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Abstract
One of the main issues associated with steel fiber–reinforced concrete (SFRC)
beams is the ability to anticipate their flexural response. With a comprehensive
grid search, several stacked models (i.e., chained, parallel) consisting of various
machine learning (ML) algorithms and artificial neural networks (ANNs) were
developed to predict the flexural response of SFRC beams. The flexural perfor-
mance of SFRC beams under bending was assessed based on 193 experimental
specimens from real-life beam models. The ML techniques were applied to
predict SFRC beam responses to bending load as functions of the steel fiber prop-
erties, concrete elastic modulus, beam dimensions, and reinforcement details.
The accuracy of the models was evaluated using the coefficient of determina-
tion (𝑅2), mean absolute error (MAE), and root mean square error (RMSE) of
actual versus predicted values. The findings revealed that the proposed technique
exhibited notably superior performance, delivering faster andmore accurate pre-
dictions compared to both theANNs and parallelmodels. Shapley diagramswere
used to analyze variable contributions quantitatively. Shapley values show that
the chained model prediction of ductility index is highly affected by two other
targets (peak load and peak deflection) that show the chained algorithm utiliz-
ing the prediction of previous steps for enhancing the prediction of the target
feature. The proposed model can be viewed as a function of significant input
variables that permit the quick assessment of the likely performance of SFRC
beams in bending.
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1 INTRODUCTION

Although the application of fiber-reinforced concrete
(FRC) beams turns back to a few decades ago (Adhikary
& Mutsuyoshi, 2006; Masuelli, 2013; Soltanzadeh et al.,
2015), significant efforts also have been made to increase
the strength and ductility of concrete in construction and
building structures since sustainable infrastructure is cru-
cial for economic development (Aldwaik & Adeli, 2016).
Like other fiber-reinforced composite structures (Çelik &
König, 2022; Rafiei &Adeli, 2017b; Shafighfard et al., 2021),
it has recently been shown that FRC structures are capa-
ble of possessing more exceptional ductility and strength
than normal concrete. The ability to predict the structural
behavior of steel fiber–reinforced concrete (SFRC) beams
is one of themany challenges that researchers face in inves-
tigating their performance (Rafiei et al., 2017; Singh, 2016;
Venkateshwaran & Tan, 2018).
Among the numerous flexural parameters (Gribniak

et al., 2012; Gribniak & Sokolov, 2023), the ductility ratio
has drawn the attention of researchers due to its poten-
tial to reflect the reaction of structural elements to bending
loads. Another important flexural metric is the bending
load capacity (peak load), which has been studied by
means of numerical simulations, experimental investiga-
tions, and machine learning (ML)-based prediction tech-
niques.
Several researchers have conducted numerical and/or

analytical studies of SFRC beams to decrease the labor
and/ormaterial costs associated with experimental studies
(Jeong & Jo, 2021; Júnior & Parvin, 2022). The longitu-
dinal rebar ratio and residual tensile strength are typical
variables considered in parametric studies of the flexu-
ral performance of SFRC beams. The use of fibers to
enhance tensile strength is not more effective than con-
tinuous reinforcement in improving the moment capacity
of concrete beams, but fiber reinforcement increases stiff-
ness and strength compared to plain RC beams (Mobasher
et al., 2015). Tan et al. (2022) conducted a parametric analy-
sis of the effects of material properties of SFRC on bending
performance and found that the flexural ductility was neg-
atively affected by a high volume fraction in RC beams.
Three-dimensional (3D) modeling of SFRC beams with
different fiber aspect ratios, orientations, and beam sizes
showed that fibers oriented in the direction of tensile stress
due to bending enhanced the peak load more than ran-
domly distributed fibers. In addition, smaller beams with
lower fiber reinforcement ratios exhibit higher peak loads
(Al-Ahmed et al., 2022).
Experimental studies are typically considered comple-

mentary to numerical works (Pereira et al., 2020) specifi-
cally to verify the results they provided. Yang et al. (2020)

employed steel fiber and fiber reinforcing ratios volume
contents as variables in studying the flexural performance
of ultra high-performance concrete (UHPC) beams rein-
forced with steel rebars. It is worth mentioning that steel
fiber is the most frequently used fiber type for structural
applications of UHPC. However, various types of fibers
are made of glass (Xu & Humar, 2006), carbon (Finckh &
Zilch, 2012), and polyvinyl alcohol (Zhang, Jin, et al., 2019).
The UHPC beams’ ductility index was considerably lower
than that of high-strength concrete beams at a rebar ratio
of 0.79%. The UHPC beams’ ductility index was greater
than that of plain concrete at a rebar ratio of 1.58%. These
findings show that the ductility of UHPC beams is pre-
dominantly impacted by the presence of steel fibers at low
rebar ratios.
Owing to fracture localization characteristics, beams

containing steel fibers had lower ductility index values
than beams without fibers. In contrast to SFRC beams,
which collapsed through rebar rupture, beams without
fibers were crushed in the compression zone. Fiber bridg-
ing at the crack surfaces effectively stopped the crack from
spreading, but the length and type of fiber had little impact
on the cracking response of reinforced UHPC beams (Yoo
& Yoon, 2015).
The flexural properties of UHPC beams reinforced with

steel fibers were investigated. The flexural properties of
UHPC beams reinforced with steel fibers were investi-
gated. The ductility index values obtained were 2.01, 1.79,
2.64, 3.275, and 3.39 for rebar ratios of 0.6%, 0.9%, 1.2%,
1.31%, and 1.96%, respectively. The rebar yielded until flex-
ural failure of the UHPC beams with low rebar ratios, and
the steel fiber–reinforced UHPC beams exhibited effec-
tive ductile behavior (Yang et al., 2010). It has also been
demonstrated that the increase in the peak load under
flexure attributable to the addition of steel fibers depends
on the ratio between the longitudinal rebar ratio and the
toughness of the material.
A relation between SFRC beam behavior and the fiber

volume fraction was reported by Meda et al. (2012). Exper-
iments were conducted to assess the effects of the fiber
type and volume fraction on the flexural performance of
SFRC beams with low longitudinal rebar ratio. The pri-
mary factors were found to be the fiber type, fiber volume
fraction, and axial reinforcement ratio. The flexural duc-
tility of SFRC beams with low longitudinal rebar ratios
was found to decrease as the volume fraction of steel fibers
increased (Gümüş & Arslan, 2019).
In another study, SFRC samples exhibited larger peak

load values than conventional concrete samples for almost
all longitudinal rebar ratios. Up to a longitudinal rebar
ratio of 0.40%, the ultimate deflection values of the under-
reinforced portions of conventional concrete specimens
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were higher than those of the SFRC specimens. How-
ever, the ultimate deflections of the SFRC specimens were
50%–300% greater than those of conventional concrete
specimens when the longitudinal rebar ratio exceeded
0.40% (Mertol et al., 2015).
The impending Industry 4.0 revolution is anticipated to

be characterized by automated design, the use of build-
ing informationmodeling, 3D printing, and the integration
of intelligent materials in shaping future infrastructure.
Construction and building materials with high ductility
and flexural load capacity, such as SFRC beams, have the
potential to become part of automated building processes.
Recently, ML techniques have become prevalent and have
contributed to filling gaps in automation processes owing
to the availability of experimental and numerical data
(Bagherzadeh, Freitag, et al., 2023; Maeda et al., 2021;
Zhang & Yuen, 2021). Hence, the use of ML approaches
to address structural engineering challenges has increased
significantly in recent years (Kazemi & Jankowski, 2023;
Pak et al., 2023). The mechanical properties of structural
members, including their shear and compressive strength,
have been predicted using various input parameters by
Sandeep et al. (2023). It was shown that XGBoost and
ANNs provided better performance for shear strength
prediction of reinforced beams.
Failure modes have been investigated and predicted

usingML algorithms proposed by Solhmirzaei et al. (2020).
It was concluded that the KNN model provides supe-
rior performance in identifying flexural failure modes,
while Genetic programming depicts acceptable predic-
tions of shear capacity of reinforced beams by 𝑅2 =

