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Structural engineering achieves control or adjustment 
of structures through altering the length of some bars. 
These length changings are made possible using embedded 
devices known as actuators, which produce the necessary 
length changes [3]. To achieve precise shape control, the 
devices must be able to lengthen and shorten. “Adjustment” 
refers to minor joint displacements or axial force changes 
to achieve the targets. The terms control and adjustment 
can be used interchangeably in this context. Although the 
concept of length changing causing changes in shape is 
straightforward, research on analytical and numerical tech-
niques is limited, especially regarding direct approaches. 
Former studies in this field can be categorized into three 
main groups: nodal movement, axial force, and both cases 
control together.

Thus far, only a few review articles are available in the 
field of structural shape control; for example, two reviews 
were conducted in 1999 by Sunar and Rao [4], and in 2002 
by Irschik [5], the reviews were dedicated for the studies 
used piezoelectric actuators. This paper covers the research 
conducted on shape and/or stress control of structures to 
date. It also covers the studies about several types of actua-
tors and the research about optimization in the number of 
actuators and their optimal locations. It’s crucial to under-
score that for this study, the literature review was conducted 
using the highly reputable Web of Science database. This 
database was chosen for its comprehensive coverage and 

1  Introduction

Shape and/or control of structures is crucial in modern 
engineering, allowing for the creation of innovative and 
efficient designs across various fields. The capacity to 
actively manipulate and adjust structures’ shape and/or 
stress provides unparalleled performance, durability, and 
safety advantages. Recent progress in materials science and 
intelligent systems has transformed shape control, leading 
to exciting applications in aerospace, civil engineering, 
robotics, and biomedicine. An adjustment involves minor 
modifications or movements to enhance performance or 
achieve a desired result. Shape control minimizes or elimi-
nates structural deformation from external disruptions [1]. 
Consequently, specific structures are intentionally designed 
with the ability to alter their shapes by adjusting the lengths 
of components or applying forces to them [2]. Varying bar 
lengths cause stress changes in indeterminate structures. 
Thus, internal forces should also be considered.
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rigorous selection process, ensuring the inclusion of only 
high-quality research. The review focused on the latest 
advancements in shape and stress control, as well as actua-
tor technologies, specifically for structural applications. To 
ensure a thorough and comprehensive collection of relevant 
research, a search strategy combining titles, topics, and key-
words was employed. The main key terms used in the search 
were “shape control”, “displacement control”, “stress con-
trol”, “actuators”, and “structures,“.

2  Structural Control

2.1  Shape Control

In structural engineering, the configuration of flexible struc-
tures holds great importance. Typically, their structural 
geometry is defined by nodal positions; these structures often 
support sensitive equipment used in scientific or communi-
cation applications, necessitating high geometric accuracy 
for optimal performance, especially in exacting situations 
like space [6–9]. The structures in space are intended to be 
lightweight, leading to high flexibility and shape imperfec-
tions from various factors such as manufacturing errors, 
thermal distortion, and transportation loading. Thus, adjust-
ing these structures with appropriate corrections is crucial 
to maintain accuracy [10, 11]. The concept of reshaping 
was initially presented by Weeks [12, 13], Who provided 
explanations for methods concerning the determination and 
management of static shapes in extensive space systems. 
Mitigation of static distortion by applying temperature was 
then developed analytically [14] and computationally [1].

The primary objective of reshaping is to diminish the 
influence of exterior disturbances on the distortion of the 
structure through suitable elongation [5, 14]. In cases where 
shape distortion is undesirable, adjustments to nodal posi-
tions are necessary for reshaping, which is done by altering 
the length of some bars [15, 16]. Shape control is closely 
related to control engineering and is a branch of structural 
engineering; an example of shape restoration is illustrated in 
Fig. 1. One approach to effectively control external displace-
ment is to adjust the length of active members; identifying 
active bars and determining the required size of actuation 
for those bars is essential. Researchers like Korkmaz [17] 
have addressed this issue in several studies on structural 
control. Additionally, static shape adjustment approaches 
were studied by Burdisso and Haftka [18], and Ziegler [1].

