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A B S T R A C T   

Forest fires have devastating consequences for the environment, the economy and human lives. Understanding 
their dynamics is therefore crucial for planning the resources allocated to combat them effectively. In a world 
where the incidence of such phenomena is increasing every year, the demand for efficient and accurate 
computational models is becoming increasingly necessary. In this study, we perform a revision of an initial 
proposal which consists of a two-dimensional propagation model based on cellular automata (2D-CA), which 
aims to understand the dynamics of these phenomena. We identify the key theoretical weaknesses and propose 
improvements to address these limitations. We also assess the effectiveness and accuracy of the model by 
evaluating improvements using real forest fire data (Beneixama, Alicante 2019). Moreover, as a result of the 
theoretical modifications performed, we introduce a novel intelligent architecture that seeks to capture re
lationships between system cells from the data. This new architecture has the ability to advance our under
standing of forest fire dynamics, contributing to both the evaluation of existing protocols and more efficient 
firefighting resource management.   

1. Introduction 

Mathematical models are of great concern in scientific research and 
essential tools to approach the modelling of natural events, since they 
allow the simulation and analysis of the behaviour of complex systems. 
As well-known examples we mention the spread of wildfires (Hernández 
Encinas et al., 2007a; Hernández Encinas et al., 2007b; Karafyllidis and 
Thanailakis, 1997), population dynamics (Malthus et al., 1992; Wan
gersky, 1978), the evolution of infectious and degenerative diseases 
(Kermark and Mckendrick, 1927; Kuang et al., 2018) or even climate 
estimation (Edwards, 2011). These models are also an aid for the 
development of prevention protocols against natural disasters. Howev
er, we encounter several challenges in this field that require obtaining 
accurate and reliable results. One of the most significant problems is the 
large number of variables that can be involved in the development of a 
natural event, which makes the model very complex, so powerful and 
precise mathematical tools must be used to handle the large amount of 
data. In addition, linear models may not be suitable for these situations 
because of their simplicity. Another critical challenge is predicting the 
future of natural events due to their chaotic nature. As an example, small 
variations in initial conditions can lead to significant changes in the final 

outcome of a natural event. To overcome this drawback, scientists have 
developed advanced techniques such as chaos theory (Boccaletti et al., 
2000). 

Finally, the lack of quality data can make it difficult to process in
formation and estimate numerical values for some variables. Scientists 
may need to use appropriate methodologies to obtain the best approx
imations, such as estimating numerical values for unknown variables 
(Amat et al., 2002; Emmanuel et al., 2021; Saar-Tsechansky and Provost, 
2007) or collecting data more accurately. This article will focus on 
examining wildfires, to understand the causes and consequences that are 
crucial for the development of effective preventive measures and man
agement strategies. According to (Ganteaume et al., 2013), the causes of 
forest fires vary and differ between countries. In Europe, particularly in 
the Mediterranean region, human activities, particularly arson, are the 
primary cause of fires. Socioeconomic factors, such as unemployment 
rates and variables associated with agricultural activities, can also in
fluence the initiation of intentional and unintentional fires, depending 
on the regional context. Environmental factors, including climate, 
combustible plant mass and orography, have the most significant impact 
on forest fire ignition, particularly in Mediterranean-type regions, see 
Fig. 1. 
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Moreover, these events have catastrophic consequences such as soil 
degradation, erosion, loss of biodiversity, and reduced air quality (Földi 
and Kuti, 2016). At the same time, the impact of forest fires can be 
substantial, encompassing both economic effects, such as property 
damage and reduced tourism in the affected area, and social conse
quences, such as depopulation and loss of homes. 

Due to the characteristics of the system under study, our model is 
based on cellular automata (CA) (Boters-Pitarch et al., 2023a; Boters- 
Pitarch et al., 2023b), since this model allows us to consider both the 
spatial relationship between the elements of the system and the factors 
that influence the spread of forest fires like the wind, which is integrated 
as a key factor that determines neighbourhood relations. Moreover, a 
detailed theoretical analysis will be carried out to identify weaknesses 
that need to be improved. These improvements will increase the accu
racy of the model and provide better prevention and management of 
forest fires. Although there is a lack of experiments or articles testing the 
effectiveness of CA or similar models using real wildfire data, it is worth 
noting that some authors attempted to carry out this task, as demon
strated by previous work (Alexandridis et al., 2008; Cruz et al., 2018; 
Ntinas et al., 2017; Stojanova et al., 2006). Despite these efforts, it is still 
not common to observe performance metrics for such models when 
applied to actual wildfires. This study aims to test the effectiveness of the 
proposed model and its new improvements using real data collected 
from the forest fire that occurred in Beneixama (Alicante) in 2019 
(Sistema integrado de gestión de incendios forestales: Informes post-incendio, 
2023). As a result, precision metrics will be obtained, at least for this 
particular example, and a methodology will be designed that can be 
extended to other examples and forest fires. 