92%. Furthermore, the random forest ML technique inte-
grated with the SHapley Additive exPlanations (SHAP)
method was employed and the preciseness of 84% and
86% were provided (Mangalathu et al., 2020). The seismic
response is another factor several researchers considered.
This response was predicted for RC structure through
several algorithms and lasso regression provided better
performance with an accuracy of 81%. The importance of
different input variables was also discussed (Mangalathu
& Jeon, 2018). Moreover, a novel method called locally
weighted least squares support vector machines for regres-
sion was proposed to evaluate the seismic response of RC
beams. The new technique provided 𝑅2 = 81% for the
flexure failure (Luo & Paal, 2019).
Cardoso et al. (2019) investigated the effects of volume

fraction and aspect ratio of hooked-end steel fibers on the
flexural behavior of SFRC beams. In their study, hooked-
end steel fibers with aspect ratios of 45 or 80 were used,
with a volume fraction ranging from 0% to 2%. The flexu-
ral ductility of SFRC beams decreased as the fiber volume
fraction and aspect ratio increased. The reduction, in rela-
tion to plain RC beams, was more pronounced for beams

with lower reinforcing ratios. The increase in fiber vol-
ume fraction and aspect ratio also significantly decreased
the crack openings for similar bending moments. Yoo and
Moon (2018) reported that the enhancement of ultimate
load-carrying capacity by steel fibers was relatively minor,
and the ductility index and flexural strength margin, used
to guarantee a ductile failure mode, deteriorated with the
inclusion of steel fibers. Lower reinforcement ratios and
higher fiber volume fractions clearly led to a lower ductility
index. Biolzi and Cattaneo (2017) assessed the maximum
moment of RC and SFRC beams as a function of the
shear span-to-depth ratio. Across all concrete grades, the
lowest moment was obtained for the shear span-to-depth
ratio of 2.5, while short beams with a shear span-to-depth
ratio of 1.5 resulted in a higher moment due to arch
action (Biolzi & Cattaneo, 2017; Cardoso et al., 2019; Yoo
& Moon, 2018).
A few studies have predicted the effects of various

parameters on the load-bearing capacity of RC structures
as well as other structural responses (Oh et al., 2017; Rafiei
et al., 2016) using new ML techniques. Feng et al. (2020)
employed an ensemble ML algorithm to predict the load-
carrying capacity of RC columns and found that AdaBoost
regression achieved the best prediction performance with
the𝑅2 = 96%. The accuracy of the proposed explainableML
algorithm in predicting the ultimate load of RC columns
with steel fibers was studied. An adaptive network-based
fuzzy inference system (ANFIS) was found to be useful in
predicting the load-bearing capacity of RC columns (Le &
Phan, 2020). A hybrid mixture of back-propagation gra-
dient descent method and least-squares was employed to
train the ANFIS model. It was concluded that the results
given by this model are mostly comparable to studies in
the literature.
Other studies have predicted the ductility indices of RC

beams using ML methods. Two ML and three regression-
based algorithms were used to predict ductility indices
under seismic loads, and a comparison of the results
revealed that the nonlinear regression model achieved the
highest accuracy (Dabiri et al., 2022). Considering the low
amount of data, themodels implemented in this study pro-
vided 𝑅2 = 76%. Various artificial neural networks (ANNs)
algorithms have also been developed to predict the dis-
placement ductility of RC columns. The findings revealed
that an ANN could be particularly effective in estimating
the shear strength of RC columns. The performance of
complicated systems can be analyzed using anANN.ANNs
are data-driven models that resolve extremely nonlinear
problems (Alam et al., 2020; Rafiei & Adeli, 2017a). They
can identify the relationship between the input and out-
put variables from preexisting patterns (historical data sets
on the input and output variables of large-scale problems).
This relationship is encoded through intermediate layers
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of neurons, so-called hidden layers, between the input and
output patterns (Guessasma et al., 2004; Zhang, Miyamori
et al., 2019).
However, Koçer et al. (2019) found that the ability of an

ANNs to predict the displacement ductility of RC beams
was inadequate. It is assumed that the influence on the
ductility index of assumptions such as yield displace-
ment approximation has a great impact, thus considerably
affecting the outcome. Due to the high importance of
the ductility index of SFRC beams, and newly developed
potentials of stacked ML models, the authors have devel-
oped this study. As the flexural parameters are connected,
the ML model has to provide simultaneous prediction
of these outputs leading to a multioutput problem. The
multioutput problem increases the complexity of the prob-
lem and authors have investigated different ML model
stacking strategies to understand the effects of various
input parameters on the flexural performance of the
SFRC beams.

2 RESEARCH SIGNIFICANCE

Reinforced concrete (RC) beams are important structural
elements of buildings and bridges. As mentioned before, a
significant flexural characteristic of RC beams is their duc-
tility ratio, which is an important predictive factor in the
flexural response of RC beams. The maximum load that
these beams can withstand is another important factor in
their design. ML algorithms offer the potential to predict
these characteristics without the complexity of numeri-
cal simulations and labor and time costs associated with
experimental studies. There is a need for developing a new
prediction approach for load carrying capacity (flexural
strength) and ductility of SFRC beams with steel rebars.
Some international codes, such as ACI 544 and MC2010,
proposed equations to predict flexural capacity of SFRC
beams. These models need material test results especially
flexural load-deflection or load-crack mouth opening dis-
placement (CMOD) curves to establish a tensile stress
block for moment calculation. This requires additional
work for predicting the load capacity of SFRC beams with
steel rebars. Notwithstanding the existence of numerous
experimental and numerical studies on RC beams, as well
as research studies on the application of ML techniques
to RC beam performance modeling, the novel algorithm
called chained was developed in this study to cover the
multioutput prediction of RC beams under flexure. Sev-
eralML-basedmodels, that is, chained, parallel, andANNs
were employed, using the SciKit-Learn library in Python,
integrated with hyperparameter tuning and a k-fold cross-
validation (CV) method to predict the flexural features
of SFRC beams. Also, there is a requirement for under-

standing the effect of different parameters on the flexural
response of SFRC beams.
Finally, the chained algorithm was compared with the

parallel andANNmodels, and the advantages of thismodel
were demonstrated. Finally, the limitations of these mod-
els in predicting the ductility index are discussed. The
methodology used in this study is illustrated schemat-
ically in Figure 1. It is illustrated that after collecting
and preprocessing the data, they went through the qual-
ity control section, wherein again they were reviewed,
and in case either data or reference mismatch was iden-
tified, they were transferred to the preprocessing section.
In this step, mismatched data, for example, unit differ-
ences, and outliers were removed or corrected, in order
to unify the final data set. Reference mismatch occurs
when data discrepancy is seen between the data and the
corresponding reference. In this case, the references are
checked again to ensure the correctness of the data asso-
ciated with the reference. Also, in case of repeating data,
the references are checked again to identify which data are
missing from the literature that are not correlated with the
corresponding literature.
The main objective of this detailed study is to give influ-

ential and impact factors, based on the developed ML
algorithm, affecting the load capacity and ductility of SFRC
beams, which are beneficial for engineers who consider
the use of SFRC in structural members under flexure.

