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A B S T R A C T   

This study presents an original and novel investigation into the mechanics of piezo-flexo- 
magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the 
lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear 
deformation shell model, stresses and strains are acquired. By imposing Hamilton’s principle and 
the von Kármán approach, the governing equations have been obtained. The intelligent shell 
model consists of size-dependent influences, viz., strain gradients. This will take place via 
Mindlin’s strain gradient elasticity theory and the subsequent re-establishing of the mathematical 
framework by incorporating this concept. The strain gradient results in a flexoelectric/flex
omagnetic effect. The converse effect of the magnetic field on the basis of a close circuit has been 
assumed. The developed bending equations have been transferred into the algebraic ones by 
substituting an analytical technique based on homogeneous immovable simple support for the 
four edges. The problem has been solved according to the Newton-Raphson iteration scheme, and 
transverse deflections have been computed. For researching the rightness and precision of the 
shell models together with the solution process, a comparison is prepared by the finite element 
method (FEM) results for simplified shells, and a good correlation has been observed. At last, by 
examining several factors governing the problem, the conditions under which the magnetic ef
fects can be noticeable and dominant in doubly-curved shells have been sought. This study could 
serve as a benchmark reference for piezoceramic-DCSs, as the presented governing equations are 
original. The most interesting outcome of this research is that the electro-magnetic response of 
intelligent structures can be entirely geometry-dependent.   

1. Introduction 

The outstanding strength-to-weight ratio of shells, the most proficient element among engineering structures, has demonstrated 
remarkable durability. Consequently, various scientific fields have harnessed the potential of shells. When it comes to the configu
ration of these elements, the design possibilities are limitless, offering an infinite array of shell compounds. From an engineering 
perspective, shells can be broadly categorized into two groups: shells with developable and non-developable shapes. Developable 
shells, exemplified by barrel shells, can be flattened without tearing or stretching. On the contrary, the non-developable shells, like 
double-curvature ones, lack the ability or possibility to be unrolled. 

Among the different types of shells, doubly-curved shells (DCSs) are widely used due to their high energy absorption capacity in 
plastic deformation. DCSs have a very economical design because of their very small thickness-to-span ratio. These structures transfer 
loads highly efficiently. Because of their curvatures, instead of bending, the forces are transferred in DCSs by membrane forces. In 
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terms of geometry, they can couple the flexural and membrane responses. Double-curvature shells may be either a section of a dome, 
sphere or revolution. The double-curvature shape can especially increase structural strength and stability. The study of their bending 
behavior is necessary for use in cases such as aircraft noses or ballistic missiles. In the case of ballistic missiles, their noses are made of a 
combination of hemispherical and conical shells that buckle when released and hit the target. 

Much work has already been done to estimate the mechanics of DCSs on the nano, micro, meso, and macro scales. Alijani et al. 
(2011) investigated large amplitude frequencies of a functionally graded (FG) DCS on the basis of Donnell’s shallow shell theory and 

Nomenclature 

ui(i = 1,3) Displacements in the α, β, and z- directions 
εij Elastic strains 
σij Elastic stresses 
ψ External magnetic potential 
hijkl 4th-order converse flexomagnetic tensor 
fijkl 4th-order direct flexomagnetic tensor 
Cijkl 4th-order elasticity tensor 
Nij(i,j=α,β) Force stress resultants 
ηijk Gradient of the elastic strains 
Tijk(i,j,k=α,β) Higher-order force stress resultants 
Rijk(i,j,k=α,β) Higher-order moment stress resultants 
ξijk Higher-order stress tensor 
Tij Hyperstress resultant 
u, v In-plane displacements of mid-surface along α and β axes 
p Increments in Newton-Raphson method 
δij Kronecker’s delta 
w Lateral displacement 
α Length coordinate 
a Length of the shell 
Hi Magnetic field 
Bi Magnetic flux 
l Material’s length scale parameter 
Ψ Magnetic potential function 
m,n Mode numbers 
Mij(i,j=α,β) Moment stress resultants 
∇ Nabla operator 
ν Poisson’s ratio 
φα,φβ Shell elements rotations 
ks Shear correction factor 
G Shear modulus 
Qαz,Qβz Shear stress resultants 
Rα, Rβ Shell radiuses 
U Strain energy 
aij 2nd-order magnetic permeability tensor 
gijklmn 6th-order strain gradient tensor 
gi Strain gradient coefficients 
μ Strain gradient shear modulus 
ai(i = 1,2,3) Surface metrics (tangent vectors) 
qijk 3rd-order piezomagnetic tensor 
z Thickness coordinate 
h Thickness of the shell 
q0 Transverse load 
Umn,Vmn,Wmn,Φαmn,Φβmn Unknown variables for displacements 
Δ Unknown variables vector 
N0