Thus, the purpose of our work is to test the model in a realistic 
scenario, contrasting the results with real data and being able to find out 
its predictive capacity for this type of phenomenon. Furthermore, our 
research aims to contribute to the development of new architectures 
built on the current model, whose estimates can offer a deeper under
standing of the dynamics inherent to complex phenomena, such as the 
one addressed in this article. This research is structured as follows: After 
Introduction, Section 2 provides a review of the primary characteristics 
of the model, it also analyzes its limitations and suggests theoretical 
modifications to improve it. Section 3 presents an overview of the study 
design, including the measured variables, data collection methods and 
other relevant details related to implementation. Section 4 presents the 
results of our model that are discussed. Section 5 shows the new intel
ligent scheme which could learn the neighbourhood relationship be
tween cells. Finally, Section 6 provides a summary and some concluding 
remarks. 

2. Theoretical framework of our model 

To clarify the very objective of this research we must put it in 
context. As mentioned previously, increasing global warming and 
intense human activities have contributed significantly to the increase in 
wildfires in recent years. Of the 30 specific causes of ignition, more than 
95% of incidents can be attributed to human activities, see (Yang et al., 
2023; Ying et al., 2018). Therefore, any attempt to predict the location 

of ignition (i.e., the focus of the fire) may be unsuccessful. However, we 
firmly believe that once the fire has started, models can be designed that 
describe the dynamics of the phenomenon, that is, describe the space- 
time evolution of the fire, using climatic variables. The objective of 
the model is then to understand this dynamic through the use of a 2D- 
CA, with a neighbourhood relationship which is variable and depends 
on the number of infected elements, on their location and, above all, on 
the climatic values. 

2.1. Current model 

We now describe the approach used in our model (Boters-Pitarch 
et al., 2023a) to address the spread of real wind-driven phenomena, 
highlighting how it can be used as a Monte Carlo method (Boters-Pitarch 
et al., 2023b) to estimate the probabilities of our classification problem. 

The model follows a general CA framework, in which every cell oc
cupies one of the three states of the Susceptible-Infected-Dead (SID) 
paradigm at each generation. In summary, the model is based on the 
dynamics inherent to biological systems, where each cell represents an 
individual agent and the interactions between them contribute to the 
overall dynamics of the system. Fig. 3 shows a general iterative scheme 
of the CA model In this model, the neighbourhood relationship Rk is 
characterized by its flexibility and probabilistic nature, where expansion 
occurs only by infected cells. In addition, the direction θ and power ρ of 
the wind are used as a guide for the propagation, which facilitates a 
realistic representation of certain climatic phenomena and allows a 
more accurate simulation of the behaviour of the system. To account for 
uncertainties, the Bernoulli random variable Be(p) is used to determine 
whether a given cell is infected or not. In practice, a random extraction is 
performed to update each cell, using the probabilities derived from the 
neighbourhood relationship. This approach has been summarized in 
Fig. 4 through an example. We start at a given state, Sk, of the grid where 
only the central element is infected and the surrounding elements are 
susceptible to infection. Then, we calculate the infection probabilities 
for each of the cells according to θ and ρ (central grid). Finally, our 
update criterion Uk based on random draws determines the next Sk + 1 
state of the grid. One of the most interesting contributions of the model 
is its ability to determine the probabilities of infection (susceptibility or 
death) of each cell and generation. This is achieved through the sto
chastic update criterion, which yields different results for different seeds 
and allows the model to be used as a Monte Carlo method. By applying 
the law of large numbers, we can assume that the frequency of the event 
for each cell in each generation provides an estimate of the probability of 
that state occurring. 

2.2. Limitations of the model 

An analysis of the weaknesses of the model is crucial to make it 
scalable in terms of inclusion and manageability of new variables. These 
limitations are described below:  

1. Dependence on wind: Although wind is an important variable for 
the spread of the phenomenon, it is not the only factor that affects the 

Fig. 1. How some environmental factors affect the spread of forest fires.  
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behaviour of fire in nature. Therefore, the use of wind as the main 
factor may limit its ability to capture the complexity of the phe
nomenon under study. To address this drawback, more climate 
variables are needed. They should be included in the model, 
although doing so may not be easy since the variables must be 
adapted to the specific characteristics of each phenomenon, which 
makes generalization of the model difficult.  

2. Bounded infection capacity: The infection capacity is restricted for 
each generation by the model’s construction. This may limit the 
ability of the model to represent realistic fire spread in nature, 
particularly in situations where fire spreads faster than the current 
infection capacity can account for.  

3. Limitations of the update rule: The model uses an update rule to 
deal with uncertainty, but this function is not differentiable, and 
this could pose challenges if intelligent elements were to be incor
porated into the CA. To overcome this limitation, alternative update 
rules should be explored to improve the ability of the model to 
represent different situations more accurately. 

2.3. Proposed improvements 

First of all, to minimize the dependence on wind, we transform pa
rameters C and p0 into climate functions that rely on temperature and 
humidity. Secondly, Definition 3.4 in (Boters-Pitarch et al., 2023a) will 
be modified to expand the infection capacity by increasing the number 
of elements in partitions. In other words, we relax the constraints on the 
infection capacity of the model. This setting seeks to provide more 
flexibility in capturing the spread of infections by adding a new 
parameter which is the size of the partitions (i.e. the number of rows and 
columns potentially affected). Lastly, we explore the benefits of the 
Gumbel-Softmax function (Jang et al., 2016; Maddison et al., 2016) to 
make our update criterion differentiable while keeping a similar statis
tical performance. 

