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ABSTRACT In this work, we improve the generative replay in a continual learning setting to performwell on
challenging scenarios. Because of the growing complexity of continual learning tasks, it is becoming more
popular, to apply the generative replay technique in the feature space instead of image space. Nevertheless,
such an approach does not come without limitations. In particular, we notice the degradation of the
continually trained model’s performance could be attributed to the fact that the generated features are far
from the original ones when mapped to the latent space. Therefore, we propose three modifications that
mitigate these issues. More specifically, we incorporate the distillation in latent space between the current
and previous models to reduce feature drift. Additionally, a latent matching for the reconstruction and
original data is proposed to improve generated features alignment. Further, based on the observation that the
reconstructions are better for preserving knowledge, we add the cycling of generations through the previously
trained model to make them closer to the original data. Our method outperforms other generative replay
methods in various scenarios. Code available at https://github.com/valeriya-khan/looking-through-the-past.

INDEX TERMS Continual learning, generative replay, machine learning.

I. INTRODUCTION
The traditional approach to machine learning involves
training models on shuffled training data to ensure inde-
pendent and identically distributed conditions, enabling the
model to learn generalized parameters for the entire data
distribution. On the other hand, in continual learning, the
models are trained on sequential tasks, with only data
from the current task available at any given time. Such
a scenario is more realistic in some applications with,
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for example, privacy concerns, where the old data may
become unavailable. However, models trained in such an
incremental fashion will face a catastrophic forgetting [24],
a significant drop in the accuracy of previously acquired
knowledge.

Class Incremental Learning (CIL) is a widely adopted
setting where the classifier is trained on new classes
incrementally using the sequence of separated data [22].
Different regularization methods can be used to preserve
the knowledge [16], [37], however, the performance is
significantly lower without utilizing exemplars from the
previous tasks. Therefore, generative models [5] have gained
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a significant attention as the source of synthetic data that can
substitute data from the previous tasks.

Despite the promising setup, it turns out to be very
challenging to scale approaches based on generative mod-
els in CIL to more demanding datasets than MNIST
or CIFAR-10 [32]. Generative replay methods have low
performance on datasets with a larger number of classes
or with more complex data. This can be attributed to the
fact that modeling high-dimensional images is a challenging
task during the incremental learning, and the quality of the
generations degrades as number of learned tasks increases.

Therefore, more recent methods [18] introduced replay
in feature-space of the trained and frozen feature extractor.
The data is firstly passed through the feature-extractor, and
the resulting features are used as the training data for the
generative part. In this case, the distribution of the data has
lower dimensionality and is much simpler for learning by the
generator.

Brain-Inspired Replay (BIR) [33] is one of the recent
works that uses feature-based generative replay. In their
work, the authors introduce several modifications to make
variational autoencoder (VAE) able to learn and generate
longer sequences of more complex data. The highest results
reported by the authors are when BIR is combined with
Synaptic Intelligence (SI) [37] regularization method, which
suggests that BIR alone for a generative features-replay is not
enough and maybe other regularization techniques can yield
better results. It motivates us to analyze an in-depth VAE-
based replay approaches with BIR as its flagship example.
We observe, that there remains a significant difference
between the features produced by the real data and synthetic
data. Our hypothesis is that this difference leads to a
significant degradation of the quality of the replay data, and
therefore, we propose two modifications that diminish the
problem. Firstly, we introduce a new loss term for minimizing
the difference between the encoded latent vectors of the
original sample and the reconstructed sample. This loss
enables the encoder to learn how to reverse the operation of
the decoder. Secondly, we propose to refine the quality of
rehearsal samples. To that end, we introduce a cyclingmethod
where we iterate the generated data through the previously
trained model (decoder and encoder), and only after that feed
it to the replay buffer for training the new model. As we show
in our analysis, this has the effect of reducing a discrepancy
between original and generated features for classification (see
Figure 1), and as a result, improves the final model accuracy.
The proposed changes allowed us to significantly improve the
results over our baseline method.

Overall, the contribution of this study is threefold:
• Based on the analysis of existing generative replay
methods, we identify the weaknesses of VAE-based
approaches such as degradation of generated data and
distribution mismatch between the features obtained by
original and synthetic data.

• To mitigate the discovered problems, we propose a
new generative replay method for class-incremental
learning. Our method uses distillation to better match

latent vectors of reconstructed and original data. Also,
we match the latent representations of current data
obtained through previous and current models. Fur-
thermore, we incorporate the cycling of generations
to diminish the difference between the original and
synthetic data.