3 MATERIAL ANDMETHODS

This section summarizes the synthetic data extraction
from the literature, each ML technique used, the feature
selection (FS) technique, and the model metrics used.

3.1 Data collection

After a thorough literature review, a data setwas assembled
that included various input parameters that influenced
the flexural performance of SFRC beams. Nine inputs and
three outputs were considered in this study. A total of 193
experimental specimens on SFRCbeamswere identified in
19 peer-reviewed academic papers (peer-reviewed articles
in ScienceDirect, Wiley, Springer, etc.). Only numerical
studies validated by experimental studies were included
in the data set. The following studies were used for the
acquisition of the data set: Yang et al. (2020), Yoo and Yoon
(2015), Yang et al. (2010), Kodur et al. (2018), Ashour and
Wafa (1993), Yang et al. (2018), Yoo et al. (2017), Gümüş
and Arslan (2019), Fallah-Valukolaee et al. (2022), Abbass
et al. (2019), Chidambaram and Agarwal (2015), Altun and
Aktaş (2013), Hawileh et al. (2018), Cardoso et al. (2019),
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F IGURE 1 Schematic illustration of the utilized methodology.

TABLE 1 Data sample, input and output of machine learning (ML) models.

Input Output
𝒍

𝒅

b 𝝆𝒇
c 𝝂𝒇

d 𝝆e 𝒘f 𝒉g 𝒍h 𝑿𝒕
i 𝑨

𝑬𝑫

j 𝑬k 𝑷𝑳l 𝑷𝑫m 𝑫𝑰
(
𝚫𝒖

𝚫𝒚

)
n

𝑺𝑭𝑻a
(
𝐦𝐦

𝐦𝐦

) (
𝐠𝐫

𝐜𝐦𝟑

)
(%)

(
𝐦𝐦𝟐

𝐦𝐦𝟐

)
(mm) (mm) (mm) (MPa)

(
𝐦𝐦

𝐦𝐦

)
(GPa) (kN) (mm)

(
𝐦𝐦

𝐦𝐦

)

Smooth 65.0 7.9 2.0 0.94 150 220 2500 2788 5.0 46.7 87.3 28.41 4.40
Smooth 65.0 7.5 2.0 1.96 180 270 2900 2500 4.8 45.5 233 20.82 1.71
Hooked 75.0 7.85 0.5 1.39 170 300 2940 1100 4.0 38.0 215 30.0 3.156
Hooked 64.0 7.85 0.75 1.27 160 290 1750 1200 2.5 39.3 213.7 15.0 1.81
Hooked 43.75 7.85 0.75 2.0 100 100 1000 1200 6.0 28.0 18.2 9.70 13.69
Hooked 54.5 7.8 2.0 1.34 150 230 2200 1100 3.5 24.8 117 6.83 1.34

aSteel fiber type.
bFiber aspect ratio.
cFiber density.
dFiber volume fraction.
eLongitudinal rebar ratio.
fBeam width.
gBeam height.
hBeam length.
iFiber tensile strength.
jShear span to depth ratio.
kConcrete elastic modulus.
lPeak load.
mPeak Deflection (deflection at the peak load).
nDuctility index.

Mirdan and Saleh (2022), Arslan et al. (2017), Qissab and
Salman (2018), Abbas et al. (2014), and Yun et al. (2021).
Data records, such as graphs that were not expressly men-
tioned in the literature were meticulously compiled. The
data set was split into sub–data sets for model testing
(20%) and training (80%) with fivefold CV. Table 1 presents
the data records utilized in this research study. The input
and output parameters are listed in Table 2, along with
their lowest, highest, standard deviation, mean, median,
and variance values. It is worth mentioning that in the
“Min” section, the value “0” represents a beam without

steel fibers. Since some concrete beams did not contain
fiber reinforcements, they were considered as zero value.
It is worth noting that all of the data collected were under
three- or four-point loading and used pin or roller support
systems. Some data that showed unrealistic results, such
as lower flexural strength although fibers were included,
which conflicts with the findings of most studies, were
neglected. Different factors were considered carefully as
inclusion criteria for constructing the data set. First of all,
those works published in prestigious peer-reviewed jour-
nals were taken into account. Studies with validation were
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6 SHAFIGHFARD et al.

TABLE 2 Data set statistical representation.

Input Output
𝒍

𝒅
𝝆𝒇 𝝂𝒇 𝝆 𝒘 𝒉 𝑳 𝑿𝒕

𝑨

𝑬𝑫
𝑬 𝑷𝑳 𝑷𝑫 𝑫𝑰

(
𝚫𝒖

𝚫𝒚

)
(
𝐦𝐦

𝐦𝐦

) (
𝐠𝐫

𝐜𝐦𝟑

)
(%)

(
𝐦𝐦𝟐

𝐦𝐦𝟐

)
(mm) (mm) (mm) (MPa)

(
𝐦𝐦

𝐦𝐦

)
(GPa) (kN) (mm)

(
𝐦𝐦

𝐦𝐦

)

Min 0.0 0.0 0.0 0.0 100 100 500 0.0 0.9 14.7 11.4 1.0 1.0
Max 100.0 8.0 2.0 4.87 300 320 4000 3005 6.9 53.5 438.6 119.3 26.0
Std 24.55 2.68 0.78 0.91 49.55 64.51 927.52 746.95 1.43 8.89 65.53 19.88 3.44
Mean 57.73 6.76 0.95 1.19 159.25 222.72 2026 1315.76 3.59 34.82 117.60 21.38 4.47
Median 63.0 7.8 0.75 1.13 150 220 2000 1100 3.5 37.5 100.0 15.0 3.75

highlywelcomed. The conclusion section of eachworkwas
checked and in case the corresponding work has a firm
and clear conclusion, that work was considered to collect
the data. Also, those works with legitimate definitions of
ultimate displacement were taken into account. The con-
centration of this study ismerely on the steel fibers. Finally
works in the English language were considered. Figure 2
presents the histogram of input and output data sets.
The ductility index of RC beams has been determined

by dividing the ultimate deflection by yield deflection. The
definition of ultimate deflection varied by researchers. On
the descending branch of the load–deflection curve, 80%
(Shin et al., 1989) and 90% (Manharawy et al., 2022) of the
peak load have been used to read Δ𝑢 (ultimate displace-
ment), while in several studies Δ𝑢 is read at the point at
which the load–deflection curve begins to decline sharply
(Bernardo & Lopes, 2004). In this research, the ultimate
deflection has been selected in 80% on the descending
branch of the load–deflection curve. It should be noted that
samples with behavioral anomalies, reportedly attributed
to fiber–concrete mixing problems, were ignored. The aim
of this study was to develop ML models for multioutput
problems to predict the maximum tolerable load, peak
deflection, and ductility index.Hence, the framework com-
prised data on RC beams with steel fibers subjected to
flexural loading.