ij(i,j=α,β) Axial stress resultants of magnetic field 
W Work done by a magnetic field 
β Width coordinate 
b Width of the shell 
E Young’s modulus  
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movable simply supported edges. Tornabene et al. (2012) evaluated natural frequencies of a DCS with anisotropic behavior and solved 
the model via differential quadrature method (DQM) and generalized eigenvalue solution. The first-order shear deformation shell 
theory (FSDST) was considered. Fazzolari and Carrera (2014) studied natural frequencies of a DCS made of FG materials (FGM) 
alongside a sandwich DCS-FGM. A modified quasi-3D kinematic model was generated to carry out the problem. Tornabene et al. 
(2016) examined a laminated DCS using higher-order shell models exposed to external concentrated line and point forces in order to 
study its mechanical response. Ghayesh and Farokhi (2017) performed research on microsize DCs to analyze large static 
size-dependent deflections of the specimen in reference to Donnell’s nonlinear shell theory. The microscale influence was calculated 
concerning a modified couple stress hypothesis. Karami et al. (2019) inspected the effect of porosity on natural frequencies of a 
nanosize DCS. They capture the size influences based on the nonlocal strain gradient model. Wang et al. (2017) presented a 
semi-analytical analysis to study natural frequencies of FGM sandwich doubly-curved shells (DCSs) and panels (DCPs). Guo et al. 
(2018) extended the studies on laminated DCSs in different boundary domains using FSDST and a domain decomposition technique. 
Amabili (2005) considered large-amplitude vibrations of a DCS embedded in the simply supported edges. The kinematic model came 
from two different theories, Novozhilov’s and Donnell’s shell theories. Amabili and Reddy (2010) investigated nonlinear frequencies of 
a laminated DCS by developing a higher-order shear deformation shell theory. Tornabene et al. (2013) explored natural frequencies of 
laminated doubly-curved panels and shells by deriving a higher-order equivalent single-layer theory. Tornabene and Bacciocchi 
(2018) took into account the arbitrarily oriented angular velocities in order to evaluate dynamic stability of a laminated DCS. Karimiasl 
and Ebrahimi (2019) addressed viscoelastic effect in a sandwich DCS in order to extract the large-amplitude natural frequencies. The 
sandwich DCS contains magnetorheological layer and a flexible core. Karami and Shahsavari (2020) analyzed a laminated FG-DCS at 
nanoscale subject to external excitation frequencies. The minutely scaled shells were reinforced with graphene platelets, assuming 
various patterns. Mehar et al. (2021) studied the eigenvalue thermal stability of DCPs. The shell was strengthened with carbon 
nanotubes (CNTs). Arefi (2018) presented a study on large static deflections of DCSs at nanosize by taking piezoelectricity effect into 
account. They nested the shell on an elastic foundation. Kundu and Han (2009) established an investigation on snap through and 
natural frequencies of laminated DCSs considering external humidity and temperature. Tornabene (2011) applied a two-dimensional 
generalized DQM (GDQM) to investigate DCSs and DCPs on the basis of FSDT. Bich et al. (2013) employed a semi-analytical technique 
in order to calculate nonlinear natural frequencies of an eccentrically stiffened FG-DCS. The imperfection was supposed to be a minor 
deviation of the mid-plane of the shell from its desired and normal position. Viola et al. (2013) discussed on the static response of a 
laminated DCS and DCP on the basis of a higher-order shear deformations shell model. Tornabene et al. (2014) presented a vibration 
study on the laminated DCSs and DCPs based on a local GDQM that is an advanced type of GDQM. In another work, Tornabene et al. 
(2017) presented a novel finite shell element for laminated DCSs to compute natural frequencies. Aminipour et al. (2018) conducted 
research on wave propagation in anisotropic FG-DCSs in respect to a higher-order shell model. Li et al. (2018b) used a semi-analytical 
solving method in order to get natural frequencies of laminated DCSs. Sobhy (2018) developed DCSs into advanced laminated ma
terials, including piezomagnetic (PM) faces and FG core, which themselves were reinforced by graphene platelets. The composite 
structure was placed in a thermal environment. Li et al. (2019) presented a new model of DCSs with non-uniform thickness and 
researched on its natural frequencies in respect to finite element technique, while the shell was made of FGMs. Arefi and Amabili 
(2021) studied bending and stability of a Multiphysics-laminate DCS at nanoscale concerning a quasi-three-dimensional elasticity 
model. The analysis involved piezoelectric effect in addition to piezomagneticity. Zamani (2021) assumed a viscoelastic medium under 
a laminated DCP and calculated the natural frequencies. Cao et al. (2021) extended studies on FG-DCSs by assessing multi-directional 
functionality for the FG property. It means the properties of FG was scrutinized along with not only thickness but also length and width 
of the DCS. Tornabene et al. (2021b) presented new research on anisotropic DCSs based on isogeometric mapped geometry and a 
variable thickness. A higher-order elasticity model was utilized as well. Karimiasl et al. (2019a) researched on the large amplitude 
frequencies of composite DCSs containing a porous core and piezoelectric layers with multiscale modeling. Tornabene (2019) 
calculated critical rotational speed of a DCS manufactured by FGMs. The rotational movement was possible to be in an arbitrarily axis. 
Arefi (2020) carried out a multiphysics vibration analysis on DCSs at small scale consisting of electro-elastic features. They contributed 
the influence of two-parameter elastic matrix into the model. The nanoscale impacts were captured with respect the Eringen’s nonlocal 
elasticity theory. Thakur and Ray (2021) investigated transient response of a laminated DCS. The shell was subjected to a pulse loading 
and a higher-order elasticity model was employed to simulate the displacements. Zhu et al. (2021) studied the effect of non-uniform 
electric field on the natural and excitation frequencies of piezoelectric DCSs comprising porosities. In another work, Tornabene et al. 
(2021a) assumed a honeycomb core and modeled a laminated DCS based on a higher-order elasticity framework. Lotfan et al. (2021) 
provided a study on the axially moving DCSs and DCPs in a vibrational environment using a higher-order kinematic model. Civalek 
(2005) combined finite difference method with a harmonic differential quadrature technique as a unique solution in order to calculate 
large amplitude frequencies of an isotropic DCS positioned on an elastic matrix. Tsai et al. (2008) modeled a smart FG-DCS with 
three-dimensional elasticity. The model incorporated electro-magnetic properties. Duc et al. (2019) described large dynamic ampli
tudes of a nanosize FG-DCS reinforced with carbon nanotubes. The nanocomposite was postulated to be geometrically imperfect and 
embedded in a thermal environment. Tornabene (2015) used higher-order theories in order to peruse natural frequencies of laminated 
DCPs. The panel was reinforced by curvilinear fibers. The theoretical model was solved within the context of a local GDQ. Askari et al. 
(2020) developed studies on vibrations of DCPs including bimorphs and unimorph layouts. Li et al. (2018a) reported nonlinear 
transient behavior of composite FG-DCSs on the basis of presenting a new kinematic displacement field. Mahapatra et al. (2016) 
analyzed nonlinear static deflections of a laminated DCS/DCP while the member was affected by external humidity and temperature. 
Zhu et al. (2019) affected a piezoelectric FG-DCSs by viscosity and surface effects and computed nonlinear frequencies. As this article is 
not a review paper to give all the literature in detail, some works have been surveyed only. Other published works on doubly-curved 
shells/panels can be referred as (Tornabene et al., 2012; Ghavanloo & Fazelzadeh, 2013; Huang & Qiao, 2020; Monge & Mantari, 
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2020; Aminipour et al., 2020; Ahmadi et al., 2021; Vinyas & Harursampath, 2020; Sayyad & Ghugal, 2021; Singh & Panda, 2014; 
Tornabene & Brischetto, 2018; Arefi & Rabczuk, 2019; Arefi et al., 2022; Shahmohammadi et al., 2022; Bidgoli et al., 2022; Karami 
et al., 2020; Hao et al., 2018; Fazelzadeh et al., 2019; Zare Jouneghani et al., 2017; Karimiasl et al., 2019b; Tham et al., 2019; Liew & 
Lim, 1996; Mahapatra et al., 2017a, 2017b; Pouresmaeeli & Fazelzadeh, 2016; Singh & Panda, 2017; Dindarloo et al., 2020; Thakur 
et al., 2017; Tornabene & Viola, 2013; Tornabene, 2016; Tran et al., 2018; Tornabene et al., 2023; Sofiyev, 2023; Xu et al., 2021; 
Dastjerdi et al., 2020a;2020b; Dastjerdi et al., 2021a, 2023a;2023b; Khaniki & Ghayesh, 2023; Shahmohammadi et al., 2023). 