• We perform a series of experiments to show that
our approach outperforms the baseline method (BIR).
In addition, we demonstrate through an ablation study
that each improvement we introduce makes an incre-
mental contribution to the overall performance of the
model.

II. RELATED WORKS
Continual learning methods can be divided into three
categories that we overview in this section.
Regularization methods aim to strike a balance between

preserving previously acquired knowledge and providing suf-
ficient flexibility to incorporate new information. To that end,
regularisation is applied to slow down the updates on the most
important weights. In particular, in Elastic Weights Consoli-
dation (EWC) [13] authors propose to use Fisher Information
to select important model’s weights, while in Synaptic Intel-
ligence (SI) [37] and Memory Aware Synapses (MAS) [1]
additional information is stored together with each parameter.
Similarly, in Learning Without Forgetting (LWF) [17]
additional distillation loss on current data is used to match
the output of the model trained on the previous task, with a
new one. In this work, we use distillation techniques to align
representations of old and new features similarly to LWF.
Dynamic architecturemethods create different versions of

the base model for each task. This is usually implemented by
creating additional task-specific submodules [29], [35], [36],
or by selecting different parts of the base network [4], [20],
[21], [23]. Such approaches reduce catastrophic forgetting at
the expense of expanding memory requirements.
Rehearsal methods involve storing and replaying past data

to prevent catastrophic forgetting. The simplest implementa-
tion of this approach employs amemory buffer where a subset
of examples from previous tasks can be stored [2], [3], [9],
[19], [27]. Such an approach achieves high performance and
can significantly reduce catastrophic forgetting.

However, the memory buffer has to store a significant
number of examples and, hence, grow with each task. Also
in some domains, due to privacy concerns, using historical
data is not possible. Therefore, generative models are often
used to synthesize past data. The first example of generative
replay for CIL model is [32] where a generative model
(e.g., Generative Adversarial Network (GAN) [5]) is used as a
source of rehearsal examples. This idea is further extended to
other generative methods such as Variational Autoencoders
in [12], [34], and [25] or Normalising Flows [28] in [31].
In [15], the authors overview the general performance of
generative models as a source of rehearsal examples, showing
that even though GANs outperform other solutions, all
the methods struggle when evaluated on more complex
benchmark scenarios. Therefore, to simplify the problem,
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FIGURE 1. Principal Component Analysis (PCA) is performed on the original latent representations and the generated ones after 0, 10, and
20 passes during cycling. The PCA visualizations and Fréchet distances both imply that the cycling procedure decreases the discrepancy
between original and generated data when the appropriate number of passes is performed [11].

in Brain-Inspired Replay (BIR) [33] the authors introduce
a new idea known as feature replay and propose to focus
on the replay of internal data representations instead of the
original samples. This idea was further explored in [10], with
a split between short and long-term memory, and in [18]
where authors employ conditional GANs. Our method falls
in the generative-feature replay category, as we directly base
our approach on the BIR method. This work is an extension
of workshop paper originally presented at ICCV [11]. In this
version, we add experiments on mini-ImageNet dataset, and
detailed evaluation of the quality of rehearsal examples with
precision and recall analysis. The results of these experiments
are presented in Table 2 and Figure 6. In addition, we present
Algorithm1, Figures 2, 3 and 4 for better comprehension of
the method.

III. METHOD
A. PROBLEM DEFINITION
This study addresses image classification within a class-
incremental setting. We train the model on a sequence of n
tasks: T1,T2, . . . ,Tn where each task t consists of {X (t),Y (t)

}

drawn from the distribution D(t), where X is a set of
training samples, Y is a set of corresponding class labels, and
1 ≤ t ≤ n. During the training of task t the model has noo
access to previous tasks data.

In class-incremental learning, the model has to be trained
to predict the labels for all the tasks seen so far.

B. BASELINE MODEL
Brain-Inspired Replay (BIR) method [33] serves as a baseline
for our work. The model consists of feature extractor and
VAE on top of it that plays a role of the feature generator.
The generator part is utilized to create the synthetic data for
the replay of old knowledge. It has encoder part qφ and the
decoder part pψ . The goal of the encoder is to map the sample
x to probabilistic latent variable z, and the goal of the decoder
is map the latent variable z to reconstruction ẑ. Typically, the
objective of training VAE is to maximize the a variational
lower bound on the evidence (ELBO), or alternatively we try
to minimize the per-sample loss:

LG(x;φ,ψ) = Ez∼qφ (.|x)[− log pψ (x|z)]

+ DKL(qφ(.|x)||p(.))