3.2 FS techniques

In general, using all available features of the data set can
increase model complexity, diminish interpretability, and
lead to overfitting. Before training the ML model with
all the features of the data set, it is needed to perform
a sanitary check over the data and perform FS to check
if the specific feature is contributing to the prediction
of the target feature or not. If an independent feature is
too noisy and has little or no contribution to the model
performance, it should be eliminated. Also, if two fea-
tures are highly correlated utilizing both of them leads
to multicollinearity issues (Bagherzadeh & Shafighfard,

2022). FSmethods are used to eliminate redundant data set
dimensions and retain only the most important features.
Additionally, using the FS simplifies the model and speeds
up the ML training. The contribution of a feature to the
accuracy of the ML model is related to relevancy. Three
main types of FS methods are typically employed: filter,
wrapper, and embedded.
In order to establish howwell the features correlate with

the result variables, the filter technique chooses features
depending on how well they perform in various statisti-
cal tests. Themodel is trained using thewrapper technique
that just has a select few aspects. Embedded features com-
bine the filter and wrapper methods. Both the filter and
wrapper approaches were used in this study.

3.2.1 Backward elimination method

By considering a criterion, a wrappermethod uses a greedy
search to identify the best subset of features that results in
a model performing as well as possible. For classification
algorithms, the criterion could be the accuracy, precision,
𝑓1-score, or some other, while in regression algorithms,
the criterion could be 𝑅2 or adjusted 𝑅2. Beginning with all
features, the backward elimination procedure eliminates
one insignificant feature per cycle until the desired signif-
icance level is reached. In this study, the library “mlxtend”
is used and the underlying model is a linear regression
model from Scikit-learn.

3.2.2 Random forest selection

One of the embedded methods that benefits from the
advantages of filtermethods and improvements inwrapper
methods is the random forest (RF) method. This method
uses several decision trees created by random feature
extraction and data set observations. Trees are decorrelated
because of this arbitrary selection of records and features
(bootstrapping), which reduces the possibility of model
overfitting (Smith, 2017).
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SHAFIGHFARD et al. 7

F IGURE 2 Histograms of input and target parameters.

The capacity of random forests to select crucial fea-
tures for the data set is one of their powerful qualities.
The utilization of OOB (Out of Bag) data is crucial
in this situation. The method of determining feature
importance includes determining the OOB error for each
bootstrap’s OOB data 𝑒𝑖 , mixing up the data points
for certain predictor variable 𝑥𝑖 , OOB error employ-
ing permutation from the permutated bootstrap = 𝑝𝑖
based on the mean and standard deviation of (𝑝𝑖-𝑒𝑖)
over all trees in the population, calculating the variable
significance.

𝑑
𝑛

𝑖
= 𝑝

𝑛

𝑖
− 𝑒

𝑛

𝑖
(1)

According to the equation, the difference between the
per-mutated feature 𝑖 for model 𝑛 and the not per-mutated
(original OOB) feature 𝑖 for model 𝑛 can be used to

determine the OOB error for that feature. Analyzing the
evaluation indicators in greater detail led to:

𝑑𝑖 =
1

𝑛

𝑛∑
𝑖=1

𝑑𝑛
𝑖

(2)

𝑠2
𝑖
=

1

𝑛 − 1

𝑛∑
𝑖=1

(
𝑑𝑛
𝑖
− 𝑑𝑖

2
)

(3)

wherein Equation (2) refers to averageOOB error over total
models for feature 𝑖, and Equation (3) standard deviation
for total tree models for feature 𝑖. It is worth mention-
ing that the more the feature is relevant to the target, the
higher the importance it possesses.
Also, in this method, the Gini importance represents

the contribution of each feature to the output variables
as a subset of data. Gini importance or mean decrease in
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8 SHAFIGHFARD et al.

impurity calculates each feature’s importance as the sum
over the number of splits (across all tress) that include
the feature, proportionally to the number of samples it
splits.

3.2.3 Pearson correlation coefficient

The covariance of two variables divided by the product of
their standard deviations is known as the Pearson correla-
tion coefficient (Sedgwick, 2012). A productmoment or the
mean of the product of mean-adjusted random variables is
included in the form of a definition; hence, the modifier
product moment is in the name. The Pearson correlation
coefficient is defined as follows:

𝑟 =

∑
(𝑣𝑖 − 𝑣)(𝑚𝑖 − 𝑚̄)√∑
(𝑣𝑖 − 𝑣)

2∑
(𝑚𝑖 − 𝑚̄)

2
(4)

where the 𝑟, 𝑣𝑖 , 𝑣, 𝑚𝑖 , 𝑚̄ are correlation coefficients, val-
ues of the v-variable in a sample, mean of the values of
v-variable, values of them-variable in a sample, and mean
of the values of m-variable, respectively (Stańczyk & Jain,
2015). Features with a pairwise correlation of more than.80
are susceptible to the overfitting problem (Kazemi et al.,
2024; Shafighfard et al., 2022). The beam height had the
highest correlation with the load capacity of the SFRC
beams. The beam length and fiber aspect ratio also showed
a correlation with the maximum tolerable load, although
their influence was not noticeable. Unlike the load capac-
ity, the peak deflection did not show any correlation with
the beam height but showed a high correlation with the
beam length and width. The Pearson correlation coeffi-
cient did not indicate a strong correlation between the
ductility index and any of the input features. However, the
shear-to-span depth ratio affected the displacement duc-
tility index more than the other inputs. Further analysis is
required to identify the redundant features and ensure cor-
relations, as discussed in the results and discussion section
(Section 4) of this paper. Figure 3 represents the heat map
correlation for the input and output variables of this study.
It is observed that the fiber aspect ratio has an influence
on the load capacity of FRCs, though might not be effec-
tive in the ductility index of this material. Fiber density
has the same role as fiber aspect ratio per the correla-
tion map and the input parameters utilized in this study.
Furthermore, the longitudinal rebar ratio affects the bear-
ing load of the material while the ductility index was not
affected by this factor. Changing the steel fiber type also
did not show a high influence on the ductility index of
FRCs.

3.3 ML algorithms

In this section, three different ML algorithms including
ANNs, parallel and chained algorithms that are introduced
in this study for the prediction purpose are discussed in
detail. The definition of each algorithmand its architecture
is provided.

3.3.1 Artificial neural network

This study utilized the form of neuron in a feed-forward
ANN. A neural network withmodified weight magnitudes
was used to compute the approximate mathematical non-
linear relationship between the input (𝐼𝑚𝑖) and output
(𝑂𝑛𝑖) layers. The inputs were multiplied by these weights
(𝑤𝑖𝑗) and the results for each layer of neurons were com-
bined with the biases (𝐵𝑖), wherein the final outcome was
multiplied with an activation function as following:

𝑂𝑚𝑖 = 𝑔

(
𝑛∑
𝑖=1

𝑤𝑖𝑗𝐼𝑚𝑖 + 𝐵𝑖

)
(5)

The sigmoid/logistic activation functionwas adopted for
this study.
One of the most crucial problems in developing neu-

ral networkmodels is determining an appropriate network
layout with respect to the number of hidden layers and
neurons. There are no absolute rules for counting the num-
ber of hidden layers or neurons (Tiryaki et al., 2014). The
ideal architecture of the ANNs model in this study was
determined through experiments with different numbers
using the PyTorch software. The typical architecture of
the ANNs model used in this study is shown in Figure 4.
AutoKeras was utilized to carry out a thorough grid search.
The proposed models were reproduced using PyTorch and
tested using a fivefold CV and finally, the highest per-
formance was executed from a model with the shape
of (10-64-128-256-512-512-1024) having rectified linear unit
(ReLU) as the activation function. The trial grid search
is shown in Figure 5 and it is observed that increasing
the number of layers and neurons does not increase the
model performance and the selected model has reached
the maximum possible accuracy.