Under the impact of an external magnetic field, multiferroic materials could exhibit extraordinary properties. These materials are 
not solely magnetized by an external magnetic field but rather by mechanical deformation. These structures become magnetized by 
responding to mechanical strain, resulting in the generating of a magnetic field. This lower-level magneto-elastic phenomenon is called 
piezomagnetism. Examples of multiferroic materials include nickel, cobalt, and iron, as well as certain types of compounds and 
nanostructures. It is crucial to understand the magneto-elastic behavior of such materials, helping in the development of precision 
technologies ranging from electro-magnetic micro motors and data storage systems. 

A higher-level multiphysics impact, flexomagnetic (FM) influence, is an innovative finding in the realm of small-scale devices. FM 
materials are often multiferroic, meaning they undergo both ferromagnetic and ferroelastic properties, allowing them to couple 
magnetic and mechanical behavior. It was shown that the FM is a linear phenomenon arising from the nonuniform strain along the 
thickness (Lukashev & Sabirianov, 2010). It means that this effect can be absent for a uniform strain. However, it is significant to 
underline that the FM does not result from the strain. It results from strain gradient along with the thickness. Thus, a nonuniform strain 
generates a strain gradient and then the strain gradient creates the FM influence. This process gives the direct FM effect. In order to 
access the converse FM effect, the need is to possess a gradient of the external magnetic field. 

In continue, the last research that has focused on the mechanical behavior of piezomagnetic beams and plates by investigating FM 
impact is elaborated. Forerunners are Sidhardh and Ray (2018) and Zhang et al. (2019). In these early examinations, the researchers 
concentrated on linear bending of size-dependent actuators and sensors based on a surface elasticity approach and Euler-Bernoulli 
beam model under a transverse static loading, in which the FM effect is observed in both direct and converse magnetizations. 
Alternatively, Malikan and Eremeyev (2020a) continued the studies by conducting a frequency examination of the 
piezomagnetic-flexomagnetic (PFM) one-dimensional structures on the basis of nonlocal thin beam. Malikan and Eremeyev (2020b) 
performed nonlinear frequencies of small-size structures with PFM properties. Malikan and Eremeyev (2020c) assessed large de
formations for a nonlocal beam with the PFM impact. The evaluation has been accomplished by way of a semi-analytical solving 
technique. Malikan et al. (2020c) explored nonlinear buckling of piezo- and flexomagnetic nanoparticles. Malikan et al. (2020b) 
considered the size effect and studied a nonlocal PFM beam by encompassing material imperfection. Malikan and Eremeyev (2021a) 
conducted a research to estimate if there is any dependency between the FM effect and surface elasticity. Malikan and Eremeyev 
(2021b) reported flexomagnetic behavior for nonlocal sheets. Malikan et al. (2021) modeled a micro media to examine the distribution 
of temperature in PFM micro beam. Sladek et al. (2021) probed FM effect into cantilever beams subjected to lateral point load and 
under direct magnetic impact. Malikan and Eremeyev (2022a) tried to explore the shear deformation influences on the FM response of 
an axially compressed small-size beam. Malikan et al. (2022) addressed FM influence in small size beams made of FGM faced with 
thermal buckling. Malikan and Eremeyev (2022b) considered the rotary inertia resulted from shear deformations on the mechanical 
response of flexomagnetic beams. Momeni-Khabisi and Tahani (2023) investigated both direct and converse magnetic effects leading 
to modelling nano-sensors and nano-actuators for piezomagnetic nanoplates under thermal stability circumstances. Malikan and 
Eremeyev (2023) modeled FM microbeams using the Lord-Shulman thermoelastic model and studied thermoelastic behavior of pie
zomagnetic structures in thermo-dynamic conditions. Malikan and Eremeyev (2022c) developed the FM model and proposed a more 
consistent FM constitutive model. Hrytsyna et al. (2022) analyzed both flexoelectric and flexomagnetic influences simultaneously 
along with micro-inertia property to study love waves propagation in structures. A continuum conical small size shell made of 
functionally graded compositions consisting of flexomagnetic and flexoelectric properties has been scrutinized by Dehkordi and Tadi 
Beni (2022). Very recently, Malikan et al. (2023) derived a three-dimensional (3D) magneto-elastic model for intelligent structures and 
indicated that the three-dimensional analysis shows different results for such smart structures, indicating the significance of 3D 
mechanical studies. Biswas and Sahu (2023) studied plane wave characteristics in PFM microstructures. Their study incorporated 
impedance boundary conditions and micro-inertia effects. Fu et al. (2023) with the inclusion of expanded strain gradient terms inside 
the free energy density, presented an extended PFM model. Momeni-Khabisi and Tahani (2024) analyzed both buckling and 
post-buckling of smart nano-strips providing flexoelectric and flexomagnetic influences simultaneously. Biswas and Sahu (2024) 
continued research on PFM structures adding surface effects while the substrate is under plane waves. 

The present work, as investigated the literature, is the first endeavor to estimate the FM in a shell structure. This work is prepared 
regarding some aspects. First of all, the presentation of the new modified PFM relationships for a two-dimensional structure. In this 
way, a third part is involved which was absent in the stress-displacement piezo-flexo-magneto-elastic relations of the literature. In 
addition to this, magnetic induction-type tensor is also involved as a new part in the formulation, which was excluded from past 
researches. In this way, both magnetic vector and tensor are engaged. The second is the analysis of doubly-curved shells in the form of a 
PFM shell, which in turn is novel. This work shows that how flexomagneticity can operate in a PFMDCS. The assumptions to evaluate 
the problem consist of the first-order shear deformation shell model (FSDST) beside the von Kármán theory. FSDST describes the 
geometry of shell after deformations. The formulation of linear bending requires linear Lagrangian strains. The third and final aspect is 
the use of an analytical solution method in order to transfer the partial differential equations of bending into the space of algebraic 
equations, leading to an analytical solution. 

The organization of the paper unfolds as follows: 
In Section 1, the focus is on introducing the topic alongside a comprehensive review of the existing literature. Section 2 entails the 
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mathematical modeling of the targeted issue. By Section 3, the analytical solution process is outlined. Section 4 undertakes some 
comparative analyses in accordance with FEM. Turning to Section 5, a thorough examination and detailed interpretation of the results 
are presented. Finally, Section 6 encapsulates the paper, providing conclusive remarks and summarizing the key findings of the 
conducted research. 

2. Mechanics of PFMDCSs 

This section represents the mechanics of PFMDCSs by virtue of a well-derived mathematical model. By means of analytical 
mathematics, the mechanics of the studied shell is explained. Moreover, the PFMDCSs failure is analyzed in regard to the lateral loads. 
The main attention is paid to the piezomagnetic and flexomagnetic behavior of PFMDCSs. In this work, a DCS is considered with equal 
curvatures on both sides, which is layup by Fig. 1. As seen, the letters a, b, and h are respectively associated to the length, width, and 
thickness of the PFMDCS. The shell is conjugated to a magnetic field which acts transversely and a curvilinear coordinate system is 
attached to the domain. Rα and Rβ denote the principal radii of the curved dimensions. 

