) such as LSA
(Deerwester et al., 1990) or LDA (Blei et al., 2003)
are closer to topical sense of similarity. On the other
hand, the models that during training use small spans
of text from the documents (such as word2vec, gloVe,
or fastText) usually capture more the typical sense of
similarity (Sahlgren, 2006). The decision on which
embedding scheme we should use in our solution is
problem-dependent. Usually, we should start from
pre-trained embeddings and then switch to the custom
solution when they are not satisfying.

5 IR ALGORITHM FOR
TEAMY.AI

In this paper, we present the Teamy.ai IR algorithm
which uses exact matching together with term embed-
dings Query Expansion. Formally, for each candidate,
we calculate the relevance score:

rel(q,d) = exact(d,
q∪argmaxn({relt(t1), · · · ,relt(t|T |−|q|}))

(3)
where argmaxn(· · ·) returns n best matching terms

from the terms’ dictionary T , that are not part of the
query q. Then the candidates list is sorted according
to recalculated relevance.

The presented algorithm is parameterized by three
parameters:

• nice to have factor ∈ [0.0,1.0] – defines wi in the
exact algorithm (1) to weight candidate’s knowl-
edge for nice to have skills,

• expand factor ∈ [0.0,1.0] – defines wi in exact al-
gorithm (1) to weight candidate’s knowledge for
skills returned by query expansion,

• expand limit ∈ N, – defines the number of terms
that we want to add to the query in the query ex-
pansion step.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

448

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6 TERM EMBEDDINGS FOR
TEAMY.AI

There were two main challenges that we are facing in
the Teamy.ai search engine. Firstly our dictionary is
relatively small but domain-specific with many terms
that are not commonly used. Additionally, the dictio-
nary may vary between different Teamy.ai instances
(not all software houses need all the terms). Secondly,
the differences between different candidates can be
quite small which makes it hard to rank them prop-
erly.

The Scalac company which is the creator and the
first user of Teamy.ai defined a dictionary with |T | =
900 elements, grouped into 5 professions: Scala,
Data, Frontend, DevOps, Quality Assurance, and
Project Management.

Our initial attempt was to try preexisting embed-
dings: word2vec and fastText-wiki-news-300d-1M.
Unfortunately, there were several problems with that
approach. Firstly many domain-specific terms are
missing in those general-purpose embeddings, par-
tially because they generally ignore multi-word terms.
The word2vec has only 419 out of 900 terms, while
fastText has 399. Secondly, some ambiguous terms,
such as perl, make, ant, or apache are not well repre-
sented since they have not only IT-related meanings.
Thirdly, the pre-trained embeddings were trained at
some point in history and do not reflect the latest
trends in IT. Finally, the training procedure used in
these embeddings captures more the typical notion of
similarity where we are more interested in topical one.

Considering those challenges, we decided to cre-
ate embeddings for our specific use case, which will
incorporate as much domain knowledge as possible.

7 TRAINING STACK OVERFLOW
EMBEDDINGS

The most important challenge in creating good em-
beddings is finding a proper dataset for the training.
In our case of IT-related terms, there cannot be a bet-
ter choice than Stack Overflow1.

Stack Overflow is a successful question-answer
portal where users can post IT-related questions. The
community can answer the questions and addition-
ally vote for the best questions and answers. From
our perspective, there is also a very important mecha-
nism that allows the posters to add tags to their ques-
tions. The tags reflect the topics that the question is

1https://stackoverflow.com

Table 1: Some examples from dictionary-tags mapping.
Some dictionary entries were mapped with a single tag, oth-
ers with an entire group of tags.

Dictionary entry Stack Overflow tag regexp
ActionScript actionscript.*
Angular 2+ angular2.*
Bash bash
Bootstrap bootstrap[0-9.\-]*
C (ansi-)?c
Classification algos .*classification
DevOps devops
ES6 ecmascript-6
Java java[0-9\-]*

related to (for example python, java, django, machine-
learning, etc.).