2.3.1. Parameters C and p0 as climate functions 
We define both, a lower bound Tmin and a higher bound Tmax such 

that the phenomenon under consideration cannot occur for temperature 
values t < Tmin and Tmax is the highest temperature recorded in the 
geographical area under study. Very low (even negative) temperatures 
are unlikely to lead to significant spread and impact of forest fires. Thus, 
we define the domain DT = ]Tmin,Tmax]. We also consider the percentage 
of relative humidity as a parameter, therefore the domain DH is ]0,100]. 
Therefore, the support is as follows: 

DT ×DH = ]Tmin,Tmax] × ]0, 100], Tmin < Tmax (1) 

The loss factor C must satisfy: 
C1) C(t, h) ≥ 1 for every (t, h) ∈ DT × DH. 
C2) If t↦Tmin then C(t, h)↦∞. 
C3) If t↦Tmax and h↦0 then C(t, h)↦1. 
The first condition (C1) is determined by the model itself, while the 

remaining conditions are intrinsically linked to specific factors associ
ated with the spread of wildfires, as depicted in Fig. 1. In essence, when 
the temperature is close to Tmin, the expansion is unlikely to persist. 
However, if the land is suffering drought conditions (h ≈ 0), the 
expansion is more prone to progress rapidly. 

Humidity and temperature work in reverse: for small temperature 
values, the loss factor increases (as well as for large humidity values, 
although to a lesser extent). However, under conditions of extreme heat 
and dryness, the loss factor tends to be 1. We consider the function f 
defined as follows: 

f (t) =
1

(t − Tmin)
α, α ≥ 0, t > Tmin (2) 

Notice that if t↦Tmin then f(t)↦∞. Moreover, f(t) ≥ 0,∀t ∈ DT. Since 
the behaviour is reversed, we can consider g as follows: 

g(h) = hβ, β ≥ 0, h ∈ DH (3) 

It can be observed that g(h) ≥ 0 for every h ∈ DH. So, we can define 
the loss factor function using functions f and g introduced previously. 

C(t, h) := 1+ γ f (t)g(h) = 1+ γ
hβ

(t − Tmin)
α, α, β, γ ≥ 0, (t, h) ∈ DT ×DH

(4)  

Property 2.1. The loss factor C(t, h) defined as in (4) satisfies: 

1. Conditions C1), C2), C3) are verified. 
2. It is a function that depends on positive parameters α, β, γ such that 

lim
(α,β)↦(0,0)

C(t, h) = 1+ γ, ∀(t, h) ∈ DT ×DH 

Now, for the case of the infection probability p0, our climate function 
must meet other characteristics. In this case: 

P1) Since p0 is a probability, then p0(t, h) ∈ [0,1], ∀(t, h) ∈ DT × DH. 
P2) If t↦Tmin then p0(t, h)↦0. 
P3) If t↦Tmax and h↦0 then p0(t, h)↦1. 
In this sense, it is clear that the probability p0 of infection increases as 

temperature increases and humidity decreases. 

p0(t, h) :=
1

1 + γ f (t)g(h)
=

1
C(t, h)

, α, β, γ ≥ 0, (t, h) ∈ DT ×DH (5)  

Property 2.2. The loss factor p0(t, h) defined as in (5) satisfies: 

1. Conditions P1), P2), P3) are verified. 
2. It is a function that depends on positive parameters α, β, γ such that 

lim
(α,β)↦(0,0)

p0(t, h) =
1

1 + γ
, ∀(t, h) ∈ DT ×DH  

2.3.2. Increasing infection capacity 
It should be noted that in (Boters-Pitarch et al., 2023a) we set the 

partitions to have 4 elements, which means that the scope was limited to 
3 rows and/or columns. Due to the discontinuity in the expansion rates 
that can occur during a fire, limiting the range to only 3 rows or columns 
is a clear limitation of the model. So, it might be more appropriate to 
consider it as an adjustable element depending on the fire and its 
environmental conditions. Thus, we modify the Definition 3.4 in (Bot
ers-Pitarch et al., 2023a) as follows: 

Definition 2.1. Let M ≥ 2 be an integer, and a partition P := {ui}
M+1
i=0 

of the interval [0, 1] such that 

0 = u0 ≤ u1 ≤ … ≤ uM ≤ uM+1 = 1 

Then, if i is the smallest positive integer satisfying 

ui ≤ ρ ≤ ui+1,

we say that the intensity affects up to the i-th layer. 

Remark 2.1. Therefore, if M = 3, we have the same model. However, 
for particular cases, we could use M > 3 to get better estimations. 

We can generalize Property 3.1 of (Boters-Pitarch et al., 2023a) by 
using the enlargement process explained in the same paper. Let A be a 
matrix and let us define the norm ‖⋅‖1,1 of A as 

‖A‖1,1 =
∑N− 1

i=0

∑N− 1

j=0
∣aij∣  

Theorem 2.1. Suppose (i, j) ∈ Ik is infected and M ≥ 1. Let 
P := {ui}

M+1
i=0 be an arbitrary partition of the interval [0, 1], p0 ∈ [0, 1] and 
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C ≥ 1. Then, the marginal infectiousness E for our model is 

E(P ,C, p0) = 8u1 p0 +
∑M

k=1

4
π (uk+1 − uk)

∫ π
4

0
‖Ak‖1,1 dθ (6)  

Proof. The proof is carried out reasoning as Property 3.1 in (Boters- 
Pitarch et al., 2023a). We only need to take into account that given an 
intensity ρ for the wind, the expected infectiousness is the sum of the 
entries of the matrices Ak of the enlargement process ∀1 ≤ k ≤ M+ 1.□ 

Fig. 5 shows how E increases as M increases. 