3.3.2 Gradient boosting machine (GBM)

A GBM is a nonlinear regression algorithm that is con-
sidered a useful method for integrating various principal
regressors sequentially to construct a group. The perfor-
mance of this algorithm is noticeably better than other
basic regressors (Chun et al., 2021; Liang et al., 2022). The
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SHAFIGHFARD et al. 9

F IGURE 3 Pearson correlation heat map.

GBM includes three constituents: a weak learner, a loss
function, and an additive model (Chen & Feng, 2022). The
GBM links new basic learners with a negative loss function
gradient as follows:

𝐺(𝑥) =

𝑁∑
𝑛=1

𝜉𝑛𝑓𝑚(𝑥) (6)

where 𝑓𝑚(𝑥)s are weak learners or basic functions and
𝜉𝑛 denotes error in the GBM. Fundamental functions are
typically represented by decision trees of a fixed size.
Another form of an additive algorithm can be written as
follows:

𝐺𝑚(𝑥) =

𝑁∑
𝑛=1

𝐺𝑚−1(𝑥) + 𝜉𝑛𝑓𝑚(𝑥) (7)

𝑓𝑚(𝑥) is chosen to minimize the loss function 𝐿 in each
step, leading to an updated algorithm 𝐺𝑚−1(𝑥) and fit
𝐺𝑚−1(𝑥𝑖).

𝐺𝑚(𝑥) = 𝐺𝑚−1(𝑥) + 𝑎𝑟𝑔min
ℎ

𝑀∑
𝑛=1

𝐿(𝑦𝑖, 𝐺𝑚−1(𝑥𝑖) − ℎ(𝑥))

(8)

The loss function can be minimized by the GBM
through gradient descent, which is a negative gradient of
𝐿 in 𝐹𝑚−1(𝑥). The loss function can be differentiated as
follows:

𝐺𝑚(𝑥) = 𝐺𝑚−1(𝑥) + 𝜉𝑛min
ℎ

𝑀∑
𝑛=1

∇𝐺𝐿(𝑦𝑖, 𝐺𝑚−1(𝑥𝑖)) (9)

3.3.3 Chained algorithm

Chained ML models, also known as stacked or ensemble
models, are suitable solutionswhen facingmultiple output
problems. Chained ML models offer a novel approach by
harnessing the collective power of diverse algorithms to
enhance predictive performance. These ensembles excel
in improving accuracy by combining the strengths of
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10 SHAFIGHFARD et al.

F IGURE 4 Developed artificial neural networks (ANNs) architecture with the shape of (10-64-128-256-512-512-1024-3).

F IGURE 5 Grid search for artificial neural networks (ANNs).

individual models and mitigating weaknesses. By merging
various models, they yield diverse perspectives, effectively
capturing nuanced patterns within data that a single
model might overlook. The chaining process enables the
handling of complex problems by allowing each model to

focus on different aspects or levels of intricacy, ultimately
resulting in a more comprehensive understanding of
the data. This approach also aids in reducing overfit-
ting tendencies, as the ensemble learns to generalize
from multiple models, thus increasing the robustness of
predictions and mitigating biases present in individual
algorithms.
A chained algorithm is proposed in this study to over-

come the aforementioned challenges. As Figure 6a shows,
the chained algorithm contains three differentMLmodels,
where each output feature is associated with one algo-
rithm that is trained using the training data set, that is,
real values. Independent features (X) and one target fea-
ture (Y1) were used to train the initial ML model (GBM1).
The second model (GBM2) used Y2 and (X+Y1) for train-
ing, and the last model used Y3 and X+Y1+Y2 for training.
Therefore, more data were available for GBM2 and GBM3.
Unlike simple models, this chained model takes into
account the relationship between various target variables,
which enhances the prediction accuracy (Adibimanesh
et al., 2023).
GBM1 took the independent input features (X) to

predict the output (𝑌1) from this MLmodel. Subsequently,
(𝑌1) were concatenated with X, and all were provided
to GBM2. Finally, the last output feature (𝑌3) in the
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SHAFIGHFARD et al. 11

F IGURE 6 Schematic view: (a) chained and (b) parallel.

chained algorithm was predicted using GBM3, which took
(X+𝑌1+𝑌2) as input. A schematic view of the chained
model is shown in Figure 6a.

3.3.4 Parallel structure

One of the simplest methods for constructing a multiout-
put regression model is to split the problem into several
single-output models. This method is known as the paral-
lel (direct) method. One instance of the given model (i.e.,
RF, GBM, or ANNs), as illustrated in Figure 6b, considers
all the independent variables (X). One output (e.g., Y1, Y2,
or Y3) is then predicted for each ML model. This model is
considered a performance baseline, regardless of its simple
structure. It should be noted that the correlation between
dependent parameters is neglected in this method. Several
types ofML algorithms, such as RF, GBM, andANNs, were
employed. The GBM was chosen for all separate ML mod-
els (for each output), as shown inTable 3, because theGBM
had the highest 𝑅2 (greater than that of ANNs and RF).
A schematic illustration of the parallel model is shown in
Figure 6b.

3.4 Model metrics

The effectiveness of ML models can be evaluated using
several widely used techniques. These techniques, referred
to as model metrics, demonstrate the predictive power of

the model in various scenarios (e.g., on the test data set;
Bagherzadeh, Shafighfard, et al., 2023). The coefficient of
determination (R2), root mean square error (RMSE), and
mean absolute error (MAE) were calculated.

3.5 Shapley additive exPlanations

SHAP is a recently developed method based on game
theory used for analyzing model results to better under-
stand the performance of the model prediction. The
importance of various features in the models can be
assessed using SHAP values. The change in error in a
particular disturbance prediction serves as the basis for
quantifying the feature importance (Lundberg & Lee,
2017). It is a visualization tool that can be used to make
an ML model more explainable by visualizing its out-
put. By calculating each feature’s contribution to the
prediction, SHAP aims to explain the prediction of an
instance of data. Shapley values are calculated using the
SHAP explanation method using coalitional game the-
ory. Players in a coalition are the feature values of a data
instance. Shapley values show how to equally distribute
the prediction among the features. SHAP is formulated as
follows:

𝜑𝑘(val) =
∑

𝑠⊆𝑁∖{𝑖}

|𝑠|! (𝑛 − |𝑠| − 1)!

𝑛!
(val(𝑠 ∪ {𝑖}) − val(𝑠))

(10)
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12 SHAFIGHFARD et al.

TABLE 3 Individual model metrics (fivefold cross-validation [CV] average).