The anonymized Stack Overflow data can be
downloaded from Internet Archive2 in the form of
XML dumps. For training our embeddings we used
the dump publicized on 2022-03-07. The dump con-
tained the questions asked between 2008-07-31 and
2022-03-06. The total number of questions in the
dump was 22,306,171 with 62,706 unique tags.

The tags are a very useful resource of information
about the topical similarity of the various IT-related
terms. The tags that are used frequently together
probably reflect the technologies that are usually used
jointly and therefore the candidate that declares the
knowledge of one of these technologies can also have
some experience with the others.

With that hypothesis in mind, we decided to train
our embeddings using only the question tags. Our
first step in that way was the creation of mappings be-
tween the terms in our dictionary and the tags in Stack
Overflow. In the result, we obtained key-value pairs,
where the key was the technology name in the dictio-
nary, while the value was the regular expression that
matched the corresponding tags. Some sample map-
pings are presented in Table 1. Our mappings contain
the tags for 822 out of 900 technologies from the dic-
tionary. The missing values result from either very
broad terms (like Application Architecture or Code
Quality) or very rare and specific technologies (like
GitFusion or ISTQB). Nevertheless, we considered it
a very promising result.

The next step in building our embeddings was
training data preparation. It was done by iterating
through all the questions and selecting only the ques-
tions whose tags reflect the dictionary entries accord-
ing to the mapping. Additionally, only the questions
that have 2 or more dictionary entries were selected
(the question with a single term doesn’t provide any
useful information). As a result, we constructed the

2https://archive.org/details/stackexchange

LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags

449

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2 3 4 5 6 7 8 9 10 11
No. of terms

0

1

2

3

4

5

No
. o

f q
ue

st
io

ns

1e6

Figure 1: The distribution of dictionary entries (terms) per
question in our training dataset. The most popular are the
questions with 2 terms, then the popularity shrinks expo-
nentially.

training dataset of 11,989,658 samples. The distribu-
tion of dictionary entries per question is presented in
Figure 1.

Our final step was the training of the embeddings
themselves. Since our terms related to questions are
from their definition unordered, we represented our
training samples as bag-of-terms vectors with a ”1”
for the terms present in the question and a ”0” oth-
erwise. Then we executed the LSA algorithm over
our training dataset to find latent representations of
our dictionary entries. We experimented with differ-
ent vector sizes, where the 300-dimensional vectors
proved to be most useful.

The LSA algorithm allows us to transform sparse
observed vector spaces into latent vector spaces. In
our case, we want to transform our terms represented
by ”in-document” vectors of size equal to the num-
ber of documents in our corpus (11,989,658) into
300-dimensional topical vectors. The LSA algorithm
achieves this by performing singular value decompo-
sition (SVD) over our input terms-documents matrix.
In the result we obtain the term-topic matrix which
represents the correlation between terms and topics
according to terms’ coexistence in the same docu-
ments. What is also important the generated topics
are sorted by their importance. The most meaningful
topics are on the left (they differentiate our terms the
most) and when we are moving to the right we obtain
fewer important ones. Considering this we usually
take only n-top the most meaningful topics (300 in
our case) and leave others, treating them as informa-
tion noise.

In our training procedure, we used an LSI3 Model
from Gensim library4 which is optimized for working
with large datasets (Řehůřek, 2011). As a result of
our training, we obtained 300-dimensional vectors for
every entry in our dictionary, which represented the
topical similarity between our terms.

3Latent Semantic Indexing (LSI) is just another name
for LSA.

4https://radimrehurek.com/gensim/models/lsimodel.html

8 EVALUATION

The most important question for our research was:
Does the proposed embedding scheme improve the
results of our IR pipeline? Answering this question
is not easy since the decision of who is the best can-
didate for the given project is subjective. Neverthe-
less, we asked Project Managers from Scalac to pro-
vide some real-life project prospects paired with can-
didates who in their opinion fit best for the job. As
a result, we received 7 project prospects (one need
per prospect) that represent some recent projects that
were developed by the company.