Over time, more researchers have explored various 
approaches to shape control. Indirect methods, like Sub-
ramanian and Mohan’s successive peak error correction 
algorithm [20], have proven economical and practical for 
correcting shape deformation; further improvements were 
made to the algorithm by Skelton and DeLorenzo [21]. Yoon 
[22] used finite element analysis (FEA) to control the shape 
of adaptive one-dimensional structures for performance 
optimization, and Salama, Umland [23] employed simu-
lated annealing with FEA for controlling a truss system. In 
another study, piezoelectric sensor distribution was imple-
mented for shape control for intelligent structures based on 
FEA [24]. In addition, shape-controlling methods have been 
derived, considering curvatures and slopes as fine-tuning 
criteria [25, 26] and eigenstrain actuation [27].

Concerning direct methods, Mitsugi, Yasaka [28] studied 
the direct method of using the generalized inverse of a Jaco-
bian matrix to determine inputs for shape control pertaining 

Fig. 1  Reshaping a structure after 
deformation due to external load-
ing adapted from Saeed, Manguri 
[19]
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to cable length variations. In addition, a direct method based 
on Maysel’s formula was proposed by Nyashin, Lokhov 
[29] for nodal displacement control of trusses. The surface 
accuracy method for cable mesh reflectors was presented 
by Tanaka and Natori [30]. An effective method to control 
the shape of flexible structures was proposed based on the 
linear force method [31] and then coupled with optimiza-
tion algorithms [32]. Tanaka [33] developed the “surface 
adjustment mechanisms” method, an innovative approach 
for resembling and correcting the surface deformation of 
an antenna. This approach creates connections between 
surface errors in antennas and the resulting alterations in 
antenna gains caused by deliberate deformations, allowing 
for correction following the assessment of the initial defor-
mation of the antenna surface based on signal gain impacts 
resulting from implemented modifications. Tanaka [33] also 
determined that this method reduced calculation costs and 
improved applicability. Furthermore, the deformed cantile-
vers’ shape was controlled by employing Timoshenko beam 
coupling with strain actuation theory using piezoelectric 
[34] and laminated piezoelectric [35]. Du, Zong [16] sug-
gested an optimization-driven method for modifying the 
shape of structures.

Regarding shape-controlling applications, it has been 
utilized in various structures to address shape distortion 
issues. For instance, Senatore, Duffour [36] conducted 
intensive studies on adaptive trusses, Yang and Ngoi [37] 
focused on controlling a beam’s shape using piezoelectric. 
They derived a solution for beam deflection that considered 
the actuation of piezoelectric and external forces. Although 
they presented case studies demonstrating the potential of 
analytical solutions for shape control, they also acknowl-
edged that achieving the desired shape was challenging 
due to limited actuation [37]. Burdisso and Haftka [18] 
stated the efficient analysis of shape distortion statistics in 
antenna structures. For cable mesh antenna reflector sur-
faces, precise adjustments are required to achieve enhanced 
amplification or focused signal directionality, enabling the 
minimizing of ground terminals or capture of faint signals 
through the alteration of cable length [16]. In addition, the 
distorted shapes of cable mesh antenna [28, 30, 33, 38–44] 
for prestressed cable structures [31, 45–47] and plate wings 
[48] were restored. Trak and Melosh [49] also explored 
shape control of deployable cable net reflectors based on 
self-equilibrated stresses, achieving shape control without 
iteration. They studied the manipulation of a truss’s shape 
by adjusting nodal coordinates to counteract deformation, 
demonstrating that minor changes in the truss’s geometry 
did not significantly impact the determinate truss bar forces. 
Further numerical applications of shape control theories 
were allied to a single-layer egg structure [19] double-layer 
domes [50, 51].

The number of studies that have been conducted for 
shape controlling in the disciplines of civil, mechanical 
and aerospace engineering from 2010 to 2023 are shown in 
Fig. 2. A formulation was developed by You [52] for nodal 
movement control of a prestressable pin-jointed assembly 
presented in Fig. 3. He was interested in prestressing effects 
and he didn’t put the effect of external loading into account.

ds = Eeos � (1)

Where ds is the displacements at nodes resulting from the 
adjustment of displacements, E is the matrix that relates 
external nodal movement and actuation, and eos is the actua-
tion applied to modify the shape.

Then, it was further developed by insetting external load-
ing effects [11]

Eeos + dp = dt � (2)

Where dp and dt are nodal displacements due to loading and 
targeted ones, respectively.

After that, the method was progressed by giving the 
desired displacement in a domain and involving optimiza-
tion algorithms [10].