2.3.3. New update criterion 
The Gumbel-Softmax function is a technique used in machine 

learning to approximate the selection of discrete elements in a differ
entiable manner. Based on the Gumbel distribution, which is a contin
uous distribution used for random sampling, the Gumbel-Softmax 
function applies the Gumbel transformation to a discrete distribution 
and then normalizes it using the Softmax function, resulting in a smooth 
and differentiable approximation of the discrete selection, see (Jang 
et al., 2016; Maddison et al., 2016). 

The Gumbel-Softmax function is a more general function that can 
approximate any discrete distribution to a continuous distribution. Its 
usefulness in optimizing neural networks involving discrete variables, 
such as those used in reinforcement learning and generative models, can 
be seen in (Mena et al., 2018; Strypsteen and Bertrand, 2021). However, 
the Gumbel-Softmax function is not a perfect substitute for the binary 
Bernoulli random variable. Since the introduction of a stochastic 
element into the computational process allows us to keep that character, 
but it could have an impact on our estimates. Furthermore, the function 

introduces a temperature parameter τ that controls the level of 
approximation to the discrete variable. If τ tends to 0, the Gumbel- 
Softmax function tends to the discrete random variable, see Proposi
tion 1 of (Maddison et al., 2016). 

Remark 2.2. Mostly, the value of τ considered by default is τ = 1. 

Thus, if mk
ij refers to the state of the cell (i, j) in the generation k, 

where 

mk
ij :=

⎧
⎨

⎩

0 if susceptible
1 if infected
2 if dead  

then, the new update criterion Ũ k is defined by Eq. (7) 

∀mk
ij = 2 ⇒ mk+1

ij = 2

∀1 ≤ mk
ij < 2 ⇒ mk+1

ij = mk
ij +

1
ΔID

∀mk
ij = 0 ⇒ mk+1

ij :=

⎧
⎪⎨

⎪⎩

GS
(

pk
ij, τ

)
if 0 ≤ pk

ij < 1

1 if pk
ij ≥ 1

(7)  

where GS(⋅, τ) is the Gumbel-Softmax function and τ is the temperature 
parameter, which determines the approximation of this function to the 
real discrete distribution, see Proposition 1 of (Maddison et al., 2016). 

3. Methodology 

We apply our model to a real case, specifically the Beneixama fire, to 

Fig. 2. A real forest fire caused in Beneixama, Alicante.  
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evaluate its ability to predict the evolution of the fire in a realistic sce
nario, see Fig. 2. Furthermore, we compare the results with the previous 
ones, before the modifications have been made. 

The Beneixama wildfire has been selected as a case study due to some 
of its particular characteristics. First, it is a short-lived fire and this fa
cilitates the analysis by avoiding the influence of prolonged environ
mental factors, such as the absence of sunshine, and minimizing the 
effects related to the chaotic behaviour of the model. Second, we have 
comprehensive monitoring of the fire, with a higher number of temporal 
measurements of the burned area compared to other similar fires. This 
provides us with a significant amount of information to test and evaluate 
the predictive capacity of our model in the evolution of the fire. Third, 
we have been able to obtain accurate weather data for this particular 
case, since they are provided by AVAMET (Valencian Association of 
Meteorology) and come from the station located in the area of the fire. 

It is important to take into account the possible biases in the data 
used in our research. We need to distinguish between the data structures 
of the model. On the one hand, we have what we refer to as spatial in
puts. For instance, the data extracted from Fig. 2 related to the states of 
each cell are a spatial input of dimensions 257× 257× 9, denoted as M 
(masks of states). 

Since the fires are part of a larger database and have different scales, 
it has been necessary to unify the scales for a proper comparative 
analysis, see Supplementary Material. For that, data have been 
rescaled to a manageable size of 257 × 257 pixels, compatible with our 
computational platform, where each pixel is equivalent to one cell of the 
grid and every single cell refers to the same portion of land. 

We have 9 two-dimensional arrays, which refer to the state Sk of the 
fire with k ∈ I, where I is the set of generations for which we have a real 
mask to compare the results. In case of having a two-dimensional rep
resentation of the slope or the existing vegetation type for each cell, 
these inputs would also be categorized as spatial inputs. Furthermore, it 
is important to mention that we can extract the initial state from M, 
considering it as the focal point of the fire. A time delay of 30 min has 
been defined as a generation period, which implies the use of a spline 
interpolation method to determine the climatic data according to actual 
values provided by the station. Then, since we have another data 
structure with wind, temperature, and humidity values stored for every 
generation, we can compute an estimation for each one. 

Remark 3.1. In cases where data is available for the 30th minute or on 
the dot, the value provided by the station has been used directly, while 
in other cases an extrapolation has been made using the spline. 

With our estimation and the representation M, we are able to assess 
and analyze the quality of our estimation for every k ∈ I. 