For each prospect, the company’s Project Man-
agers assigned the ranked list of best-matching can-
didates from the current Scalac candidates database
(which contains 206 candidates at the moment of
writing). The list length varied across the projects
between 2 and 5 candidates. We asked the PMs to
create the gold standard in two steps. Firstly, they
were asked to select the candidates for each prospect
who in their opinion would be a good choice for the
project. Secondly, they were asked to sort them in the
order of relevance. In Table 2 we present the projects
together with their Must Have and Nice to Have tech
stacks.

Since we received ranked lists of candidates as a
gold standard we decided to use Mean Average Preci-
sion (mAP) as our performance metric which is com-
mon in the IR field. The mAP is calculated using the
following formula:

mAP(Q) =
∑
|Q|
i=1 AveP(Qi)

|Q|
(4)

where Q is the set of all queries in our evaluation
dataset (7 in our case), and AveP(q) is the average
precision metric for the single query, defined as fol-
lows:

AveP(q) =
1

GT P

n

∑
k=1

P@k · rel@k (5)

where GT P refers to the total number of ground
truth positives for the query, n is the number of doc-
uments in the IR system, P@k is the precision calcu-
lated for the first top-k results and rel@k is a boolean
function that returns 1 when the kth element on the
result list is present in the gold standard and 0 other-
wise.

Usually, when the number of documents in the IR
system is very huge, we are not calculating the exact
AveP for the given query but limit the result list to top
n elements and refer to this metric as AveP@n. In our
case, because the total number of candidates is not
very big, we calculate the value of AveP where n is

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

450

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 2: Gold standard prospects. N means the number of
selected candidates.

Id Must Have Tech
Stack

Nice to Have
Tech Stack

n

1 Scala, Akka,
Akka HTTP,
Akka Clus-
tering, Kafka,
MySQL

HashiCorp Va-
lut, Ansible

5

2 Kafka, Docker,
Docker-
compose,
Scala, Akka
HTTP

HTTP4S 2

3 Scala, Hadoop,
Spark, Python,
SQL, Unix,
Oozie, Bash

Jenkins, Cats 4

4 Scala, Mon-
goDB, Lift,
Rest API

AWS, Kuber-
netes, Grafana,
OpenTelemetry

3

5 Akka HTTP,
Akka Streams,
Akka Actors,
Rust, Cats,
Monix, Kotlin

gRPC 5

6 REST, Scala,
Tapir, HTTP4S,
Kafka

Event Sourcing 5

7 EmberJS,
Angular 7,
JavaScript

TypeScript 5

equal to the number of all candidates in the database:
n = |D|.

9 RESULTS

We used the relevance function (3) to retrieve a
sorted list of candidates for each of our gold-standard
queries. Then we calculated mAP (4) for the en-
tire evaluation dataset. In our evaluation process, we
tested both the algorithm variants with and without
Query Expansion. Additionally, we also tested the
results of QE using general-domain FastText embed-
dings instead of our domain-oriented Stack Overflow-
based. In Tables 3, 4, 5, 6, 7 we present the cal-
culated mAP metric for different algorithm param-
eters. Each of the tables presents results for differ-
ent nice to have factor parameters. In each table, the
rows represent the different values of expand factor
parameter while the columns represent expand limit
parameter both for Stack Overflow and FastText em-

beddings. The expand factor=0.0 means no Query
Expansion. The results show that the introduction of
Stack Overflow expansion improves the algorithm re-
sults while FastText embeddings do not change the
performance.

We can observe that we obtain globally best re-
sult (mAP = 0.33) for nice to have factor=1.0, ex-
pand factor=1.0 and expand limit=3. This gives us
0.06 absolute gain and 22% of the relative gain over
the variant without Query Expansion. For different
values of nice to have factor the gain is similar but
proportionally lower according to the result without
QE. The interesting conclusion is that scaling down
the nice to have factor and expand factor worsens
the results, so we should weight Nice-To-Have and
Extended Skills the same as the Must-To-Have.