−dt � −Eeosdp � dt � (3)

Equation (3) is subjected to the optimization function below 
to minimize the sum of the total actuation and eliminate the 
actuators out of the domain of [Lb and Ub], which are lower 
bound and upper bounds, respectively.

minf (x) =
n∑

i=1

eoi � (4)

2.2  Stress Control

Specific structures may require more attention to controlling 
the internal forces within their members rather than focus-
ing solely on displacements or deformations. An example is 
seen in systems containing cable members that may become 
slack under specific loads, necessitating tightening to main-
tain their structural integrity [53]. Conversely, slender 
struts may face instability due to buckling failure requiring 
reduced compressive force [54–56].

It is essential to note that bar length actuation impacts 
axial force only in structures with a high degree of inde-
terminacy. This discussion centers around controlling axial 
forces in specific structural members to prevent structural 
failure caused by over- or under-stressing due to loading. 
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The prestressing technique directly involves the length 
actuation of structural members. Kwan and Pellegrino [58] 
discussed methods for calculating length actuation before 
applying the load; the aim is to attain a particular prestress 
arrangement using the force method (FM). The research-
ers also investigated finding the best locations for actua-
tors that apply prestress to pin-jointed trusses and the most 
effective actuator adjustments for improving an existing, 
incorrect prestress state. Roth and McCarthy [59] proposed 
a method coupled with a genetic algorithm; the technique 
suggests pretension on the tensegrity structures so that the 
compression members can resist six times more than before 
prestressing. Another approach to controlling forces in pre-
stressed systems is pre-tensioning the bars to an anticipated 
amount [60]. The process to analyzing the pre-tension in a 
prestressable space structure relied on linear superposition. 
The computational outcomes demonstrated the approach’s 
correctness, reliability, and effectiveness, making it appro-
priate for analyzing prestressable networks.

In different studies, stress has been controlled and 
become a constraint in topology optimization studies using 
bi-directional evolutionary structural optimization (BESO) 
[61–65]. In addition, the influence of self-stress in tenseg-
rity structures was studied theoretically and experimentally 
[66, 67]. Furthermore, Dai and Yu [68] developed a new 
method for creating shell openings that takes advantage of 

While the study of internal force control in structures is lim-
ited, some related works have been reviewed and summa-
rized in this section, mainly focusing on the broader concept 
of prestressing in structures. Prestressing, strictly speaking, 
is typically applied to indeterminate structures. However, all 
structures experience some degree of “pre-stressing” owing 
to their deadweight. Enormous space systems, often inde-
terminate, can be specifically prestressed to reduce overall 
weight. This is achieved by adjusting the internal forces to 
be more tensile-dominant, thereby decreasing the reliance 
on bulky compression struts and enabling the structure to 
span more considerable distances [57].

Fig. 3  A 2D pretensioned cable structure You [52]

 

Fig. 2  Number of studies were 
conducted from 2010–2023
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or tensegrity structures between 2010 and 2023 are pre-
sented in the line graph in Fig. 4.

2.3  Shape and Stress Control Simultaneously

In practical applications, it can be challenging to manipulate 
a sole inconstant without affecting other variables simulta-
neously. For instance, when restoring an antenna’s shape to 
a predefined target by adjusting specific member lengths, 
one must be careful not to cause dangerous levels of strut 
forces or slacken cables due to reduced internal force. This 
requires controlling nodal displacements and bar forces, 
which is typically challenging.

Limited research has been conducted on controlling both 
shape and internal forces. Kawaguchi, Hangai [85] explored 
an analytical approach using the linear force method to con-
trol the stress and shape of prestressable trusses. They vali-
dated their proposed method by comparing computational 

the powerful modeling capabilities of Grasshopper. This 
visual programming language is integrated with the Rhi-
noceros 3D software to control stress in designing shell 
structures. In addition, the Stress-Aware Optimal Actuator 
Placement (SOAP) framework is a novel approach to plac-
ing actuators on composite structures. SOAP considers the 
residual stresses generated in the structure when the actua-
tors are activated, and it minimizes the residual stresses by 
optimizing the actuator placement [69]. Piezoelectric actua-
tors nullify the axial force in members in a one-dimensional 
structure [70].