As it is obvious from Fig. 1, the actual geometric shapes of the DCSs are specified by curvatures Rα and Rβ. Practical engineering has 
often encountered through several geometrical shapes of DCSs, i.e. catenary, hyperbolical, elliptical shells, paraboloid, cycloidal, 
circular cylindrical, circular saddle, circular toroidal, etc. Despite that, in the context of brevity, this study is supposed to investigate a 
few of them only. 

In accordance with the postulates outlined in the relatively thick shell hypothesis mentioned earlier, the kinematic field for an 
arbitrary point of the shell analyzed in the present research adheres to the first-order shear deformation shell theory, which could be 
expressed as follows (Pouresmaeeli & Fazelzadeh, 2016; Reddy & Asce, 1984; Reddy, 2003; Reddy & Liu, 1985): 

⎧
⎨

⎩

u1(α, β, z)
u2(α, β, z)
u3(α, β, z)

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

1 +
z

Rα

)

u(α, β)
(

1 +
z

Rβ

)

v(α, β)

w(α, β)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ z

⎧
⎨

⎩

φα(α, β)
φβ(α, β)

0

⎫
⎬

⎭
(1) 

Let us utilize the conventional linear Lagrangian strain-displacement formula as follows: 

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

(2) 

The tensors representing strain and strain gradients exhibit symmetry in this context as εij = εjiandηijk = ηjik. Then, the progress 
continues with the expansion of Eq. (2) for an orthogonal curvilinear coordinate system (Dindarloo et al., 2020; Reddy & Asce, 1984; 
Reddy, 2003): 

Fig. 1. Doubly-curved shells of revolution (designed in SolidWorks 2023).  
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εαα
εββ
γβz
γαz
γαβ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
A1

(
∂u1

∂α +
1
a2

∂a1

∂β
u2 +

a1

Rα
u3

)

1
A2

(
∂u2

∂β
+

1
a1

∂a2

∂α u1 +
a2

Rβ
u3

)

1
A2

∂u3

∂β
+ A2

∂
∂z

(
u2

A2

)

1
A1

∂u3

∂α + A1
∂
∂z

(
u1

A1

)

A2

A1

∂
∂α

(
u2

A2

)

+
A1

A2

∂
∂β

(
u1

A1

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)  

in which A1 =
(

1 + z
Rα

)
a1,A2 =

(
1 + z

Rβ

)
a2,A3 = a3 = 1. 

In order to derive strain-displacement relations, one may assume the following criteria (Aminipour et al., 2018),  

1) The shallow shell is taken into account, and then thickness deformation is considered insignificant compared to the curvature radii 

(∂ /∂z = 0) = :

⎧
⎪⎨

⎪⎩

z
Rα

≈ 0 ⇒ A1 = a1

z
Rβ

≈ 0 ⇒ A2 = a2  

2) It is supposed that the curvatures are constant and do not have variations: ∂a1
∂β = ∂a2

∂α = 0 

Next, one can articulate the strain components at any point on the domain by elaborating and segmenting them as (Arefi & 
Rabczuk, 2019): 

⎡

⎣
εαα γαβ γαz
γαβ εββ γβz
γαz γβz εzz

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂u1

∂α +
u3

Rα

∂u1

∂β
+

∂u2

∂α
∂u1

∂z
+

1
a1

∂u3

∂α −
u

Rα

∂u1

∂β
+

∂u2

∂α
∂u2

∂β
+

u3

Rβ

∂u2

∂z
+

1
a2

∂u3

∂β
−

v
Rβ

∂u1

∂z
+

1
a1

∂u3

∂α −
u

Rα

∂u2

∂z
+

1
a2

∂u3

∂β
−

v
Rβ

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4) 

Herein, using the modified Sander’s theory, the ultimate strain-displacement relations for a DCS can be written as (Kiani et al., 
2013): 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εαα
εββ
γβz
γαz
γαβ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂α 0

1
Rα

z
∂

∂α 0

0
∂

∂β
1
Rβ

0 z
∂

∂β

0 −
1
Rβ

∂
∂β

0 1

−
1

Rα
0

∂
∂α 1 0

(1 + zC0)
∂

∂β
(1 − zC0)

∂
∂α 0 z

∂
∂β

z
∂

∂α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
v
w
φα
φβ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)  

where C0 = 1
2

(
1
Rα

− 1
Rβ

)
. 

Let us consider the linear relationship of strain gradient as (Malikan et al., 2023): 

ηijk =
1
2

∂
∂xk

(
∂ui

∂xj
+

∂uj

∂xi

)

(6) 

The preceding magneto-elastic stress and hyperstress relations can be re-employed as (Malikan & Eremeyev, 2022c): 

σij = Cijklεkl − qijkHk + rijklm
∂εkl

∂xm
− hijkl

∂Hk

∂xl
(7)  

ξijk = gijklmn
∂εlm

∂xn
+ rijklmεij − λijklm

∂Hl

∂xm
− fijklHl (8) 
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Tij = − bijkl
∂Hk

∂xl
− sijkHi − λijklm

∂εij

∂xk
− hijklεij (9)  

Bi = aklHk + qijklεij + sijk
∂Hj

∂xk
+ fijkl

∂εij

∂xk
(10) 

The variational relation is well-used and employed to establish accurate governing equations for thin-walled structures of any 
geometries. Let us proceed with the mathematical model based on this foundation. 

δU − δW = 0 (11) 

Afterwards, one can expand Eq. (11) for the present model into two parts: the strain energy and, later, the works done by magnetic 
field. 

δU =

∫a

0

∫b

0

∫h/2

− h/2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σααδεαα + σββδεββ + σαβδεαβ + ταzδεαz + τβzδεβz

+ξααzδηααz + ξββzδηββz + ξαβzδηαβz + ξαααδηααα

+ξααβδηααβ + ξβββδηβββ + ξββαδηββα + ξαβαδηαβα

+ξαββδηαββ + ξαzαδηαzα + ξαzβδηαzβ + ξαzzδηαzz

+ξβzαδηβzα + ξβzβδηβzβ + ξβzzδηβzz − Tααδ
∂Hα

∂α

− Tββδ
∂Hβ

∂β
− Tzzδ

∂Hz

∂z
− BαδHα − BβδHβ − BzδHz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

a1a2a3dzdβdα (12) 

The external magnetic field impacts the energy of the domain, resulting in a thermodynamic work expressed as (Malikan & Nguyen, 
2018): 

δW = −

∫b

0

∫a

0

{

N0
αα

(
∂w
∂α

∂δw
∂α

)

+N0
ββ

(
∂w
∂β

∂δw
∂β

)

+Q
}

a1a2dαdβ (13) 

Not to mention that the shear effect of the field is disregarded. 
The matrix Cijkl could be condensed to Cij (i, j ∈{1, 2, …, 6}) utilizing the Voigt notation. The opportunity to decrease the elastic 

components arises when the structure demonstrates linear elastic behavior (Karami et al., 2019). 