= Lrecon(x;φ,ψ) + L latent (x;φ), (1)

where qφ(.|x) = N (µ(x), σ (x)2 I ) is the posterior and p(.) =

N (0, I ) is prior over the latent variables, and DKL is the
Kullback-Leibler divergence.

For prior distribution equal to N (0, I ), the KL divergence
can be calculated as follows:

L latent (x;φ) =
1
2

D∑
j=1

(1 + log(σ (x)2
j ) − µ

(x)2
j − σ

(x)2
j ), (2)

where D is a latent dimension. The reconstruction loss in this
work is given by:

Lrecon(x;φ,ψ) = Eϵ∼N (0,I )

[ N∑
p=1

xp log(x̂p)

+ (1 − xp) log(1 − x̂p)
]
, (3)

where N is the size of the input, xp is the pth entry of the
original input x, and x̂p is the pth entry of reconstruction x̂.
In order to generate samples from specifically chosen

classes, the prior can be changed from the standard normal
distribution to the Gaussian mixture with each class modeled
as a separate distribution:

pX (.) =

Nclasses∑
c=1

p(Y = c)pX (.|c), (4)

where pX (.|c) = N (µc, σ cI ) for c = 1, . . . ,Nclasses, µc and
σ c are trainable means and standard deviation for class c,X is
a set of means and standard deviations for all classes Nclasses
and p(Y = c) is the class prior.

For the current task with hard targets (labels), the L latent

has the following form:

L latent (x, y;φ,X ) =
1
2

D∑
j=1

(
1 + log(σ (x)2

j )

− log(σ y
2

j ) −
(µ(x)

j − µ
y
j )
2
+ σ

(x)2
j

σ
y2
j

)
,

(5)

where µ
y
j is the jth element of µy and σ

y
j is the jth

element of σ y. For the replay, this loss is estimated for
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soft-target ỹ as:

L latent (x, y;φ,X )

=
1
2

D∑
j=1

(
1 + log(2π) + log(σ (x)2

j )
)

+ Eϵ∼N (0,I )

[
log

( D∑
j=1

ỹjN (µ(x)
+ σ (x)

⊙ ϵ|µj, σ j
2
I )

)]
,

(6)

where ỹj is the jth entry of ỹ, and estimation of expectation is
performed by a single Monte Carlo sample for each input.

Classification loss is calculated for the current task as
following:

LC (x, y; θ ) = − log pθ (Y = y|x), (7)

where pθ is the conditional probability distribution defined
by the model parameters.

In the replay part of BIR method classification loss is
substituted by the distillation loss. Typically, the objective
of knowledge distillation is to transfer knowledge from the
teacher model to student model. Knowledge distillation is
performed by minimizing the distance between the resulting
vectors of the softmax function in teacher and student models.
One of the problem of this approach is that the predicted
probability of the true class is usually close to 1. Hence,
the probability vector is close to the one-hot ground-truth
label vector, and does not provide additional information.
To mitigate this problem, the softmax with temperature is
incorporated [8]. The distillation loss is calculated by:

LD(x, ỹ; θ ) = −T 2
Nclasses∑
c=1

ỹc log pTθ (Y = x|x), (8)

where T is the softmax temperature.

C. IMPROVED FEATURE REPLAY
This section describes our proposed modifications to the BIR
method that serves as the baseline. These changes are aimed
to mitigate the problems with VAE-based feature replay:
(1) misalignment between original and reconstructed data,
(2) latent drift due to continual learning training, (3) high
difference between generations and original samples.

1) LATENT MATCHING FOR RECONSTRUCTIONS AND
ORIGINAL DATA
The first modification we propose aims to improve VAE
model performance in continual retraining. To that end,
we propose a latent matching regularization that enforces
encoder to reverse the decoding operation performed by the
decoder. More specifically, we pass the sample x through
the encoder model to get the latent representation zo. After
that, we reconstruct the original sample by passing this
latent vector through the decoder and obtain x̂. Then, the
reconstruction is passed through the encoder model, and the
latent representation zr is received.

FIGURE 2. Visualisation of the latent matching loss. We minimize the
difference between latent vectors of the original samples and their
reconstructions.

FIGURE 3. Visualisation of the latent distillation loss that reduces the
feature drift between tasks.