To perform the analysis, we use the model as a Monte Carlo-based 
classification method, see Section 5 of (Boters-Pitarch et al., 2023b). 
This approach has the advantage of using various metrics, such as 

accuracy, F1-score, and confusion matrices, among others, to compre
hensively assess the performance and effectiveness of our model. 

Specifically, the use of confusion matrices will provide us with 
detailed information regarding both correct and incorrect classifications 
made by our model. This valuable insight will enable us to identify 
potential deficiencies in classifying specific classes or categories. In 
conclusion, we will present the evaluation results through the use of 
figures and numerical data. Graphical visualizations will effectively 
portray the performance estimation achievement. 

4. Discussion and results 

In this section, we present an exploratory analysis of the climatic 
data obtained during the development of the fire. Furthermore, we will 
assess the accuracy of the model and examine both its strengths and 
weaknesses in depicting the phenomenon. It is worth noting that the 
Beneixama fire is part of a broader database we are currently devel
oping. To ensure comparability among the various registered fires, a 
transformation was necessary, so that each pixel from every fire refers to 
the same real-world terrain area. This involves a modification of the size 
of the fire mask. By adopting this methodology, the consistent applica
bility of the model to each fire in the database is ensured. 

First of all, if we focus on the data related to the wind, we can 
highlight two fundamental aspects. In the early hours of the fire, the 
wind direction θ is from the southeast, belonging to the fourth quadrant. 
However, around 8:00 p.m. (12th generation), it undergoes a drastic 
change towards the northwest, belonging to the second quadrant. As for 
the intensity of the wind ρ, it remains very high throughout the fire’s 
development, falling within the top decile of the intensity distribution in 
our geographical area, see Fig. 6. It is important to point out that we 
have calculated the distribution function of ρ considering the following 
aspects: 

i) We use climate data collected from the year 2018 to 2022, 
exclusively focusing on the summer months: June, July, and August. 

ii) Data is collected from 7 meteorological stations located at 
various points throughout the Valencian territory, aiming to represent 
its diverse climate. 

iii) Lastly, the analysis of its distribution allows us to determine 
that it follows an exponential distribution. 

ρ ∼ Exp(λ), λ = 0.2175,

as shown in Fig. 7. 
In Fig. 6, we observe the temperature and humidity conditions 

favour the spread of the fire in its first hours, with temperatures above 
34 degrees and relative humidity below 25%. However, after 8 p.m. 
these conditions are less favorable due to both a reduction of tempera
tures and an increase of relative humidity. 

In Fig. 8, we can see how the original shape of the mask representing 

Fig. 3. Overview of the operational principles of the proposed model.  
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the fire is maintained, as shown in Fig. 2. Hence, it is essential to note 
that the unburnt elements represent 97% of the sample, while the burnt 
or affected elements only represent 3%. 

Remark 4.1. From now on, healthy, i.e. unburned cells will be 
considered as positive. On the other hand, burned (dead) or affected 
(infected) cells will be considered negative. 

This imbalance poses a problem when interpreting the accuracy 
statistics of the model, as it can distort the values because of over
represented class 0, see (He and Garcia, 2009). Thus, in Section 4.1, we 
will go into more detail on this subject. 

It also shows the evolution of the burned cells during the forest fire. It 
can be seen that the burned area grows fast at the beginning, but as the 
fire spreads, its growth rate decreases. Possibly human action in extin
guishing the fire, as well as the presence of geographical obstacles or 
firebreaks designed to stop the advance of the fire, may have influenced 
this pattern. However, it is important to mention that our model has not 
taken these variables into account, and this will require a critical anal
ysis of the model results in its final stages. 

4.1. Analysis of model results 

As previously mentioned, due to the unbalance between classes in 
our data, it is necessary to use alternative measures to assess the 

accuracy of our model. In this way, the performance of the model is not 
distorted by this aspect. 

We consider the false positive (FP) and false negative (FN) per
centage to measure how good the model fit is. These metrics allow us to 
know the percentage of hits that our model achieves for each class. In 
addition, we have observed that the metrics such as balanced accuracy 
(B. Acc), F-measure Fβ, Cohen’s kappa coefficient k and Matthew’s 
correlation coefficient (MCC) have proven to be adequate in similar 
contexts, although they have their own limitations (Chicco et al., 2021; 
Chicco and Jurman, 2020; Lee et al., 2021). For this reason, Table 1 
presents the results of these metrics in relation to the parameters of our 
model and the final results obtained in our real fire. Using these alter
native measures gives us a more complete and accurate picture of the 
performance of our model, which is essential to properly evaluate. 

We use the following partitions, which determine the importance of ρ 
in our estimations: 

P 0 := {0, 0.1, 0.5, 0.9, 1}
P 1 := {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
P 2 := {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

It can be seen from Table 1 that the model results for partition P 0 

lack range capability. This is justified by FN, since for the smallest value 
of C (which provides the maximum range for that partition), the best 
result is obtained in this metric, with an error of about 40%. In other 
words, we fail to accurately account for the burned cells by means of 
these range parameters. 

On the contrary, this is not the case for partitions P 1 and P 2, thanks 
to the increased influence of wind intensity by increasing the number of 
exposed cells per infected cell, see Section 2.3.2. In these cases, it can be 
observed that the best result in terms of FN is achieved for values of C 
greater than 1, indicating that a decrease in the extent of these partitions 
also decreases the amount of FN. Moreover, in both cases, a B. Acc 
above 91%, which together with κ and MCC leads us to affirm the ex
istence of a strong dependence relationship between the results of our 
model and that of the fire. 