Train Test
Model type Target MAE RMSE 𝑹𝟐 MAE RMSE 𝑹𝟐

Random forest PD (mm) .011 .07 .97 .041 .014 .83

DI
(
mm

mm

)
.021 .05 .94 .062 0.012 .41

PL (kN) .013 .02 .98 .021 .004 .94
Gradient boosting PD (mm) .021 .005 .96 .042 .007 .78

DI
(
mm

mm

)
.028 .007 .88 .081 .008 .47

PL (kN) .010 .001 .99 .021 .004 .97
Neural network PD (mm) .021 .007 .92 .058 .021 .59

DI
(
mm

mm

)
.032 .005 .81 .078 .023 .35

PL (kN) .010 .004 .97 .023 .005 .93

Abbreviations: MAE, mean absolute error; RMSE, root mean square error.

where 𝑣𝑎𝑙 is the feature importance to the algorithm tar-
get while 𝜑𝑘(𝑣𝑎𝑙) is the weighted summation of the feature
contributions to themodel target result throughout all fea-
ture combinations. The 𝑖 is the vector of the feature values
for the parts to be interpreted, 𝑛 is the number of features
on the data framework, and 𝑠 is the subset of the model
features, 𝑠!(𝑛−∣𝑠∣−1)!

𝑛!
is the weight of |𝑠|, and 𝑣𝑎𝑙(𝑠) is the

predicted value of |𝑠|.
The target of an algorithm was a linear summation of

the standard features and SHAP of all features. It was
represented as:

𝑔(𝑥) = 𝑙(𝑥𝑠) = 𝜑0 +

𝑛∑
𝑡=1

𝜑𝑡𝑥
𝑖
𝑠 (11)

where𝑛 indicates the number of features in the data frame-
work, 𝜑0 is the standard value for the undefined features,
𝜑𝑡 is the SHAP value for feature 𝑡, and 𝑥𝑠 is the vector of
simplified input variables.

4 RESULTS AND DISCUSSION

The FS results are summarized in the first subsection
below. The second subsection describes a data-driven
comparative study conducted to identify the optimum
algorithm for predicting the target variables. Finally, a
parametric study conducted to understand the effect of
each parameter on the outputs is described.

4.1 Feature selection

To understand the effect of each feature and remove trivial
features, FS results were obtained while considering dif-
ferent model metrics. Pearson correlation 3.2.3, backward
elimination 3.2.1, and RF selection 3.2.2 were considered in

this study. The initial model metric was the RMSE, which
was adopted in the backward elimination graph. During
the backward elimination, the feature with the least con-
tribution to the performance of a linear regression model
in a fivefold CV framework was dropped. Thus, the most
important features are listed from left to right. As the
target features are flexural parameters of SFRC, there is
an underlying connection between them, available in the
data, so the order of feature importance is the same for all
the target features and only the amount of contribution is
different.
FS should be performed using another method in addi-

tion to the backward technique. The RF method is more
complex than previous algorithms. A lower Gini impor-
tance value indicates a smaller feature contribution to the
target variables. However, it is still not perfect and requires
improvement because it does not necessarily consider all
correlations in the model.
Figure 7 illustrates the RF FS results. According to

Figure 7, the steel fiber type and beam height do not con-
tribute to the training of the data set for the prediction of
themaximum load. The remaining factors were significant
for training purposes, as indicated by the RF algorithm. In
addition, the RF algorithm suggests that the steel fiber type
and fiber density may be additional factors in the predic-
tion of peak deflection. Therefore, they can be considered
redundant features that may not contribute to the target
value. Furthermore, important information regarding the
input features for predicting the deflection ductility index
was obtained. The longitudinal rebar ratio, fiber aspect
ratio, and relative beam geometries could affect the model
performance and should be considered to obtain a reason-
able level of accuracy, while the steel fiber type could be
removed from the subsampled data.
Considering these models and the Pearson correlation

map, the steel fiber type and concrete elasticmodulus were
considered as possible redundant features. Trial-and-error
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SHAFIGHFARD et al. 13

F IGURE 7 Random forest feature selection result.

evaluations of the main developed models (i.e., parallel,
ANNs, and chained)were conducted to confirm the redun-
dancy of these features. The overall prediction accuracy
was increased by removing the steel fiber type and concrete
elastic modulus from the training algorithms. Thus, these
were not considered in the final training of the data set for
predicting the flexural behavior of theRCbeams. FS results
are extremely sensitive to the size, distribution, and com-
plexity of the collected data set (fromdifferent experiments
in literature). Thus, those results shall not be interpreted
to describe the physical behavior of the sample. In this
study, FS is used only to identify the redundant features
considering the given data set.

4.2 Model evaluation

Aspreviously discussed, anMLmodel should be developed
for each output using a parallel approach. To achieve this,
several well-known ML models were trained and tuned
for each specific output. Table 3 provides details of these
models and their evaluation results for a given output
using a fivefold CV testing method. Based on the metric
results shown in Table 3, the GBM was selected for use in
the parallel model. Therefore, for each output (i.e., peak

TABLE 4 Model metrics (mean of fivefold cross-validation).

Model Train Test
Inference
time

type MAE RMSE 𝑹𝟐 MAE RMSE 𝑹𝟐 𝑳𝒐𝒈(𝒔)

Parallel 0.021 0.036 0.92 0.04 0.007 0.72 −2.2
Chained 0.014 0.003 0.94 0.03 0.004 0.87 −2.1
MO-ANNs 0.002 0.0008 0.98 0.03 0.008 0.75 −1.0

Abbreviations: MAE, mean absolute error; RMSE, root mean square error;
MO-ANNs, multioutput artificial neural networks.

load, peak deflection, and ductility index), a separate GBM
model was developed with no interconnection.
Table 3 shows that predicting the ductility index is the

most challenging task since the 𝑅2 values are less than
those two other targets. In addition, the 𝑅2 values of duc-
tility index in all ML models are less than 50%, and this
means the results are not reliable.While the results of peak
load and peak deflection with 𝑅2 values of 93% and 83%
have acceptable accuracy, respectively. Thus, to create a
combination ofmodels in a chained structure, the ductility
index should be at the final stage such that the prediction
results from the other two outputs (i.e., peak deflection and
peak load) can help the final model improve the prediction
of the ductility index. The chained model initially predicts
the maximum load and then concatenates the prediction
results with the inputs. Thereafter, it utilized these data to
predict the peak deflection. Next, the peak deflection pre-
dictions are added to the inputs, and finally, the ductility
index is predicted.
Interestingly, none of these models predicted the ductil-

ity index accurately. There are numerous factors that may
affect the prediction performance for deflection ductility.
One factor is that the ultimate deflectionwas not defined in
various studies. As mentioned earlier, using 80% and 90%
of the peak load and a sharp reduction in the peak load
as criteria for defining the ultimate deflection can lead to
inaccuracies in themodel performance since different type
of data points are involved. A second factor is that yield
points given in different research studies have been read at
various points or calculated based on various techniques,
such as strain and/or energy-based calculation. In addi-
tion, reading these outputs may result in errors because
they are not straightforward. These are among the reasons
why a parallel model may not accurately predict the duc-
tility index. To overcome this issue, in this research, 80%
of the peak load in the descending part of load–deflection
curve has been selected as corresponding ultimate deflec-
tion, and the data set has been modified regarding this
assumption. The results show that using this definition can
reduce the error and improve the accuracy of predictions.
The quantitative results of these three modeling

approaches are presented in Table 4. The fivefold CV
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14 SHAFIGHFARD et al.