In particular, we calculate the regularisation on mean and
variations outputted by the encoder. To that end, we utilize the
mean squared error (MSE) loss for measuring the difference
between obtained latent representations. Therefore, we intro-
duced latent match loss which is defined as the following:

L latent match(zo;φ,ψ) =
1
2
(zr − zo)2 (9)

The visualisation of our latent match loss is presented in
Figure 2.

2) LATENT DISTILLATION
As mentioned in Section III-B, the BIR method does not
have any mechanism for prevention of feature drift, i.e. the
distribution change in feature space during training on new
data. To prevent that, we add a latent distillation loss which is
performed similarly as in [18]. In order to calculate the loss
during the task t , we pass the sample through the previous
model encoder Et−1 and current model encoder Et , and
obtain latent representations zt−1 and zt respectively. The
latent distillation loss is calculated as the MSE between the
latent representations of previous and current model, and is
calculated by:

L latent distill(zt−1;φt−1,t ) =
1
2
(zt − zt−1)2 (10)

The latent distillation loss serves as the purpose of the
regularization term that controls forgetting, similarly to the
SI regularization in the BIR method. Nevertheless our latent
distillation achieves better performance. Figure 3 presents
latent distillation loss.

3) CYCLING
Our hypothesis is that even with the first two added
modifications, there is still a large discrepancy between the
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FIGURE 4. Visualisation of the cycling procedure. Each time we generate a batch of rehearsal samples
(orange stars), we pass the generated outputs several times through the Variational Autoencoder in the
recursive passing procedure. As a consequence, the final generations exhibit a considerably improved
alignment with the reconstructions of the original training data (green dots).

FIGURE 5. Fréchet distance between the distributions of original and
generated latent vectors depending on the number of cycles. Zero cycles
mean the model without cycling procedure. As the number of cycles
increases (till some point), the distribution of generated representations
better aligns with the original one.

generated and original features. To minimise this effect,
we propose a cycling mechanism that is inspired by the
idea presented by Gopalakrishnan et al. in [6]. In this
work, authors propose to recursively pass images from the
buffer through the pre-trained autonecoder in order to better
align them to the data from a new task. Here, we use
the similar mechanism with our Variational Autoencoder to
align generations of data from the previous task with data
reconstructions.

The visualisation of our cycling mechanism is presented in
Figure 4.

In order to check the hypothesis, we calculate the Fréchet
distance [7], which is used to measure the similarity of two
Gaussian distributions. Typically, it is utilized to estimate
the quality of generated images (known as Fréchet inception
distance). In this case, we use it to measure the quality of
the generated latent representations. Figure 5 presents the
decrease in the Fréchet distance between the distributions
of generated and original latent vectors with the increase of
passes through the previous model. Therefore, we add it to
the training procedure.

Empirical evaluation of the cycling and number of
used rounds is presented with other experiments in
Section V-B.

D. FINAL TRAINING OBJECTIVE
To summarize, we present our modified VAE-based replay
method with all the improvements incorporated into the
training routine via a single objective for class-incremental
setting. This objective can be divided into two main parts:
Lcurrent and Lreplay. Current task loss Lcurrent is calculated as
follows:

Lcurrent = LG + LC + L latent match (11)

Replay loss Lreplay for the previous tasks is given by:

Lreplay = LG + LD + L latent distill (12)

Finally, the total objective is calculated as summation of these
two losses:

L total = Lcurrent + Lreplay (13)

The final loss is utilized for training of the VAE and
classifier using the current task data and the generative replay
data passed through the previous model the defined number
of times. The resulting loss is a combination of components
without any coefficients to balance the off. That can be further
investigated. The ablation study is provided in Section V-C.
The steps of the overall training procedure can be found in
the Algorithm 1.

IV. EXPERIMENTAL SETUP
A. DATASET
We evaluate the models on two commonly used bench-
marks that are challenging for the generative replay setup
CIFAR-100 dataset [14] and mini-ImageNet. CIFAR-100
consists of 100 object classes in 45,000 images for training,
5,000 for validation, and 10,000 for test. All images are in the
size of 32 × 32 pixels. The mini-ImageNet contains 50,000
training images, and 10,000 testing images evenly distributed
across 100 classes. All images have the size 84 × 84.

B. IMPLEMENTATION DETAILS
As a framework for our experiment, we use PyTorch [26].
We use ResNet-32 model for feature extraction. We pretrain
feature extractor on the 50 classes contained in the first
task, and freeze it afterwards. The same procedure is used
for mini-ImageNet with the substitution of ResNet-32 to
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FIGURE 6. Comparison of average accuracies on CIFAR-100 (top) and mini-ImageNet (bottom) after each task for 6, 11, and 26 tasks (from left to right)
with the first task containing 50 classes.