Fig. 9 shows the comparison between the fire mask and the best re
sults of our model for P 1 and P 2, with values of C equal to 1.5 and 2, 
respectively. 

Thus, we consider the estimate provided by partition P 1 to be of 
higher quality than that provided by P 2, as we can see in Fig. 9. 
Moreover, although the B. Acc is better for P 2, worse results are ob
tained for the Fβ, k and MCC metrics. This fact is due to the overreaching 
of the model for that partition, which leads to good results in terms of 
FN, at the expense of a worsening of FP, and given the predominance of 

Fig. 4. Performance framework of the proposed model.  

Fig. 5. Infectious capacity E as a function of M for partitions with equidis
tant elements. 
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the positive class, we obtain such a worsening in the evaluation metrics 
and correlation coefficients. Then, from now on, we will turn our 
attention to the results of our model for the P 1 partition. 

At the same time, it is highlighted that our model has the capability 
to function as a Monte Carlo-based classification method, as detailed in 
(Boters-Pitarch et al., 2023b). In Fig. 10, both the heat map representing 
the active focus in the final state and the graphical representations of the 
areas of land that have been affected by the fire are presented. However, 
in the case of the heat map illustrating the areas of burnt land, certain 
flaws inherent in the construction of our model are evident. 

These flaws are attributable to the way in which the neighbourhood 
relationship is implemented by quadrants in our approach. In other 
words, a fire-infected cell can spread fire to healthy cells belonging to 
one of the quadrants. This dynamic can result in estimates with very 
sharp corners, especially when the direction θ of the wind remains in the 
same quadrant constantly. At the same time, as mentioned above, our 
model is not able to take into account the firebreak areas, which allows 
the expansion over the north-east of the forest when in reality, this 
would not be possible, see Fig. 2. In other words, our model over
estimates the potential burnt area in this case. 

Our model has a key advantage in leveraging previous states to 

Fig. 6. Meteorological conditions during the forest fire: Wind direction (upper-left), Wind power (upper-right), Temperature (lower-left), Relative humidity 
(lower-right). 

Fig. 7. Comparison between the estimated and the empirical distribu
tion function. 

Fig. 8. The final mask of the model (left). Number of fired cells per generation (right).  
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calculate subsequent states, which provides a valuable approach to 
tracking and studying outcomes over time. Despite this strength, our 
model faces challenges in accurately representing fire initiation, see 
Fig. 11. This initial difficulty has a noticeable effect on all subsequent 

estimates given the recursive nature of the model. The ability to capture 
the initial rate and speed of the fire is critical to accurately forecast its 
trajectory and magnitude. 

This limitation leads us to adapt our neighbourhood relationship. A 

Fig. 9. Comparison between the fire mask and the best model results for partitions P 1 (left) and P 2 (right).  

Fig. 10. Heat map of the final state of the fire (left). Active hot spots in the final state of the fire (right).  

Fig. 11. Temporal evolution of the number of burnt cells calculated by the model.  
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more flexible and discontinuous neighbourhood relationship could be 
the key to capture the various trends that emerge during fires. In addi
tion, introducing other variables such as the influence of human actions 
or the existence of firebreaks could enrich our model and improve its 
predictive capacity, in the final states, by reflecting real-world factors 
that influence fire development. 

It is important to note that, although our neighbourhood relationship 
Rk is adjustable, its scope is limited and depends exclusively on θ and ρ. 
This limitation leads us to recognise the presence of other significant 
variables that shape the extent of the fire. Beyond θ and ρ, exploring and 
considering other dimensions in our modelling becomes a crucial step 
towards a more complete and accurate understanding of wildfires, see 
Subsection 2.3.1 and Section 5. 

4.2. Analysis of model using temperature and humidity 

The main objective of the following section is to assess the impact 
caused by the enhancements detailed in Section 2.3.1. In these en
hancements, parameters undergo a conversion into climatic functions, 
with variables based on temperature and humidity. 

The outcomes of these adjustments are showcased in Table 2, they 

represent the results of the aforementioned metrics for the modified 
model (TH-model). The P 1 partition is used as a reference point for the 
intensity of the wind. A thorough analysis of these outcomes reveals an 
average increment of 4 points B.Acc metric. Generally, this entails a 
heightened convergence in results and a reduced sensitivity to fluctua
tions in the loss factor C. 

However, an important inquiry arises as to whether these enhance
ments also contribute to a more precise representation of fire evolution. 
By closely examining Fig. 12, the variability in the C values across 
generations becomes apparent. These values exhibit a tendency to be 
lower in the initial stages of the process, resulting in a broader reach of 
the model during its initial states and higher values in the final stages. 
This modification effectively addresses previously discussed limitations 
concerning the rate of fire expansion. This effect is a direct outcome of 
the influence of climatic data (temperature and humidity) on the in
crease of the loss factor. 

Consequently, the implemented improvements, while having 
generated a moderate impact due to the implications of parameters in 
fire expansion (see Section 3 of (Boters-Pitarch et al., 2023b)), have 
consistently and successfully followed the logic and objectives outlined 
in their implementation, as we can observe seeing generation 11 and 16, 

Fig. 12. Differences between our estimations and real fire (left). Values taken by the loss factor C as a function of the fire climate (right).  