F IGURE 8 Prediction reality of (a) peak load, (b) peak deflection, and (c) ductility index, and error histogram of (d) peak load, (e) peak
deflection, and (f) ductility index.

metrics of the chained model reflect the superior perfor-
mance of this algorithm. As the standardization step is
performed, error metrics (in Table 4) are not affected by
the magnitude of the target variables. However, averaging
the errors of three targets of different magnitudes with
different ranges might prevent reflecting the real overall
errors of each model. The results confirm that the chained
model with accuracy of 94% in training and 87% for testing
has the highest accuracy of prediction among two other
ML models. In addition, the MO-ANNs can predict the
training and testing data points with accuracy of 98% and
75%, respectively, which is higher than the parallel model.
Comparing the error metrics can be a good tool to find out
about the reliability of the predictions. As it is shown, the
chained model has the lowest error values in the testing
dataset.

4.3 Comparative study

An in-depth investigation of the chained algorithm and
its performance was conducted. Figure 8 shows the error
histogram for each specific target feature. The natural dis-
tribution of the error histogram indicates that the model
is not biased and has sufficient complexity. Plots of the
real values versus the predicted values for each output
feature are shown in Figure 8. The training and testing
sets are indicated by the blue and pink dots, respectively.

A greater number of points clustered near the (45◦) line
indicates a higher model accuracy. Thus, it is evident
that the model accuracy for load capacity is higher than
that for the ductility index. In particular, the large output
values resulted in large deviations from the experimen-
tal values. The chained model underestimated the peak
deflection and ductility index, specifically for large target
values. However, this is not the case for the maximum
load capacity. Furthermore, underestimation of the duc-
tility index was not noticeable. According to scatter plots,
it is clear that the accuracy of the chained model for pre-
dicting target values is promising. Figure 9 illustrates the
predicted residual values corresponding to real values of
peak load, peak deflection, and ductility index. Results
demonstrate that the predicted residual values are limited
between −0.2 and +0.2 for estimating peak load, while
for peak deflection and ductility index, the predicted val-
ues are limited to −0.05 to +0.05. Moreover, it can be seen
that in peak deflection lower than 60 and ductility index
lower than 8, the predicted residual values are approxi-
mately 0.0, which confirms the higher prediction accuracy
of the chained model. Furthermore, for values upper than
60 for peak deflection and 8 for ductility index, it is
expected to have greater residual values due to lack of data
set.
For a better understanding of the model error occur-

rences and difficulties, the error versus ductility index is
shown in Figure 10. In this figure, the radius of the circle
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F IGURE 9 Scatter plot of the predicted residual values versus real values of (a) peak load, (b) peak deflection, and (c) ductility index.

F IGURE 10 Radar diagram of errors versus real target values
normalized values.

represents the error values, and the angle is the normal-
ized target value. The deviation of the error, along with the
increase in the maximum load, was visible, although the
ductility index error and delta p range varied from begin-
ning to end. This is a good indication that more data are
needed from a larger range of input features to increase the
model accuracy for these two features. The error was cal-
culated based on (𝑦 − 𝑦̂). Underestimation is represented

by a positive value, and overestimation is represented by a
negative value.
ML inference time is the process of running data points

into an ML model to calculate a target variable (e.g., a
single numerical score). A computer system with an Intel
core-i5 processor running at 2.8 GHzwith 8.0 GBRAMwas
used to obtain the inference time for each model. Table 4
shows the inference time for each algorithm, calculated as
the time required to process the array of the test data set
(single-batch input). Both the chained and parallel algo-
rithms outperformed the ANNsmodel in terms of the time
required to achieve the target variables. The parallel model
provides results slightly sooner than the chained model
because of its simplicity. The chained model produced a
prediction 27 times faster than the ANNs algorithm.
After assessing the prediction performance of the

chained, parallel, and ANN models, a Taylor diagram
(Figure 11) was used to analyze the accuracy of the algo-
rithms (Taylor, 2001). This type of diagram is widely
employed to evaluate the predictive performance of the
ML model in SFRC and has the highest degree of corre-
lation with the experimental data benchmark point. It is
worth mentioning that the x- and y-axis is the standard
deviation of the output variable. The standard deviation of
the simulated pattern is proportional to the radial distance
from the origin (grey contours). Also, the narrow black
arcs represent the Pearson correlation coefficient, gauging
similarity in pattern between the simulated and observed
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F IGURE 11 Taylor diagram of models (averaged for all
outputs on the first fold).

fields. The green curves represent the centered RMSE in
the simulated field, which is inversely proportional to
the separation from the point on the x-axis designated as
Figure 11. For example, the MO-ANNs shown by yellow
color has a lower correlation coefficient (i.e., around 0.78)
with respect to other models with a correlation coefficient
of approximately 0.85 and 0.87 for parallel and chained
models, respectively. Also, RMSE is higher for MO_ANNs
than other techniques.
As discussed earlier in the “Material and Methods”

section (Section 3), the underlying ML models between
parallel and chained are the same, the main difference is
that the chained algorithm utilizes the prediction of one
target variable for predicting the other one. As is shown
in Figure 11, the multioutput ANNs model has a higher
standard deviation error and lower correlation with the
target values compared to the parallel and chained mod-
els. This can be an indication that the ANNs model was
able to establish a link between output neurons, but in a
chained framework, this connection is established better
leading to higher performance. There are several reasons
for these observed results, including the inaccuracy of
other techniques, experimental errors, incorrect input data
when conducting the test for different records, and dif-
ferent definitions of some output features (e.g., ultimate
deflection), which lead to inconsistencies in the data set.
There are several limitations to this approach. First, the
data set, which is derived from other studies relies on the
accuracy of the measurements of other research groups.
Second, the chained model is composed of several steps,

which makes it more difficult to track the reason behind
predictions record by record. Lastly, the overall chain per-
formance is dependent on the performance of each layer
and if one of the submodels is not working well, the overall
performance will drop relatively.
The model metric results for all three output features

for each algorithm were averaged and included in the
Taylor diagram. In this figure, three models were tested
against the first fold of the fivefold CV. The parallel and
chainedmodels exhibited considerably better performance
than theMO-ANNsmodel. The overall performance of the
chained model on the fivefold CV was noticeably stronger.
Figure 12 shows the test set target features and their

corresponding prediction. On the X-axis, the record num-
ber does not represent the time and the plot is drawn for
absolute value illustration purposes. The absolute errors of
prediction of peak load and peak deflection are compara-
tively lower than ductility index. It can be also observed
that the model performance decreases while reaching out-
liers of data. Meanwhile, results show that the predicted
values are aligned with real values in most of record num-
bers, and the peak load and peak deflection have better
fitted values.