[
Cijkl

]
=

⎡

⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1133 0 0
C1122 C2222 C2233 0 0
C1133 C2233 C3333 0 0

0 0 0 C1313 0
0 0 0 0 C1212

⎤

⎥
⎥
⎥
⎥
⎦

(14)  

where the stiffness matrix components for a pure elastic structure can be calculated by assuming isotropic plane strain as: 

C1111 =
E

1 − ν2,C1122 =
νE

1 − ν2,C2222 = C1111,C1313 =
E

1 − ν2

1 − ν
2

,

C3333 = C1212 = C1313,C1133 = C2233 = 0 

In piezomagnetic materials with hexagonal crystalline structure, it is possible to simplify the piezomagnetic tensor as (Malikan 
et al., 2023): 

[
qijk

]
=

⎡

⎣
0 0 0 0 q15
0 0 0 q15 0

q31 q32 q33 0 0

⎤

⎦ (15) 

Similarly, the symmetry representations of the direct and reverse flexomagnetic parameters can be condensed into three inde
pendent elements, f11, f111, and f14 as applicable to a cubic crystal (Malikan et al., 2023). 

[
fij
]
=

⎡

⎣
0 0 0 0 f111
0 0 0 f111 0
f14 f14 f11 0 0

⎤

⎦ (16) 

Subsequently, due to insufficient literature on the same material, one may assume that the converse FM tensor aligns with the direct 
one, thereby allowing it to be reduced accordingly (considering the piezomagnetic material has been identified as a cubic crystal). 

[
hij
]
=

⎡

⎣
0 0 0 0 h46
0 0 0 h46 0

h15 h15 h11 0 0

⎤

⎦ (17) 
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Designing empirically small-sized devices poses a challenge due to size dependence. Various micro-models can be employed to 
capture these small-scale characteristics (Malikan et l., 2019; Malikan & Sadraee Far, 2018; Malikan et al., 2020a; Dastjerdi et al., 
2022; Stempin & Sumelka, 2022; Stempin et al., 2023; Dastjerdi & Akgöz, 2019; Dastjerdi et al., 2021b; Karami & Ghayesh, 2023; 
Barretta et al., 2023; Civalek et al., 2023). In this research, within the scheme of the strain gradient approach, the size effect is explored 
and utilized, and in consequence, the first Mindlin’s model associated with isotropic and linear elastic materials can be (Sidhardh & 
Ray, 2018; Malikan & Eremeyev, 2022c; Malikan et al., 2023): 

gijklmn = g1
[(

δijδkl + δikδjl
)
δmn + (δimδln + δinδlm)δjk

]

+g2
[
δij(δkmδln + δknδlm) + δik

(
δjnδlm + δjmδln

)]
+ g3δilδjkδmn

+g4δil
(
δjmδkn + δjnδkm

)
+ g5

[
δim

(
δjlδkn + δjnδkl

)
+ δin

(
δjlδkm + δjmδkl

)] (18) 

It should be kept in mind that the material under scrutiny is a non-centrosymmetric piezomagnetic substance. However, the 
adoption of the centrosymmetric strain gradient tensor is a provisional assumption made due to a lack of ample literature. The ele
ments of ’g’ adhere to isotropic gradient elasticity. 

It has already been recognized that 

δij =

{
1, if i = j,
0, if i ∕= j. (19) 

Hence, for instance, one may articulate the first term of the strain gradient elastic moduli by applying the Voigt notation rules as 
follows: 

g111111 = 4(g1 + g2 + g5) + g3 + 2g4 (20) 

The strain gradient parameters of the material can be formulated as follows (Sidhardh & Ray, 2018; Malikan & Eremeyev, 2022c; 
Malikan et al., 2023): 

g1 = −
2
3
(g2 + g5), g2 =

μ
30

(
27l2

0 − 4l2
1 − 15l2

2

)

g3 =
1
3
(8g2 + 2g5), g4 =

μ
3
(
l2
1 + 6l2

2

)
, g5 =

μ
3
(
l2
1 − 3l2

2

)
(21)  

where the introduced parameters l0, l1, and l2 represent the material length scales. 
To make things simpler, one may suppose that l0 = l1 = l2 = l (Malikan et al., 2023). Besides, the precise value of the strain gradient 

shear modulus (μ) has not already been established. Therefore, its magnitude is treated as a scalar equivalent to the elastic shear 
modulus (G). 

Numerous mathematical efforts are essential to derive the magnetic potential relationship, such as: 

Ψ =

(
h2

4
− z2

)[
h46

2a33

(
∂3u

∂α2∂β
+

∂3v
∂α3

)

+ C0
zh46

6a33

(
∂3u

∂α2∂β
−

∂3v
∂α3

)

+
q31

2a33

∂φα
∂α

+
zh46

6a33

(∂3φβ

∂α3 +
∂3φα
∂α2∂β

)

+
q32

2a33

∂φβ

∂β
+

h46

2a33

(
∂2φα

∂β2 +
∂3w

∂α∂β2 −
1

Rα

∂2u
∂β2

)]

+ ψ
(

1
2
+

z
h

) (22) 

The following conditions have been presumed for the magnetic potential through the thickness of the media that can be satisfied by 
Eq. (22). 

Ψ
(

+
h
2

)

= ψ ,Ψ
(

−
h
2

)

= 0 (23) 

Let us gather the terms in Eqs. (12) and (13) that pertain to the governing equations. Then, a substantial amount of mathematical 
processing gives 

∂Nαα

∂α +
∂Nαβ

∂β
+

∂2Tααα

∂α2 +
∂2Tαββ

∂β2 +
∂2

∂α∂β
(
Tααβ + Tαβα

)
−

1
Rα

(
∂Tαzα

∂α +
∂Tαzβ

∂β
− Qαz

)

+C0

[
∂

∂β
(
Mαβ + Tαβz

)
+

∂2Rαβα

∂α∂β
+

∂2Rαββ

∂β2

]

= 0

(24a)  

∂Nαβ

∂α +
∂Nββ

∂β
+

∂2Tαβα

∂α2 +
∂2Tβββ

∂β2 +
∂2

∂α∂β
(
Tββα + Tαββ

)
−

1
Rβ

(
∂Tβzα

∂α +
∂Tβzβ

∂β
− Qβz

)

− C0

[
∂

∂α
(
Mαβ + Tαβz

)
+

∂2Rαβα

∂α2 +
∂2Rαββ

∂α∂β

]