To make our experiments complete, we addition-
ally calculated the AveP metrics separately for each of
the 7 prospects. The results are presented in Fig. 2.

1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Pr
ec

isi
on

0.55

0.07

0.35

0.07

0.14

0.20

0.51
0.55

0.05

0.35

0.07

0.13

0.44

0.69exact
exact+qe

Figure 2: The AveP metric calculated for each of the gold
standard prospects.

In Fig. 2 we can observe that the additional Query
Expansion does not change the results for prospects
1-5 but improves the result significantly for the 6th
and 7th prospects. We investigated these two queries
and observed that these queries have the shortest list
of skills compared to the other five. We think that this
may explain the results - the semantic query expan-
sion works best for the less precise queries.

10 DISCUSSION AND FUTURE
WORKS

In the paper we presented the method for creating
domain-oriented term embeddings for IT-related top-
ics, using Stack Overflow questions tags. In our opin-
ion, the LSA algorithm proved to be very useful in

LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags

451

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 3: mAP calculated for nice to have factor=1.0.

Stack Overflow FastText
1 2 3 4 1 2 3 4

0.0 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
0.2 0.28 0.28 0.28 0.26 0.25 0.26 0.27 0.24
0.4 0.28 0.28 0.28 0.27 0.25 0.24 0.26 0.23
0.6 0.28 0.28 0.29 0.27 0.25 0.26 0.26 0.23
0.8 0.28 0.29 0.32 0.28 0.25 0.26 0.26 0.24
1.0 0.28 0.28 0.33 0.30 0.25 0.26 0.27 0.24

Table 4: mAP calculated for nice to have factor=0.8.

Stack Overflow FastText
1 2 3 4 1 2 3 4

0.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
0.2 0.24 0.24 0.24 0.26 0.24 0.25 0.26 0.24
0.4 0.24 0.25 0.25 0.27 0.24 0.24 0.25 0.24
0.6 0.24 0.25 0.25 0.27 0.24 0.25 0.26 0.24
0.8 0.24 0.24 0.28 0.28 0.25 0.24 0.26 0.24
1.0 0.25 0.25 0.30 0.30 0.25 0.25 0.25 0.24

Table 5: mAP calculated for nice to have factor=0.6.

Stack Overflow FastText
1 2 3 4 1 2 3 4

0.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
0.2 0.24 0.24 0.24 0.26 0.24 0.24 0.24 0.24
0.4 0.24 0.24 0.25 0.26 0.24 0.24 0.25 0.24
0.6 0.24 0.24 0.25 0.27 0.24 0.25 0.25 0.24
0.8 0.24 0.24 0.30 0.28 0.24 0.25 0.25 0.24
1.0 0.24 0.24 0.29 0.28 0.24 0.25 0.25 0.24

Table 6: mAP calculated for nice to have factor=0.4.

Stack Overflow FastText
1 2 3 4 1 2 3 4

0.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
0.2 0.24 0.24 0.24 0.26 0.24 0.24 0.24 0.24
0.4 0.24 0.24 0.25 0.27 0.24 0.24 0.25 0.24
0.6 0.24 0.24 0.26 0.28 0.25 0.25 0.25 0.24
0.8 0.24 0.24 0.30 0.30 0.25 0.25 0.25 0.24
1.0 0.25 0.24 0.30 0.29 0.25 0.25 0.25 0.24

Table 7: mAP calculated for nice to have factor=0.2.