The applications of force control can be found in several 
structures like stress control on a Levy cable domes [71], 
adaptive cable domes [72]. In addition, prestressing has 
been done for several structures like cable-strut structures 
[73–78], cable domes [79, 80] tensegrity systems [81–84]. 
Studies conducted in force control or prestressing of cable 

Fig. 4  Research about force control or prestressing cable or tensegrity structures from 2010 to 2023
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unsuitable for cable structures that demand high surface 
precision. This is due to the low accuracy of the solutions 
obtained and the extensive computational burden associated 
with large and/or delicate pin-jointed systems. Such meth-
ods might lead to substantial misshape or extensive stress in 
members. To address this, an algorithm was suggested for 
member and joint exchange that could be used to find alter-
nate arrangements of members and joints in truss structures 
that result in lower surface errors and axial forces [89].

Furthermore, an iterative procedure that combines the 
linear displacement control technique and the non-linear 
force method to control the shape of prestressed cable struc-
tures was presented by Xu and Luo [90]. The computational 
results indicated that the non-linear method agreed with the 
expected results, while the equivalent outcomes of the linear 
method showed significant discrepancies. The researchers 
concluded that the non-linear approach presents a marked 
improvement over the linear one, particularly when con-
sidering maintaining prestressing. Manguri, Saeed [55] 
proposed a technique based on FM and interior point algo-
rithm through altering the length of some bars, nodal dis-
placements, and axial force controlled; they also considered 
buckling in their work, the technique applied on several 
numerical examples see Fig.  5. In a different study, axial 
force and external nodal displacements of cables and trusses 
were simultaneously adjusted while the weight of the struc-
tures was optimized [91]; their technique was derived from 
FM and coupled with the interior point optimization algo-
rithm. A linear method for shape and stress control was used 
to see the validity of the technique on a linear and geometri-
cally non-linear structure [92].

3  Types of Actuators

An actuator is a device that uses a power source to create 
mechanical motion. They are used in various applications, 
including engineering, machinery, aerospace, industrial, 
and medical [93]. This paper discusses the most used actua-
tors to control shape and stress in structures.

3.1  Mechanical Actuators (Turnbuckles)

The turnbuckle consists of two threaded eye bolts, one 
screwed into each end of a small metal frame, one with 
a left-hand thread and the other with a right-hand thread, 
as presented in Fig.  6. When the eye bolts are turned, 
they screw into each other, shortening or lengthening the 
turnbuckle. This changes the tension in the rope or cable 
threaded through the eye bolts [94, 95]. Researchers like 
Lee and Shin [96], and Olsson [97] developed novel types 
of turnbuckle with a regular cross-section. Shin and Lee 

results with experimental findings on a pin-jointed tensile 
structure. The experiments focused on identifying difficul-
ties related to controlling displacement components. Yuan, 
Liang [86] presented a study using a nonlinear force method 
to simultaneously control cable structures’ nodal displace-
ments and axial forces. Another study by You [52] proposed 
a displacement control method for prestressed cable struc-
tures derived from FM and elastic deformations. The tech-
nique directly linked length adjustments and displacements 
in prestressed systems. The validation was done by com-
paring computational and experimental results on a preat-
tentional 2D cable structure shown if Fig. 3. However, this 
method is limited to structures made of materials that exhibit 
linear elasticity and applies only to cases with small defor-
mations. Similarly, Kawaguchi, Hangai [85] investigated 
stress and shape adjustment of prestressable trusses; they 
employed a straightforward analytical approach grounded 
in FM. However, they faced difficulties in confirming com-
putational results by practical testing. Senatore and Rek-
sowardojo [87] developed a study to control the force and 
displacement of adaptive structures with optimal actuators.

Innovative structures have the ability to adapt their con-
figuration, damping, and stiffness, to environmental devia-
tions [17]. The study found applications in space structures 
with a high level of precision, for example, reflectors. How-
ever, minimal damping, changing temperature status, and 
slackness in the joint can disturb these structures. Actua-
tor control can help mitigate these effects. Sener, Utku [3] 
discussed shape adjustment in prestressable adaptive space 
pin-jointed assemblies to meet precision requirements for 
supported instruments. They emphasized the need for exact 
control methods as approximate methods were inadequate 
for achieving the required micrometer-level geometry con-
trol for precise measuring instruments upheld by flexible 
space trusses. Furthermore, a process of optimizing mul-
tiple objectives was presented using a genetic algorithm for 
shape control of a prestressed cable structure [88]. Wang, Li 
[46] argued that multi-objective optimization methods were 

Fig. 5  A 2D prestressable truss [55]
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actuation. Numerous researchers have applied piezoelec-
tric actuators to control the shape of flexible structures. For 
example, Yang and Ngoi [37] and Hadjigeorgiou, Stavroula-
kis [34] used them to control the shape and identify damage 
in a beam and a cantilever composite beam, respectively. 
Additionally, Koconis, Kollar [107], Koconis, Kollar [108], 
Wang, Chen [24], and Chee, Tong [25], Chee, Tong [26] 
employed piezoelectric actuators for static shape control of 
intelligent structures.