= 0

(24b)  
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∂Qαz

∂α +
∂Qβz

∂β
+

1
Rα

(
∂Tααα

∂α +
∂Tααβ

∂β
− Nαα

)

+
1

Rβ

(
∂Tβββ

∂β
+

∂Tββα

∂α − Nββ

)

+
∂2Tαzα

∂α2

+
∂2Tβzβ

∂β2 +
∂2

∂α∂β
(
Tαzβ + Tβzα

)
+ N0

αα
∂2w
∂α2 + N0

ββ
∂2w
∂β2 = Q

(24c)  

∂Mαα

∂α +
∂Mαβ

∂β
+

∂
∂α (Tααz + Tαzα) +

∂
∂β

(
Tαzβ + Tαβz

)
+

∂2

∂α∂β
(
Rααβ + Rαβα

)

+
∂2Rααα

∂α2 +
∂2Rαββ

∂β2 − Qαz = 0
(24d)  

∂Mαβ

∂α +
∂Mββ

∂β
+

∂
∂α

(
Tβzα + Tαβz

)
+

∂
∂β

(
Tββz + Tβzβ

)
+

∂2

∂α∂β
(
Rαββ + Rββα

)

+
∂2Rαβα

∂α2 +
∂2Rβββ

∂β2 − Qβz = 0
(24e) 

Eq. (24) can serve as a reference point for governing equations of smart doubly-curved shells. The aforesaid lower-order internal 
forces of the PFMDCSs can be signified as follows: 

⎡

⎣
Nαα Mαα
Nββ Mββ
Nαβ Mαβ

⎤

⎦ =

∫h/2

− h/2

⎧
⎨

⎩

σαα
σββ
ταβ

⎫
⎬

⎭
(1, z)dz (25a)  

{
Qαz,Qβz

}
= ks

∫h/2

− h/2

{
ταz, τβz

}
dz (25b)  

{
N0

αα,N
0
ββ

}
= −

ψ
h

∫h/2

− h/2

q31dz (25c)  

where the correction factor for the transverse shear stresses could be taken as the classic value ks=5/6. 
And the higher-order internal forces that belong to the strain gradients are: 

⎡

⎢
⎢
⎢
⎢
⎣

Tααα Tααβ Tααz
Tββα Tβββ Tββz
Tαzα Tαzβ Tαzz
Tβzα Tβzβ Tβzz
Tαβα Tαββ Tαβz

⎤

⎥
⎥
⎥
⎥
⎦
=

∫h/2

− h/2

⎡

⎢
⎢
⎢
⎢
⎣

ξααα ξααβ ξααz
ξββα ξβββ ξββz
ξαzα ξαzβ ξαzz
ξβzα ξβzβ ξβzz
ξαβα ξαββ ξαβz

⎤

⎥
⎥
⎥
⎥
⎦

dz (26) 

Following that, the higher-order moment resultants can also be revealed as: 

Fig. 2. Coordinates for edges.  
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⎡

⎢
⎢
⎢
⎢
⎣

Rααα Rααβ Rααz
Rββα Rβββ Rββz
Rαzα Rαzβ Rαzz
Rβzα Rβzβ Rβzz
Rαβα Rαββ Rαβz

⎤

⎥
⎥
⎥
⎥
⎦
=

∫h/2

− h/2

⎡

⎢
⎢
⎢
⎢
⎣

ξααα ξααβ ξααz
ξββα ξβββ ξββz
ξαzα ξαzβ ξαzz
ξβzα ξβzβ ξβzz
ξαβα ξαββ ξαβz

⎤

⎥
⎥
⎥
⎥
⎦

zdz (27)  

3. Space solution 

If one solves Eq. (24), the numerical values for deflections will be provided for the PFM nanocomposite shell-like structures. A 
straightforward analytical process is complemented in this section. The process is conducted under immovable simple edge conditions 
grounded in double-series concepts, where the edge coordinates can be diagnosed by Fig. 2. 

Accordingly, the executed conditions for force and geometrical boundaries can be illustrated as: 

u(α, 0) = u(α, b) = u(0, β) = u(a, β) = 0 (28a)  

v(α, 0) = v(α, b) = v(0, β) = v(a, β) = 0 (28b)  

w(α, 0) = w(α, b) = w(0, β) = w(a, β) = 0 (28c)  

φα(α, 0) = φα(α, b) = 0,φβ(0, β) = φβ(a, β) = 0 (28d)  

Mαα(0, β) = Mαα(a, β) = 0,Mββ(α, 0) = Mββ(α, b) = 0 (28e) 

To implement the analytical solution, the double-series functions can be deployed as (Dindarloo et al., 2020) 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
v
w
φα
φβ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=
∑∞

m=1

∑∞

n=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Umncos
(mπ

a
α
)

sin
(nπ

b
β
)

Vmnsin
(mπ

a
α
)

cos
(nπ

b
β
)

Wmnsin
(mπ

a
α
)

sin
(nπ

b
β
)

Φαmncos
(mπ

a
α
)

sin
(nπ

b
β
)

Φβmnsin
(mπ

a
α
)

cos
(nπ

b
β
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)  

where the Fourier series dedicated to each unknown variable becomes a solution to the bending constitutive equations. 
The system of algebraic equations can be determined by replacing Eq. (29) into the bending equations and then summarily shown 

as: 
[
Kij

]

5×5{Δmn}5×1 = {Qmn}5×1 (30)  

in which K is the stiffness matrix whose overall coefficients are independent to the bending load. The unknown vector can be described 
as: 

Δmn =
(
Umn,Vmn,Wmn,Φαmn,Φβmn

)T (31)  

Qmn = (0, 0,Q, 0, 0)T (32) 

The force that is uniform and applied constantly and vertically on the shell top surface (+h/2) can be expressed as (Wang et al., 
2018): 

Q =
∑∞

m=1

∑∞

n=1
Q0sin

(mπ
a

α
)

sin
(nπ

b
β
)

(33)  

where Q0 =
16q0
mnπ2 is defined for a constant uniform transverse load per area. 

Computing the variables of Eq. (31) by Eq. (30) provides the amounts of small deflections for PFMDCSs. To undertake this, the 
Newton-Raphson algorithm can reach out to deliver the results (Dastjerdi & Jabbarzadeh, 2016): 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Umn,p+1
Vmn,p+1
Wmn,p+1
Φαmn,p+1
Φβmn,p+1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Umn,p
Vmn,p
Wmn,p
Φαmn,p
Φβmn,p

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

− J− 1 × Ap (34) 
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where 

Ap = e
{

Umn,p,Vmn,p,Wmn,p,Φαmn,p,Φβmn,p
}− 1 (35) 

The primary guess {Umn,0,Vmn,0,Wmn,0,Φαmn,0,Φβmn,0} plays the dominant role of a quicker convergence under lower iterations (p). 
Moreover, e denotes the governing equations (Eq. 24). Further, the Jacobian matrix can be formulated as: 

J =
∂Ap

∂ui
; ui =

{
Umn,Vmn,Wmn,Φαmn,Φβmn

}− 1 (36) 

Lastly, the computer code will be implemented in MATLAB software. 