Stack Overflow FastText
1 2 3 4 1 2 3 4

0.0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
0.2 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
0.4 0.24 0.24 0.25 0.27 0.24 0.24 0.25 0.24
0.6 0.24 0.24 0.27 0.28 0.25 0.24 0.25 0.24
0.8 0.24 0.24 0.30 0.30 0.25 0.25 0.25 0.24
1.0 0.24 0.24 0.30 0.30 0.24 0.25 0.25 0.24

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

452

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

catching the topical sense of similarity in IT-related
terms. LSA is definitely not dead and can work very
well despite begin relatively old solution.

The presented embeddings have proven to be use-
ful for the Teamy.ai candidates retrieval pipeline in
the Query Expansion module. However, there are still
many places where the method can be improved.

Firstly, we are planning to try some alternative
algorithms for building latent representations of our
terms such as PLSA (Hofmann, 1999), LDA (Blei
et al., 2003) or Paragraph2vec (Le and Mikolov,
2014). Particularly Paragraph2vec seems to be very
promising since it is designed to better reflect the top-
ical notion of similarity than the traditional word2vec.

Another idea that comes to our minds is using
more information from Stack Overflow than only
the question tags. Eventually, we want to develop
a method for automatically building a Knowledge
Graph of IT-related concepts. The KG may be then
used to better capture dependencies between various
entities which can improve the results of Query Ex-
tension and candidates retrieval in general.

Finally, we understand that our gold standard
dataset is not very big but since the Teamy.ai system
is still in its development stage, it is the best that we
can have for now. In the future, we want to find a way
to extend it. On the one hand, this will give us more
reliable accuracy measurements, on the other may al-
low us to try some learning-to-rank techniques that
require training data.

ACKNOWLEDGEMENTS

The research has been founded by The National
Centre for Research and Development within the
project POIR.01.01.01-00-076120 ”System sztucznej
inteligencji korelujacy zespoły pracownikow z pro-
jektami IT”

REFERENCES

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning re-
search, 3(Jan):993–1022.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword infor-
mation. arXiv preprint arXiv:1607.04606.

Chiche, A. and Yitagesu, B. (2022). Part of speech tagging:
a systematic review of deep learning and machine
learning approaches. Journal of Big Data, 9(1):1–25.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent

semantic analysis. Journal of the American society
for information science, 41(6):391–407.

Deng, L. and Liu, Y. (2018). Deep learning in natural lan-
guage processing. Springer.

Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep
relevance matching model for ad-hoc retrieval. In
Proceedings of the 25th ACM international on con-
ference on information and knowledge management,
pages 55–64.

Hofmann, T. (1999). Probabilistic latent semantic index-
ing. In Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 50–57.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and
Heck, L. (2013). Learning deep structured seman-
tic models for web search using clickthrough data.
In Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management,
pages 2333–2338.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International confer-
ence on machine learning, pages 1188–1196. PMLR.

Li, J., Sun, A., Han, J., and Li, C. (2020). A survey on deep
learning for named entity recognition. IEEE Transac-
tions on Knowledge and Data Engineering, 34(1):50–
70.

Liu, T.-Y. et al. (2009). Learning to rank for information
retrieval. Foundations and Trends R© in Information
Retrieval, 3(3):225–331.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mitra, B., Craswell, N., et al. (2018). An introduction to
neural information retrieval. Now Foundations and
Trends Boston, MA.

Mitra, B., Diaz, F., and Craswell, N. (2017). Learning to
match using local and distributed representations of
text for web search. In Proceedings of the 26th Inter-
national Conference on World Wide Web, pages 1291–
1299.

Mitra, B., Nalisnick, E., Craswell, N., and Caruana, R.
(2016). A dual embedding space model for document
ranking. arXiv preprint arXiv:1602.01137.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543.

Roy, D., Paul, D., Mitra, M., and Garain, U. (2016). Us-
ing word embeddings for automatic query expansion.
arXiv preprint arXiv:1606.07608.

Sahlgren, M. (2006). The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. PhD thesis, Institutionen
för lingvistik.

Řehůřek, R. (2011). Fast and faster: A comparison of two
streamed matrix decomposition algorithms.

LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags

453

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