4.4 Sensitivity analysis

The influence of alterations in the individual feature values
on the model target was further investigated by producing
a beeswarm plot using SHAP, as shown in Figure 13. The
y-axis indicates the input parameters in ascending order of
importance. The blue (low) and red (high) color dots are
based on the values of the input parameters. The amount
of data distributed at a specific location is indicated by the
density of the data. Figure 13a–c shows the global SHAP
interpretation of the peak load, peak deflection, and duc-
tility index, respectively. Figure 13a shows that the most
significant feature is the beam length, which has a stronger
and more positive influence on the peak deflection as the
beam length increases. The next most significant feature is
the fiber tensile strength, which has a direct effect on the
peak deflection, according to most of the data. However,
the fiber tensile strength has an inverse influence on the
target value. As the value of this parameter decreases, the
peak deflection increases, which is consistent with exper-
imental results reported in the literature (Koksal et al.,
2012). The shear span-to-depth ratio was directly related to
the peak deflection; At higher values, the peak deflection
tended to be higher. The longitudinal rebar ratio did not
exhibit any clear correlation with peak deflection. How-
ever, for some data points, the peak deflection decreased
as the longitudinal rebar ratio increased. The fiber aspect
ratio and volume fraction also had an inverse effect on the
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F IGURE 1 2 Absolute values of test set.

peak deflection. The beam width and height had the least
influence on the target value. Figure 13b shows that the
longitudinal rebar ratio affects the load capacitymore than
the other features, and as it increases, the peak load also
increases. The longitudinal rebar ratio and beam length are
the nextmost influential features: Both affect the peak load
positively and directly. However, the volume fraction has a
mostly negative impact on the peak load. The fiber tensile
strength, shear span-to-depth ratio, and other factors have
little to no effect on the load capacity, as illustrated by the
SHAP diagram. Figure 13c shows that the beam height has
the greatest effect on ductility index of the SFRC beams.
As the beam height increases, the ductility index values
of the tested beams decrease. The same effect of the beam
width was observed for the ductility index for the major-
ity of data points in the data framework. Although the
effect of the longitudinal rebar ratio was not greater than
that of the beam width, this factor should be considered
carefully when designing SFRC beams for increasing flex-
ural performance. The shear span-to-depth ratio exhibited
a relatively positive correlation with the ductility index.
The effect of the fiber aspect ratio on the ductility index
of the RC beams was unclear, although it appeared to be
negative. The fiber aspect ratio and fiber tensile strength
were both directly correlated with ductility index. How-
ever, their effects were weaker than those of the other
factors. More data are required to understand the effects

of these factors on ductility index of SFRC beams. In addi-
tion, based on the SHAP value, the beam length and fiber
volume fraction seem to be less influential factors for the
flexural behavior of SFRCbeams than the fiber aspect ratio.
It is also observed from Figure 13d–f that ductility index

predictions as the final target feature of the multioutput
chained model is highly impacted by the result of predic-
tions of prior steps (i.e., peak load and peak deflection
predictions), and this is an indication that the chained
model is well utilizing the interconnection among themul-
tiple target outputs. The alteration of the SHAP value for
the ductility index of the RC beams with respect to the
parameters related to the steel fiber is shown in Figure 14.
The fiber aspect ratios upper than 75 have positive effects
on DI, while the values lower than 55 has negative effects
on ductility index (Figure 14a). Figure 14b shows that as the
steel fiber tensile strength increases, its effect on the target
value also decreases. However, lower values of the longitu-
dinal rebar ratio indicate their potential for predicting the
target variable. Longitudinal rebar ratio less than 2% have
larger SHAP values than ratios higher than 2%, as shown
in Figure 14c. Thus, lower longitudinal rebar ratios have
a significant influence on the target variable. The effect of
the fiber volume fraction on ductility index is illustrated in
Figure 14d. A lower fiber volume fraction (e.g., lower than
1) has a negative effect on the ductility indices of the RC
beams, while fiber volume fractions between 1 and 2 have
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18 SHAFIGHFARD et al.

F IGURE 13 SHapley Additive exPlanations (SHAP) global interpretation on (a) peak deflection, (b) ductility index, (c) peak load, (d)
peak deflection, (e) ductility index, and (f) peak load.

F IGURE 14 SHapley Additive exPlanations (SHAP) values for
fiber characteristics of (a) fiber aspect ratio, (b) fiber tensile
strength, (c) longitudinal rebar ratio, and (d) volume fraction.

a positive effect on the ductility indices. Overall, the ten-
sile strength and aspect ratio of the steel fibers have a direct
effect on the prediction of the target value,whereas the lon-
gitudinal rebar ratio and fiber volume fraction are inversely
related to the output value. The SHAP results are extremely
sensitive to the size, distribution, and complexity of the
collected data set (from different experiments in the liter-
ature), as well as, the accuracy of developed ML models.
Thus, those results shall not be interpreted to describe the
physical behavior of the sample. In this study, SHAP is
used only to identify the relation between input features
and their effect on the accuracy of the prediction. Mean-
while, the descriptions can beused as preliminary behavior
assessment of effects of input features on the target values.

5 CONCLUSIONS

Accurately predicting the peak load, peak deflection, and
ductility index of SFRC beams under bending repre-
sents a complex multioutput prediction task, navigated
through the application of a diverse range of ML models.
Within this study, a comprehensive investigation has been
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conducted encompassing ANNs, parallel, and chained
models to address this intricate challenge. This rigor-
ous exploration involved the assessment of these various
ML models against a comprehensive database sourced
from pertinent literature. Leveraging a rigorous fivefold
CV methodology and appraising performance across four
key metrics, this investigation rigorously scrutinized and
compared the efficacy of the suggestedMLmodels. A com-
parative analysis was conducted to determine the most
accurate predictive approach. The comparisons demon-
strated the superiority of the chained algorithm in terms
of predictive performance and overall prediction accuracy.
The following conclusions were drawn from this study:

∙ The proposed chained algorithm is a stackingMLmodel
that uses the output of one model to predict the next tar-
get feature. It predicts the flexural performance of SFRC
beams well, as indicated by its values of 𝑅2 = 0.87, MAE
= 0.03, and RMSE = 0.004.

∙ While the ANNs model demonstrates an ability to
leverage interconnections among target features, its uti-
lization of this connectivity was relatively constrained,
particularly evident when compared to the proposed
chained algorithm. This limitation becomesmore appar-
ent in scenarios with a limited number of data points,
wherein the ANNs exhibit a reduced capacity to exploit
these interconnections, leading to a comparatively lower
optimization of overall averaged performance.

∙ As per the SHAP global diagrams, it became evident that
among the various factors considered, the longitudinal
rebar ratio and beam length wielded the most substan-
tial influence on the ductility index of SFRC beams.
These two parameters emerged as pivotal contributors,
significantly shaping and impacting the ductility index
within the context of the studied SFRC beams.

∙ The results of residual values confirmed that the chained
model has the highest accuracy for peak deflection
values lower than 60 and the ductility index values
lower than 8 (i.e., the residual value in this range is
approximately 0.0). Therefore, themodel has the highest
reliability for this range of predictions.

∙ The efficiency of the chained model in producing accu-
rate predictions was notably superior in terms of speed
compared to the ANNs models. This enhanced speed
in delivering precise predictions signifies a considerable
advantage of the chained model over the ANNs, high-
lighting its efficacy in achieving accuracy within a more
expedited timeframe.

The results of this study contribute to improving the pre-
diction of the flexural performance of SFRCbeamswithout
exhaustive simulations or expensive experimental tests.
However, further experimental data should be obtained to

improve the accuracy of ductility index prediction formore
than 8 and peak deflection upper than 60. The future work
includes adding experimental data from the authors fur-
ther to this meta-analysis work and employing dynamic
ensemble learning (Rafiei et al., 2022) and self-supervised
learning for prediction purposes.
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