4. Validation with FEM 

The established shell model is generic in nature. Hence, one can develop it towards several other configurations notified and 
visualized in Table 1 (Mehar et al., 2021). 

The precision and reliability of the proposed models in Table 1 can be identified through finite element commercial codes if one 
simplifies it by abandoning the PFM properties. This case is addressed through Fig. 3. To verify the reduced model, Abaqus simulation 
results are carried out for a linear static bending of shells subject to a lateral uniform load supplemented in simple boundary supports, 

Table 1 
Different geometries for revoluted doubly-curved shell-like structures.  

Spherical Geometry (SG): Rα = Rβ = R Elliptical Geometry (EG): Rβ = R,Rα = 2R 

Hyperbolic Geometry (HG): Rβ = R,Rα = − R Cylindrical Geometry (CG): Rβ = R,Rα = ∞ 

Plate Geometry (PG): Rα = Rβ = ∞ 

*The 3D models were drawn in SolidWorks 2023 for non-commercial research and instructional purposes. 
*All the designed shapes are shells of revolution. 
*According to the chord calculations for circular shells and in order to have circular DCSs, then a, b≤2R.  
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Fig. 3. a. Validation of non-smart doubly-curved shells with Abaqus/CAE, 3b. Validation of non-smart cylindrical shells with Abaqus/CAE, 3c. 
Validation of non-smart plates with Abaqus/CAE. 

M. Malikan                                                                                                                                                                                                              

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Engineering Science 198 (2024) 104056

13

and the variables R = a = b = 100 mm, h = 5 mm, E = 210 GPa, ν=0.28 are utilized. It is to be noted that, in Abaqus, the nonlinear 
effect option has been deactivated and a linear 2D shell element has been used. What is more, it is noteworthy that the value of 
transverse pressure is affected by the curvature of the shells in the FEM software. In addition, the values of the lateral load have been 
chosen in such a manner that the deflections are retained as small as possible. Furthermore, for the Newton-Raphson program, a few 
iterations are adequate to reach convergence and terminate the loop. 

By illustrating Tables 2,3,4, a good agreement is shown. In consequence, the capability of the present shell model and the used 
solution process can be verified. Thereupon, let us return to the main goal of this study and conduct the results for smart DCSs by dint of 
a parametric perusal in the succeeding section. 

5. Results and discussions 

In what follows, the results will belong to CoFe2O4 piezoceramic material to shift them to the engineering point of view (Zhou et al., 
2012). What is more, all the bending results are held for the first mode number only. 

Let us introduce some dimensionless ratios to build the numerical outcomes use-wider, w∗ = W /h, l∗ = l /h, b ∗ = b /h, R ∗ = R /h, 
S∗ = a /b, ψ∗ = ψf14 /abq0, q0∗ = 1 /ψ ∗. 

The process goes on with the modal analysis and the illustration of the first eight mode shapes of the shells with the aid of 
Figs. 4,5,6,7,8. These normalized mode shapes are developed for simply-supported edge conditions only, and as far as the author is 
aware, are produced for the first time for square SG, HG, EG, and CG thin shells. The eigenmodes of a square PG shell with the same 
conditions have already been displayed (Karami & Ghayesh, 2024). As noticed by figures, axial half-wave numbers m and n are 
crystally clear, for example for SG and 2nd mode number, one finds m = 2, n = 1. 

5.1. Influence of aspect ratio 

The dimensionless ratio of the length to width, or aspect ratio (S) is one of the most vital parameters discussed in the mechanical 
analysis of shells and plates. To check this parameter for the types of shells shown in Table 1, Fig. 9 has been drawn. Considering that 
the relations have been calculated for linear bending, it is tried to keep all the deflections in this figure and beyond within the range of 
small deflections. In addition, the ratio of the length and width of the shell to the radius has been put within the allowed geometric 
range, which is defined in Table 1. It should be remembered that the figures included results for smart and non-smart shells, that means 
the non-smart shells have the full properties of PFM also strain gradient value but are not supposed to be magnetized and do not react 

Table 2 
Validation of doubly-curved shells with FEM results.  

q0 (MPa) Maximum transverse deflection (mm) 
Analytical model × 10− 2 Abaqus × 10− 2 Discrepancy (%) 

1 1.4349 1.4069 1.9901 
2 2.8698 2.8137 1.9938 
3 4.3047 4.2206 1.9926 
4 5.7397 5.6274 1.9955 
5 7.1746 7.0343 1.9945  

Table 3 
Validation of cylindrical shells with FEM results.  

q0 (MPa) Maximum transverse deflection (mm) 
Analytical model × 10− 2 Abaqus × 10− 2 Discrepancy (%) 

1 4.7020 4.6046 2.1152 
2 9.4041 9.2092 2.1163 
3 14.1062 13.8138 2.1167 
4 18.8083 18.4184 2.1169 
5 23.5104 23.0230 2.1170  

Table 4 
Validation of plates with FEM results.  

q0 (MPa) Maximum transverse deflection (mm) 
Analytical model Abaqus Discrepancy (%) 

1 0.1776 0.1733 2.4812 
2 0.3553 0.3466 2.5100 
3 0.5330 0.5199 2.5197 
4 0.7107 0.6932 2.5245 
5 0.8884 0.8665 2.5274  
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to the magnetic environment. According to the results of this figure, the increase in the ratio of the length to the width of the shells 
leads to raising the stiffness of the shells, which actually means that the increase in the ratio of length to width results in a decrease in 
the elastic strength of the structures. However, this process is not the same for all the defined geometries. In hyperbolic geometry, first, 
a rise in the deflection is seen, but after a certain value of the S coefficient, a diminishment in the deflections is witnessed in this type of 
shell. In fact, this issue can be due to the inverse radius in the α dimension, which, with increasing length, leads to more stiffness and 
strength of the shells. 

On the other hand, an invaluable result that can be extracted from this figure is that the difference in results between smart and non- 
smart DCSs is not the same for all types. The biggest difference in the cylindrical shell and the smallest difference in the hyperbolic shell 
and plate geometry can be observed. This result can express the theory that the electro-magnetic response of structures strongly 
depends on their geometry. However, this new result needs to be further evaluated under different conditions in the following figures 
so that it can be stated with certainty. In addition to this, smart DCSs display further strength in contrast to non-smart ones. 