A novel form of actuator called the laminated piezoelec-
tric (LP) was applied by Yu, Zhang [35] to shape a cantile-
ver beam. The LP consists of many piezoelectric patches 
with identical geometric and material parameters. Although 
Piezoelectric actuators are a valuable tool for shape adjust-
ment, they have some drawbacks. They are highly sensitive 
to temperature variations, which can affect their perfor-
mance. They produce relatively small displacements that 
may not meet the required range for certain applications. 
Additionally, their inherent nonlinear behavior necessitates 
complex computational techniques for accurate control. 
These drawbacks can be mitigated, but in some cases, it 
may be necessary to use a different type of actuator [109].

Wang, Qin [110] introduced a mathematical model 
focused on shape control of piezoelectric intelligent struc-
tures. The study utilizes a genetic algorithm to analyze opti-
mal shape control outcomes for piezoelectric materials in a 
cantilever plate configuration, where both ends are subjected 
to specific loads. The analysis is conducted from various 
perspectives, such as precision reference or cost reference.

3.4  Shape Memory Alloy (SMA)

SMA is a comparatively recent and valuable material that 
has gained popularity owing to its exceptional characteris-
tics, For example, considerable strength and an extended 
range of movement., compact size, and lightweight. Con-
sequently, it has found increasing applications in various 
fields. One area of recent research involves using SMA for 
structural control purposes. Song, Ma [111] comprehen-
sively reviewed SMA material applications in structural 
control. However, it is essential to acknowledge that Peng, 
Jiang [112] expressed concerns regarding SMA’s limited 
stability and controllability, posing challenges to achiev-
ing precise actuation. While SMA holds great promise for 
structural control, addressing the issues related to stability 
and controllability is crucial for ensuring accurate actua-
tion. Further research in this domain is necessary to harness 
SMA’s potential in control applications fully.

[95] considered the flexural elements of a turnbuckle as 
beam-column components under the influence of both ten-
sile force and moment; it becomes feasible to derive the 
relationship between load and displacement theoretically. 
Researchers used the mechanical actuator to change the 
force in members and/or relocation of joints [98, 99]. In 
addition, Turnbuckles were implemented to develop exter-
nal post-tension in reinforced concrete beams [100–102].

3.2  Thermal Effect

Employing heating effects as an actuation technique can 
present a practical solution for mitigating static distortion 
in a big space system caused by its deformed shape. This 
method involves altering the temperature of the control 
elements. To ensure its effectiveness, choosing an active 
component with a high coefficient of thermal expansion is 
crucial.

Haftka and Adelman [14] conducted shape adjustment 
experiments on space structures utilizing heat as the actua-
tion mechanism. Additionally, they conducted a study to 
anticipate and evaluate the impact of actuator inaccuracy 
on the shape adjustment process for delicate space systems, 
with the applied temperature serving as the actuation method 
[103]. Furthermore, Giusti, Mróz [104] described a method 
for designing thermomechanical actuators. The method uses 
topology optimization to maximize the output displacement 
of the actuator. Topology optimization is finding an object’s 
optimal shape by minimizing a cost function while satisfy-
ing constraints. In this case, the cost function is the output 
displacement, and the constraints are the mechanical and 
thermal equilibrium equations [105].

3.3  Piezoelectric

The utilization of piezoelectric actuators for shape control 
in flexible structures is an exciting application of piezoelec-
tric materials [106]. These materials are the most commonly 
used intelligent materials for shaping systems. Irschik [5], 
and Sunar and Rao [4] have extensively discussed and 
reviewed the concept of shape control through piezoelectric 

Fig. 6  A mechanical Actuator (turnbuckle)
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Haftka [122] introduced the notion of “ideal actuators” 
to approximate the required quantity of actuators, reducing 
shape errors and evaluating their effectiveness in minimiz-
ing the truss bars members needing actuators. In another 
approach, Kincaid [123] utilized simulated annealing to 
achieve a near-optimal solution for the arrangement of 
actuators in assemblies with numerous members. Simu-
lated annealing proved a practical computational technique, 
providing an efficient approach for actuator placement cal-
culations without exhaustively searching all possible con-
figurations. In another study, optimal actuators were utilized 
to control force and shape simultaneously [87].