Algorithm 1 Class-Incremental Learning With Improved
Generative Feature Replay
Input: Data D1, D2, . . . , DT , where Dt = {F(Xt ),Yt }, where F is a
pretrained feature extractor

Require: Initialized encoderEnc0, initialized decoderDec0, initial-
ized classifier θ0, number of cycles Ncycles
for t = 1, . . . ,T do

if t = 1 then
Step 1: Train Encnew, Decnew and θ on data D1 by

minimizing Lcurrent

else
Step 2: Save previously trained generator

Decold = Decnew, Encold = Encnew
Step 3: Generate data D̂1:t−1 = Decold (yt ′ , z),

where yt ′ is all classes seen-so-far
Step 4:
for k < Ncycles do

D̂1:t−1 = Decold (Encold (D̂1:t−1))
end for
Step 5: Train Encnew, Decnew and θ

on current data Dt by minimizing Lcurrent

and on generated data D̂t−1 by minimizing Lreplay

end if
end for

ResNet18. During the pretraining, we utilize the strong data
augmentations from the PyCIL framework [38] to improve
the feature extraction model. During the class-incremental
training of generator and classifier, we use weaker data
augmentations to minimize the distortions to the original
data. More specifically, we firstly pad images by 4 with
0 values, and after that we crop the image at random
location to the size 32 × 32 for CIFAR-100 and 84×84 for
mini-ImageNet. Lastly, random horizontal flips are applied.
We train the encoder part on top of the feature extractor for
10000 iterations for the first task and for 5000 iterations for

FIGURE 7. Average incremental accuracy as a function of a number of
cycles for T = 6.

the rest of the tasks. Adam optimizer from PyTorch [26] is
used for the experiments with the learning rate equal to 1e-4.

C. EVALUATION
For evaluation, we use the average overall accuracy metric as
in [33]. It is the average accuracy of the model on the test
data of all tasks up to the current one. In addition, to evaluate
the overall performance, we calculate average incremental
accuracy over all tasks. It is obtained by taking the average
of accuracies after each task. Each experiment is performed
over 3 random seeds and the mean is reported.

V. RESULT AND ANALYSIS
A. MAIN RESULTS
For the experiments on CIFAR-100 and mini-ImageNet,
50 classes are contained in the first task following [33],
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FIGURE 8. Comparison of the Precision/Recall curves for features generated after each task with either the standard
BIR method (left) or our improved version (right). Our method is able to retain much better precision-recall tradeoff of
the generated samples. Experiment is performed for CIFAR-100 and T = 6.

TABLE 1. The average incremental accuracies on CIFAR-100 with the first
task containing 50 classes and the rest 50 classes split into 5, 10, and
25 tasks equally.

TABLE 2. The average incremental accuracies on mini-ImageNet with the
first task containing 50 classes and the rest 50 classes split into 5, 10, and
25 tasks equally.

and the rest 50 classes are divided evenly to 5, 10, and
25 tasks. The average incremental accuracies for CIFAR-100
are shown in Table 1, and the accuracies after each task for
T = 5, 10, 25 are shown in the form of plots in Figure 6 (top).
Our method shows better result in comparison with the
baseline and regularization methods.

The second best method is BIR+SI, but, it is consistently
worse than the proposed approach.

Similar results are presented for mini-ImageNet dataset,
which consists of bigger images than CIFAR-100. Table 2
present average incremental accuracy for this dataset. Here,

as well for CIFAR-100, our method outperforms the other
in a meaning of average incremental accuracy. However,
the difference between ours and BIR+SI is more sig-
nificant with the increasing number of tasks, where for
T = 26 we reach 48.94 and BIR+SI 43.78. The other
regularization-based methods baselines for this scenario fall
far behind. In Figure 6 (bottom) we see accuracies after
each task. For mini-ImageNet BIR results in a better average
accuracy in the second task for T= 6 and T= 11. This can be
attributed to better plasticity (no SI). However, with a longer
training and with more task, our method outperforms others.

For both datasets, SI alone presents the results comparable
to finetuning. While simple application of LwF works good
for smaller number of bigger tasks, T = 6 and T = 11, but for
longer sessions T = 26 the performance significantly drops.
Here, better adjustment of regularization hyper-parameters
can play more important role. Our proposed method does not
suffer from this issue.