Fig. 13. New architecture to learn neighbourhood relations.  
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and how we have improved the rate of expansion in the initial stages and 
how it has been greatly moderated in the final stages. 

Despite the positive outcomes yielded by our model, we contend that 
substantial improvements could be achieved by implementing a more 
flexible and complete neighbourhood relation Rk in terms of variables. 
For this reason, in Section 5, we explore an architecture capable of 
learning such neighbourhood relationships through experience and 
accumulated data. 

5. Intelligent cellular scheme 

In this section, we aim to present an innovative architecture that uses 
existing data and historical databases to generalize the concept of 
neighbourhood relations. To achieve it, machine learning is a powerful 
tool, with a backpropagation algorithm (Rumelhart et al., 1986) at the 
heart of it. 

However, for machine learning algorithms like backpropagation to 
be successful, a critical condition must be met: all functions involved 
must be differentiable to compute gradients accurately. As said above, 
to make the update criterion differentiable, we use the Gumbel softmax 
function. So, by changing our update criterion to Ũk, we manage to 

compute the gradients. 
This new data-driven architecture aims to learn the neighbourhood 

relationship Rk to improve the results of our model. In addition, learning 
the neighbourhood relationship has value in itself, as it allows us to 
know and learn how the different elements of the system interact. For 
this purpose, as we can see in Fig. 13 a neural network ANN (or other 
objects) might be defined as Rk, which may take two kinds of inputs:  

• Spatial inputs: The previous architecture could use variables such as 
the previous state Sk, the slope or even the plant fuel (composition of 
the vegetation that serves as the primary source of material that can 
burn and sustain a wildfire) for each cell.  

• Numerical inputs: At the same time, it also could take into account 
as many numerical variables as we want such as temperature, hu
midity and intensity of the wind among others. 

This proposal presents several significant advantages. Firstly, it fa
cilitates the inclusion of new climate variables in the learning and 
computation of the neighbourhood relationship as we only need to add 
them as inputs to the ANN. Secondly, we do not impose any limits (in the 
scope) or fix any characteristics or appearances (corners) of the infection 

Table 1 
Results of model evaluation metrics for different partitions and C.  

Parameters Metrics 

Partitions Loss Factor FP FN B. Acc F0.5
* F1

* F2
* k* MCC* 

P 0 

C = 1 1.59 39.23 79.59 48.88 52.75 57.29 51.52 52.00 
C = 1.5 1.35 39.43 79.61 52.32 55.13 58.27 54.01 54.24 
C = 2 0.92 45.19 76.95 57.07 56.20 55.36 55.22 55.24 
C = 2.5 0.63 51.22 74.08 60.24 55.36 51.22 54.48 55.01 
C = 3 0.44 56.10 71.73 62.16 53.78 47.38 52.96 54.41 
Average 0.99 46.23 76.39 56.13 54.64 53.90 53.64 54.18 

P 1 

C = 1 6.23 14.97 89.40 27.79 37.17 56.12 34.89 42.96 
C = 1.5 5.54 11.99 91.23 30.95 40.89 60.24 38.79 46.61 
C = 2 3.40 21.61 87.49 38.84 47.90 62.48 46.23 50.47 
C = 2.5 1.97 33.13 82.45 46.93 52.84 60.45 51.53 52.77 
C = 3 1.19 42.34 78.23 53.56 55.03 56.57 53.95 54.01 
Average 3.67 24.81 85.76 39.61 46.77 59.17 45.08 49.36 

P 2 

C = 1 24.28 16.12 79.80 8.95 13.46 27.12 9.75 20.18 
C = 1.5 19.39 9.35 85.63 11.76 17.45 33.85 13.98 25.87 
C = 2 8.06 6.30 92.82 24.85 34.30 55.35 31.81 42.24 
C = 2.5 3.37 22.56 87.04 38.75 47.68 61.97 46.01 50.12 
C = 3 1.66 36.65 80.84 49.15 53.66 59.08 52.43 53.09 
Average 11.35 18.20 85.23 26.69 33.31 47.47 30.80 38.30 

Coefficients with * are multiplied by 100. 

Table 2 
Results of evaluation metrics for TH-model, P 1 and parameters based on temperature and humidity.  

α β γ FP FN B. Acc F0.5
* F1

* F2
* k* MCC* C 

0.5 0.5 0.5 5.62 13.41 90.48 30.26 40.03 59.09 37.89 45.62 1.45 
1.0 3.82 18.70 88.74 37.15 46.65 62.68 44.89 50.00 1.90 
1.5 2.48 28.18 84.67 43.69 51.21 61.86 49.76 52.09 2.36 

1.0 0.5 0.5 6.32 14.30 89.69 27.66 37.08 56.22 34.80 43.02 1.08 
1.0 6.29 14.02 89.84 27.83 37.29 56.48 35.01 43.24 1.16 
1.5 6.20 13.96 89.92 28.13 37.62 56.80 35.37 43.53 1.24 

1.0 0.5 5.49 15.24 89.63 30.27 39.89 58.45 37.76 45.14 1.45 
1.0 4.10 17.95 88.97 35.81 45.41 62.03 43.58 49.13 1.89 
1.5 3.02 23.78 86.60 40.86 49.46 62.66 47.89 51.37 2.34 