And at last, when the different geometries of double shells are examined, it is clear that the most resistant and stiffest are 
respectively spherical, elliptical, cylindrical, plate-shaped, and hyperbolic DCSs which has also been captured earlier by some other 
researchers (Wang et al., 2018). This means that DCSs are much stiffer than plates and can be highly efficient engineered structures. It 
should be pointed out that this result is not general and is contingent on several mechanisms such as boundary conditions, outer forces, 
material isotropy, and problem circumstances etc., and other analyses may probably deny such a conclusion. 

Fig. 4. Presentation of eigenmodes for SG.  
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5.2. Strain gradient effect 

Since the discussion of this study is about the higher-order effects of magnetism, which are usually less studied, such as flex
omagnetism, so then it is crucial to focus specifically on the impacts of the strain gradient. Because strain gradient generates flex
omagnetic effect or flexoelectricity in smart materials. Inside the crystal of the ceramic material, the axial strain gradient helps to move 
the central ions so that this process leads to polarization inside the crystal. According to Fig. 10, it signifies the length scale variable in 
different values greatly affects the mechanical behavior of shells. Such an effect results in an increase in the mechanical strength and 
stiffness of structures. However, this effect is not the same in different geometries, and for example, the greatest effect in the hyperbolic 
shell can be depicted. In addition, the result obtained in the previous figure is confirmed here. It can be seen that the difference be
tween smart and non-smart DCSs is not the same and in some shells, there is a bigger difference. Therefore, one can say that the electro- 
magnetic response of structures is firmly contingent on their geometry and the geometry of the shell determines the amount of its 
intelligent response. 

5.3. Radius effect 

The effect of the size and magnitude of the DCSs radius on its electro-magneto-mechanical behavior is evaluated and studied by 
presenting Fig. 11. The size of the radius has been set in a defined range to come by the results. It is clear from these results that as the 

Fig. 5. Presentation of eigenmodes for EG.  
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size of the radius increases, the static deflection values also become greater. Nevertheless, this process is not true for the hyperbolic 
shell, and it is even the opposite. In general, hyperbolic shallow shells show a different mechanical behavior than the rest of the shells 
due to the fact that one of their radii is in an inverted form. Therefore, these types of shells cannot be suitable for engineering structures 
where high stability of the shell is required. Of course, this result is confirmed for the cases studied here only, and it may not be the case 
in other situations. In the continuation of scrutiny from this figure, it can be demonstrated that changes in the radius do not affect the 
results of the plate, which is completely logical because the plates are the same as DCSs but with an infinite radius, and the change in 
infinity is mathematically meaningless. 

5.4. Effect of lateral load 

Since the problem under study is the static bending of shells, it is important to know what effect different amounts of transverse 
load encounter on the mechanical behavior of these engineering structures. The analysis is started with a zero value for lateral load, i. 
e., the shells without transverse static force but in the electro-magnetic environment. The high transverse load leads to very large 
deflections, and this is not desirable because the goal is to keep the values of the deflections in the range of small deflections, which, 
according to the references small deflections values are usually between ten and fifteen percent of the thickness of the structure 
(Malikan & Eremeyev, 2020c). So the load has been considered as low as possible. The very interesting point in Fig. 12 is that when 
there is no lateral force on the shells, very small displacements occur, which is the result of the electro-magnetic field. These very small 

Fig. 6. Presentation of eigenmodes for CG.  
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deflection values are close to zero in the hyperbolic shell and the plate, but they are not equal to zero and are a little more noticeable in 
other shells. Of course, it goes without saying that the values of deflections without a static load fully depend on the value of the 
magnetic potential, and if the value of this parameter is chosen larger, these very small displacements can become more remarkable. 
However, this point is of great importance because the selection of large values for the magnetic potential itself leads to a significant 
reduction of the displacements and makes it difficult to distinguish between the deflections of different shells. This matter will be 
examined in the next figure. To end the review of the present figure, it is vividly exhibited that the large amounts of lateral force bring 
about more difference among the responses of all types of shells. 

5.5. Influence of magnetic field 

Fig. 13 will expand the current discussion by studying the effect of changes in magnetic potential on the electro-magnetic behavior 
of shells. First of all, it must be mentioned that the changes in the value of the magnetic potential do not affect the mechanical response 
of non-smart shells because their electro-magnetic properties are dismissed. References (Malikan & Eremeyev, 2020c) have completely 
shown that larger values of the magnetic potential cause greater stiffness of the internal structure of the material, which is caused by 
the greater contraction of the internal microstructure due to the magnetic environment. Consequently, there is a corresponding 
decrease in deflection value with an increase in magnetic potential value. Of course, the declining trend of the deflection in the 
spherical, elliptical, and cylindrical geometries is greater than in the hyperbolic and flat plate geometries. This is reminiscent of the 

Fig. 7. Presentation of eigenmodes for HG.  
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valuable result achieved in the previous figures: that there is a strong linkage between the type of geometry and the magnetic field 
impact. 

6. Conclusions 

Smart shell models have been developed composed of lower- as well as higher-order magnetic influences. This model extends the 
existing literature on shell studies. To figure this out, the modified Sander’s theory has been operated on to be basis of the mathe
matical model. The novel constitutive equations governing the intelligent doubly-curved shell structures have been attained based on a 
variationally consistent derivation process. The Navier-type exact solutions have completed the task of generating numerical results. 
To determine the validity and correctness of the mathematical model and the solution procedure, a streamlined FEM model that 
neglected the smart effects has been built by means of commercially predefined tools. A featured and elemental parametric study has 
been put into this work. Generally, some points have been gained through the case study, which are itemized below: 

- Doubly-curved shallow shells with a spherical revolution can be coherently a high-strength engineering structure compared to flat 
plates. 

- The spherical type of DCSs indicates further material stiffness in comparison with the rest of the types. 
- In smart DCSs under bending forces, even if the shell is unloaded from lateral forces, the electro-magnetic field can cause very 

Fig. 8. Presentation of eigenmodes for PG.  
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small static deflections. 
- It has been concluded that the smart response and behavior of electro-magnetic structures can be straightforwardly related to their 

kind of geometry. 
It should be brought to attention that current results can be extended to piezoelectric shell structures comprising flexoelectricity 

(Eremeyev et al., 2020; Mawassy et al., 2021; Malikan & Eremeyev, 2020d; Guinovart-Sanjuán et al., 2023) that is a similar 
phenomenon. 

Fig. 9. Deflections vs. aspect ratio (l*=0.2, b*=20, R*=b, q0*=1e6).  

Fig. 10. Deflections vs. strain gradient ratio (b*=20, R*=b*, S*=1, q0*=1e6).  
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Fig. 11. Deflections vs. radius ratio (b*=20, S*=1, l*=0.2, q0*=1e6).  

Fig. 12. Deflections vs. lateral load (b*=20, S*=1, R*=b*, l*=0.2).  
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Dastjerdi, S. H., Akgöz, B., & Civalek, Ö. (2020a). On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science, 149, Article 

103236. 
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