5  Optimal Location of Actuators

The positioning of actuators to achieve the best control of a 
structure has a great importance [124–128]. Subsequently, 
various endeavors have been undertaken to optimize and 
decrease the structural deformation by identifying the most 
effective locations for actuators, the number of studies has 
been conducted since 1990 up to 2023 are shown in Fig. 8. 
This involves determining the least actuators required to 
accomplish the tasks. Furuya and Haftka [129] discovered 
that, even for small structures, the potential combinations for 
placing controllers could be vast. Due to the expensive cost 
of installing numerous actuators for control purposes, the 
quantity of actuators is usually restricted. As a result, find-
ing the best locations for actuators becomes critical. Vari-
ous researchers have tackled this issue by seeking global or 
nearly optimal solutions. Kwan and Pellegrino [58] stressed 
the significance of actuator locations in adjusting an inac-
curate prestress distribution and obtaining optimal actuator 
adjustments for required actuation.

4  Number of Actuators

Controlling a specific structure effectively requires an opti-
mal number of actuators to address shape distortions and 
bar forces. Actuator numbers are needed contingent on 
the structure’s characteristics and the desired control over 
nodal displacements and axial forces. Research by Salama, 
Umland [23] suggests that adding more actuators leads to 
more accurate shape corrections. However, due to the high 
cost, there is a limitation of the actuators that can be used for 
adjusting and resolution. Thus, finding the ideal quantity of 
actuators for a specific problem is crucial. Haftka and Adel-
man [113] tackled the task of choosing a certain number of 
actuator positions (n) from a larger pool of available sites 
(m) to control the shape of large space structures statically.

Yuan and Yang [114] proposed a technique based on the 
singular value decomposition method to minimize actuators 
that adjust a sizeable deployable mesh reflector shape. In 
another study conducted by AlBahar, Kim [69] developed 
an SOAP framework to be more effective than conventional 
approaches in reducing deformation and residual stresses. It 
has also been shown to find the optimal solution with fewer 
actuators. Ali, Ghotbi [115] used Genetic Algorithm (GA) 
and sequential quadratic programming (SQP) to minimize 
the number of actuators to optimize the structural weight 
of a truss structure. Chanekar, Chopra [116] suggested a 
new approach for optimal actuator placement with several 
advantages over previous approaches. First, it can find the 
global optimal solution, which is the best possible solution 
to the problem. Second, it can be applied to both stable and 
unstable systems. Third, it does not require an initial con-
trollable actuator combination, which makes it more flexible 
and easier to use. Other researchers like Chen, Jiang [117], 
Dhingra and Lee [118], and Du, Yue [119] investigated the 
optimal placement of actuators. Other studies have been 
conducted to minimize imbedded actuators for deformation 
control in several iterations in cable structures [120], and 
domes see Fig. 7 [121].

Fig. 8  Studies on actuator placement in 1990–2023

 

Fig. 7  Minimizing actuator numbers in four iterations
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determine optimum actuator positions in the truss structure 
[132]. Similarly, Furuya and Haftka [129, 133] employed 
genetic algorithms and effectiveness indices to optimize the 
locations of actuators in significant space structures.

Simulated Annealing (SA) is a different algorithm for 
optimum actuator positioning. The SA method was applied 
to the problem of minimizing static distortion by optimizing 
actuator location in pin-jointed assemblies, as demonstrated 
on a large pin-jointed assembly for the least shape distor-
tion [40]. Chen, Bruno [134] also employed SA to study 
the optimum positioning of active and passive members in 
intricate trusses. In a similar vein, Onoda and Hanawa [135] 
used a (GA), a modified GA (GA2), and an improved SA 
(ISA) method to tackle the actuator positioning optimiza-
tion problem in the context of truss shape adjustment. The 
researchers determined that the three mentioned algorithms 
outperformed ESPS, WOBI, and SA when applied to a 
three-ring tetrahedral pin-jointed assembly.

Maghami and Joshi [136] presented an optimum actuator 
positioning method for actively controlling large, delicate 
space structures. They optimized the positioning of actua-
tors to move the transmission zeros from the right-half-
plane to the left-half-plane of the imaginary axis, a critical 
aspect for achieving rapid and optimal regulation and track-
ing capabilities. Moreover, they successfully applied this 
technique to a huge delicate system [136]. Additionally, 
Kwan and Pellegrino [58] investigated the identification of 
ideal locations for prestress actuators and the most efficient 
adjustments for these actuators to enhance the pre-existing, 
inaccurate prestress condition in pin-jointed trusses.