B. NUMBER OF CYCLES
We analyze the influence of number of passes during cycling
procedure on the average incremental accuracy for 6 tasks.
According to the results presented in Figure 7, there is a drop
of performance for small number of passes, but increasing
the number improves the accuracy significantly. We suggest
to search an optimal value for the number of passes depending
on the dataset and split scenario used.

C. ABLATION STUDY
Through adding the proposed modifications one by one to
the baseline method, we perform an ablation study for the
proposedmethod. The obtained results can be seen in Table 3.
The ablation study suggests that each of our modifications
significantly contributes to the total performance of the
model, and overall increase to average incremental accuracy
is 5.56% over baseline.
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TABLE 3. Ablation study of our method for class incremental learning
setting with T = 6 and CIFAR-100. Average incremental accuracy is
reported for ResNet32.

D. ANALYSIS OF PRECISION AND RECALL
Finally, we perform the analysis of our models performance
in terms of the quality of generations. To that end, we refer
to the distribution precision and recall of the distributions
as proposed by [30]. As authors indicate, those metrics
disentangle FID score into two aspects: the quality of
generated results (Precision) and their diversity (Recall).
We calculate those two metrics on the features level and
compare the resulting scores between standard BIR method
and our improved approach. As presented in Figure 8, our
improvements allow the model to retain both higher precision
and recall of the regenerated samples.

VI. CONCLUSION AND FUTURE WORK
In conclusion, we propose the modifications to improve the
VAE-based generative replay in the class-incremental setting.
We observe the disparity between the latent representations
of the original and generated data. Therefore, we incorporate
the latent match loss that address this problem. To mitigate
shift in the feature space during training on new data, we add
latent distillation loss. Finally, we propose the cycling of the
generated features though the previous model to decrease the
distance between the distributions of original and generated
samples. This allowed us to scale the generative approaches
to more complex datasets, such as mini-ImageNet. The
performed ablation study illustrates that the increase of
performance due to each component.

In future, we plan to scale our method to perform well
on more challenging scenarios such as ImageNet dataset and
longer sequences of tasks.

This stands out as a notable limitation in numerous
generative replay methods which are unsuitable for larger
datasets, whereas our approach holds a significant advantage
in this regard.

A. IMPACT STATEMENT
By using the generative approach for continual learning,
our method does not require storing exemplars of past data,
therefore it addresses concerns about private or sensitive data,
which are applicable in some scenarios. However, generative
models can retain the biases present in the training data, and
we strongly advise a careful examination of their performance
to ensure unbiased outcomes.

REFERENCES
[1] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,

‘‘Memory aware synapses: Learning what (not) to forget,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 139–154.

[2] E. Belouadah and A. Popescu, ‘‘IL2M: Class incremental learning with
dual memory,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 583–592.

[3] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. S. Torr, and M. Ranzato, ‘‘Continual learning with tiny episodic
memories,’’ in Proc. ICML, 2019, pp. 1–13.

[4] S. Golkar,M. Kagan, andK. Cho, ‘‘Continual learning via neural pruning,’’
in Proc. Neuro AI. Workshop NIPS, 2019, pp. 1–12.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1–9.

[6] S. Gopalakrishnan, P. R. Singh, H. Fayek, S. Ramasamy, and
A. Ambikapathi, ‘‘Knowledge capture and replay for continual learning,’’
in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2022,
pp. 337–345.

[7] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘Gans trained by a two time-scale update rule converge to a local Nash
equilibrium,’’ in Proc. NIPS, 2017, pp. 1–12.

[8] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ in Proc. NIPS, 2015, pp. 1–9.

[9] D. Isele and A. Cosgun, ‘‘Selective experience replay for lifelong
learning,’’ in Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 1–8.

[10] R. Kemker and C. Kanan, ‘‘FearNet: Brain-inspired model for incremental
learning,’’ 2017, arXiv:1711.10563.

[11] V. Khan, S. Cygert, B. Twardowski, and T. Trzcinski, ‘‘Looking through
the past: Better knowledge retention for generative replay in continual
learning,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops
(ICCVW), Oct. 2023, pp. 3496–3500.

[12] D. P. Kingma andM.Welling, ‘‘Auto-encoding variational Bayes,’’ inProc.
ICLR, 2014, pp. 1–14.

[13] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, and A. Grabska-Barwinska,
‘‘Overcoming catastrophic forgetting in neural networks,’’ Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

[14] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Tech. Rep., 2009.

[15] T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz, A. Stoian, and D. Filliat,
‘‘Generative models from the perspective of continual learning,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[16] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ in Computer Vision—
ECCV (Lecture Notes in Computer Science), vol. 9908, Amsterdam,
The Netherlands. Cham, Switzerland: Springer, 2016, pp. 614–629.