1.5 0.5 0.5 6.27 14.70 89.51 27.71 37.11 56.14 34.83 42.96 1.01 
1.0 6.29 14.63 89.54 27.68 37.08 56.12 34.79 42.95 1.03 
1.5 6.29 14.57 89.57 27.70 37.10 56.17 34.82 42.98 1.04 

1.0 0.5 6.27 14.50 89.62 27.78 37.19 56.27 34.92 43.07 1.08 
1.0 6.17 14.91 89.46 27.98 37.39 56.34 35.13 43.16 1.16 
1.5 6.03 14.84 89.57 28.47 37.95 56.86 35.71 43.63 1.24 

1.5 0.5 5.25 16.19 89.28 30.93 40.52 58.71 38.43 45.48 1.48 
1.0 4.24 17.48 89.14 35.20 44.85 61.76 42.99 48.76 1.96 
1.5 3.37 20.87 87.88 39.29 48.43 63.13 46.78 51.05 2.44 

Average  5.20 16.79 89.01 31.91 41.24 58.76 39.19 45.95 1.52 

Coefficients with * are multiplied by 100. 
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function. We also avoid defining parameters, this allows us to learn non- 
linear relationships with an infection capacity greater than those 
established in (Boters-Pitarch et al., 2023a). Thirdly, the φ filter ensures 
that the expansion is carried out only by the infected elements of the 
system, making the ΔID parameter decisive during learning, which 
represents a significant advance over the previous relationship. Finally, 
using the sigmoid activation function σ (or similar) as the output of the 
network guarantees that all the cells of the neighbourhood relationship 
can be interpreted as probabilities, without having to consider those 
with a probability greater than one, i.e. Rk ∈ [0,1]N×,N. 

Thus, setting a random seed s, we can compute the estimation ̂ys
k+1 of 

the model in the generation k + 1 by reasoning as Fig. 13 

ŷs
k+1←S0 R0 Ũ0…Sk Rk Ũk (8)  

and then an estimation ŷk+1, based on the Monte Carlo-based classifi
cation method of (Boters-Pitarch et al., 2023b), can be calculated by 
averaging the outcomes of different random seeds. 

Hence, let us consider a loss function F, which aims to evaluate the 
error between our estimate mask ŷi and the real mask yi for all gener
ation i ∈ I, where I is the set of generations for which we have a real 
mask to compare the results. In this sense, we could define a discount 
parameter ̃γ ∈ [0, 1] to guide the learning process, since by adjusting this 
parameter, it is possible to control and seek a balance between the 
relative importance of adjusting better in the early and/or late stages. 
Thus, the loss result Lγ̃ is computed as: 

Lγ̃ =
∑|I|

i∈I

j=0

γ̃jF(yi, ŷi) (9) 

Therefore, to determine the optimal neighbourhood relation Rk, we 
must find the architecture parameters α1,…, αM that minimize the value 
of Lγ̃, i.e. 

α1,…, αM : argminLγ̃  

which implies that our estimates ̂yi optimally fits the real masks yi taking 
into account the discount factor ̃γ and for all generations i in set I. 

6. Conclusions 

In this study, we have performed a comprehensive evaluation of our 
previously developed model (Boters-Pitarch et al., 2023a; Boters-Pitarch 
et al., 2023b). Some limitations were detected which could jeopardize 
future improvements. Among them, we can highlight that the scope of 
the infection is bounded by the parameters and consequently, the 
quality of our results depends on the suitable selection of them. At the 
same time, the model shows a marked sensitivity to wind patterns as a 
climate variable. This, together with our method of updating the model 
by random draws, introduces complexity to the model fitting process. 
For each of the above limitations, we have proposed solutions such as: 
modifying the size of the partition parameter to increase the infection 
capacity, allowing the use of other variables, and changing the update 
function of the grid states. After that, we have also compared the out
comes of the initial model with those of the improved version in a 
realistic scenario, the Beneixama fire incident. 

Despite the improvements and favorable results, we acknowledge the 
complexity of refining the model and reaching more accurate results 
within the current theoretical framework. This is because the existing 
approach may not be adequately versatile or comprehensive in terms of 
variables to achieve highly accurate fire tracking. Consequently, in 
response to this challenge, we have introduced a novel architecture in 
Section 5 that integrates the application of machine learning into our 
model. This architecture keeps its nature while introducing an 

intelligent element to learn the interaction between the cells in the 
system. 

The main contribution of this new strategy is to enable the use of 
climatic data and spatial distribution of the fire to calculate the neigh
bouring relationships. So, this architecture allows learning and therefore 
understanding how the cells interact with each other. In other words, it 
aims to determine with greater precision the cells potentially affected in 
each iteration, from the climatic conditions and their prior state. We 
firmly believe that this data-driven approach can provide a powerful 
tool for enhancing the predictive capability of our model and moving 
towards a more accurate and effective monitoring of forest fires. 
Furthermore, given the generic approach of our architecture, we believe 
that it can adapt to other phenomena that combine spatial and climatic 
data, and whose final result is strictly dependent on the previous ones. 

Finally, future work will aim to collect enough climatic and spatial 
data to effectively implement the proposed new strategy. 
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