Irschik and Nader [137] also tackled the issue of actua-
tor positioning to adjust the shape of weighted beam. They 
utilized the extension of the Mohr Analogy to eliminate 
movement and rotation at designated positions on the beam 
through piezoelectric. The researchers compared their pro-
posed beam-type method and a two-dimensional FEA, 
yielding favorable results. Matunaga and Onoda [138] and 
Wang and Wang [139] recognized the optimum placement 
for actuators, they also mentioned that the actuators used in 
smart structures are crucial to their performance. The actua-
tor’s category, their positions, and actuation amount must 
all be carefully considered by designers. Hadjigeorgiou, 
Stavroulakis [34] developed an FE model and a GA optimi-
zation technique for identifying and controlling damage in 
a piezoelectric-equipped composite beam with a cantilever 
configuration. The derivation was based on the shear formu-
lation beam theory and the linear theory of piezoelectricity. 
The researchers demonstrated that although many actuators 
were typically required, careful positioning and optimum 
voltage values could also effectively attain adjust of the 
beam’s shape with fewer actuators.

Haftka [130] explored analytical methods for optimally 
placing thermal and force actuators to control static distor-
tions in massive space systems. The derived formulation 
drew on designing against the worst disturbances and mini-
mized the analytical effort through numerical means. The 
study emphasized that actuator placement was more crucial 
for force actuators, though it was also important for ther-
mal actuators. Furthermore, Reksowardojo, Senatore [131] 
conducted experimental testing of an adaptive truss that can 
change its shape to respond to the effects of loading. The 
placed actuators are optimized to ensure the structure can 
adapt to the optimal form for each load case. The experi-
mental testing showed that the structure can adapt to a wide 
range of loading conditions and significantly reduce the 
structural loads.

Skelton and DeLorenzo [21] devised an algorithm known 
as the SD algorithm aimed at identifying the best locations 
for positioning actuators and sensors in optimal control. The 
method assesses the impact of adding up or removing actua-
tors based on quadratic performance criteria at all available 
areas. It progressively eliminates the sites with minimal 
impact till the optimum actuators are nominated within the 
allowed quantity of control sites. Subramanian and Mohan 
[20] proposed a novel, straightforward algorithm known as 
the successive peak error correction, claiming its superior 
speed over the SD algorithm for statically controlling flex-
ible structures while maintaining similar levels of precision.

A significant investigation explored actuator placement 
in large structures using heuristic integer programming to 
address shape control [113]. The study devised two itera-
tive algorithms, the Worst-Out-Best-In (WOBI) and the 
Exhaustive-Single Point Substitution (ESPS). Both algo-
rithms could attain shape control by repositioning actuators, 
although the outcomes relied on the preliminary assump-
tion. Moreover, the researchers compared the outcomes of 
WOBI and ESPS with those gained from the SD algorithm 
for the shape control of a reflector. The study revealed that 
WOBI and ESPS produced better outcomes when selecting 
relatively few available sites. Though, the SD algorithm 
proved numerically more inexpensive than the two other 
algorithms when a substantial portion of the available sites 
needed to be nominated. It was also noted that achieving 
precise surface alignment with a limited number of actua-
tors, even when strategically positioned, was challenging.

Following Haftka and Adelman [113], many research-
ers presented novel actuator placement methods, includ-
ing genetic algorithms (GA). Rao, Pan [132] proposed a 
GA approach to address the precise optimal positioning of 
actuators in actively controlled systems, treating it as an 
optimization problem with binary encoding. They stated 
that their method may yield global-optimal solutions with 
adequate generations. The derivation was implemented to 
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suggests further research in the field of structural control-
ling as follow.

	● Most of the methods established for shape and stress 
control of structures are liner techniques, while some 
structures are geometrically nonlinear especially cables 
structures. Linear methods are not as accurate as non-
linear ones, thus establishing structural control methods 
based on non-linear methods for example dynamic re-
laxation method is suggested.

	● Using other powerful optimization algorithms to find 
optimum number of actuators.

	● Implementing different algorithms to find optimal loca-
tion of actuators.

	● For smart systems, intelligent actuators can be designed 
that can reshape and redistribute stresses upon the de-
sired levels.
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