[17] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[18] X. Liu, C. Wu, M. Menta, L. Herranz, B. Raducanu, A. D. Bagdanov,
S. Jui, and J. V. deWeijer, ‘‘Generative feature replay for class-incremental
learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2020, pp. 226–227.

[19] S. Lee, M. Weerakoon, J. Choi, M. Zhang, D. Wang, and M. Jeon,
‘‘CarM: Hierarchical episodic memory for continual learning,’’ in Proc.
59th ACM/IEEE Design Autom. Conf., Jul. 2022, pp. 6467–6476.

[20] A. Mallya and S. Lazebnik, ‘‘PackNet: Adding multiple tasks to a single
network by iterative pruning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7765–7773.

[21] A. Mallya, D. Davis, and S. Lazebnik, ‘‘Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,’’ in Proc. ECCV,
2018, pp. 67–82.

[22] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov,
and J. van de Weijer, ‘‘Class-incremental learning: Survey and per-
formance evaluation on image classification,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 5, pp. 5513–5533, May 2023, doi:
10.1109/TPAMI.2022.3213473.

[23] N. Y. Masse, G. D. Grant, and D. J. Freedman, ‘‘Alleviating catastrophic
forgetting using context-dependent gating and synaptic stabilization,’’
Proc. Nat. Acad. Sci. USA, vol. 115, no. 44, pp. 10467–10475, Oct. 2018.

[24] M. McCloskey and N. J. Cohen, ‘‘Catastrophic interference in connection-
ist networks: The sequential learning problem,’’ in Psychology of Learning
and Motivation, vol. 24. Amsterdam, The Netherlands: Elsevier, 1989,
pp. 109–165.

[25] M.Mundt, S.Majumder, I. Pliushch, Y.W. Hong, andV. Ramesh, ‘‘Unified
probabilistic deep continual learning through generative replay and open
set recognition,’’ 2020, arXiv:1905.12019v4.

45316 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1109/TPAMI.2022.3213473
http://mostwiedzy.pl


V. Khan et al.: Looking Through the Past

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ Tech. Rep., 2017.

[27] A. Prabhu, P. H. Torr, and P. K. Dokania, ‘‘GDUMB: A simple approach
that questions our progress in continual learning,’’ in Computer Vision—
ECCV, Glasgow, U.K. Cham, Switzerland: Springer, 2020, pp. 524–540.

[28] D. J. Rezende and S. Mohamed, ‘‘Variational inference with normal-
izing flows,’’ in Proc. 32nd Int. Conf. Mach. Learn. (PMLR), 2015,
pp. 1530–1538.

[29] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ‘‘Progressive neural
networks,’’ 2016, arXiv:1606.04671.

[30] M. S. Sajjadi, O. Bachem,M. Lucic, O. Bousquet, and S. Gelly, ‘‘Assessing
generative models via precision and recall,’’ 2018, arXiv:1806.00035.

[31] S. Scardapane and A. Uncini, ‘‘Pseudo-rehearsal for continual learning
with normalizing flows,’’ in Proc. ICML, 2020, pp. 1–9.

[32] H. Shin, J. K. Lee, J. Kim, and J. Kim, ‘‘Continual learning with deep
generative replay,’’ in Proc. Adv. Neural Inf. Process. Syst., Long Beach,
CA, USA, 2017, pp. 2990–2999.

[33] G. M. van de Ven, H. T. Siegelmann, and A. S. Tolias, ‘‘Brain-inspired
replay for continual learning with artificial neural networks,’’ Nature
Commun., vol. 11, no. 1, p. 4069, Aug. 2020.

[34] G. M. van de Ven and A. S. Tolias, ‘‘Generative replay with feed-
back connections as a general strategy for continual learning,’’ 2018,
arXiv:1809.10635.

[35] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, ‘‘Lifelong learning with
dynamically expandable networks,’’ in Proc. ICLR, 2018, pp. 1–11.

[36] J. Xu and Z. Zhu, ‘‘Reinforced continual learning,’’ in Proc. NIPS, 2018,
pp. 1–10.

[37] F. Zenke, B. Poole, and S. Ganguli, ‘‘Continual learning through synaptic
intelligence,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3987–3995.

[38] D.-W. Zhou, F.-Y. Wang, H.-J. Ye, and D.-C. Zhan, ‘‘PyCIL: A Python
toolbox for class-incremental learning,’’ Sci. China Inf. Sci., vol. 66, no. 9,
Sep. 2023, Art. no. 197101.

VALERIYA KHAN received the master’s degree
in cloud computing. She is currently pursuing
the Ph.D. degree with Warsaw University of
Technology and IDEASNCBR, where she focuses
on the topic of continual learning of artificial
neural networks. Prior to working at IDEAS, she
was with Samsung’s team developing computer
vision algorithms for gaze tracking.

SEBASTIAN CYGERT received the Ph.D. degree
from Gdańsk University of Technology. He is
currently a Postdoctoral Researcher with IDEAS
NCBR and an Assistant Professor with Gdańsk
University of Technology. Previously, he was
employed as an Applied Scientist with Amazon
and contributed to projects, such as the visual per-
ception system for the autonomous robot Amazon
Scout. In addition, he is collaborating with the
Medical University of Gdańsk on a project aimed

at early cancer diagnosis through the use of liquid biopsies. His research
interest includes the real-world generalization and efficient computation of
machine learning algorithms.

KAMIL DEJA received the Ph.D. degree from
Warsaw University of Technology. He is currently
a Postdoctoral Researcher with IDEASNCBR and
Warsaw University of Technology. He has pre-
viously interned at Vrije Universiteit Amsterdam
and twice at Amazon Alexa. His research interest
includes generative modeling with applications to
continual learning. His research work has been
published in prestigious conferences, such as
NeurIPS, IJCAI, and Interspeech. In recognition

of his accomplishments, he received the FNP Start Scholarship, in 2023,
awarded to the top 100 young researchers in Poland.

TOMASZ TRZCINSKI (Senior Member, IEEE)
received the M.Sc. degree from Universitat
Politècnica de Catalunya, the M.Sc. degree from
Politecnico di Torino, in 2010, the Ph.D. degree
from École Polytechnique Fédérale de Lausanne,
in 2014, and the D.Sc. degree from Warsaw
University of Technology, in 2020. He was an
Associate Professor with Jagiellonian University,
Kraków, from 2020 to 2023; a Visiting Scholar
with Stanford University, in 2017; and Nanyang

Technological University, in 2019. Previously, he was with Google, in 2013;
Qualcomm, in 2012; and Telefónica, in 2010. He is currently an Associate
Professor with Warsaw University of Technology, where he leads the
Computer Vision Laboratory. He is also a Chief Scientist at Tooploox
and the Co-Founder of Comixify, a technology startup focused on using
machine learning algorithms for video editing. He is the Computer Vision
Group Leader with IDEAS NCBR, a publicly-funded Polish Center for
AI. He is a member of the ELLIS Society, a member of the ALICE
Collaboration at CERN, and an Expert of the National Science Centre and
Foundation for Polish Science. He serves as a Reviewer in major computer
science conferences, such as CVPR, ICCV, ECCV, NeurIPS, and ICML,
and journals, such as IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, International Journal of Computer Vision, and Computer
Vision and Image Understanding. He is an Associate Editor of IEEE ACCESS

and Electronics (MDPI).

BARTLOMIEJ TWARDOWSKI received the
Ph.D. degree, in 2018, with a focus on recom-
mender systems and neural networks. He was an
Assistant Professor with the AI Group, Warsaw
University of Technology, for 1.5 years, before
deciding to join the Computer Vision Center,
Universitat Autònoma de Barcelona (UAB), for a
postdoctoral program. He is currently the Research
Team Leader with the IDEAS NCBR Research
Institute and a Researcher with the Computer

Vision Center, UAB. He has been actively involved in various research
projects related to DL/NLP/ML (ranging frome40k toe1.4 million). He has
wide industry experience (more than 15 years), including international
companies, such as Zalando, Adform, Huawei, andNaspers Group (Allegro),
as well as helping startups with research projects (Sotrender, Scattered).
Throughout his career, he has had the opportunity to publish papers in
prestigious conferences, such as CVPR, in 2020, two papers; NeurIPS,
in 2020; ICCV, in 2021 and 2023; ICLR, in 2023; and ECIR, in 2021 and
2023. His research interests include lifelong machine learning in computer
vision, efficient neural network training, transferability, domain adaptation,
information retrieval, and recommender systems. He is a Ramón y Cajal
Fellow. In addition, he has served as a Reviewer for multiple AI/ML
conferences, such as AAAI, CVPR, ECCV, ICCV, ICML, and NeurIPS.

VOLUME 12, 2024 45317

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

