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We introduce a class of entangled subspaces: completely entangled subspaces of entanglement depth k
(k-CESs). These are subspaces of multipartite Hilbert spaces containing only pure states with an entanglement
depth of at least k. We present an efficient construction of k-CESs of any achievable dimensionality in any
multipartite scenario. Further, we discuss the relation between these subspaces and unextendible product
bases (UPBs). In particular, we establish that there is a nontrivial bound on the cardinality of a UPB whose
orthocomplement is a k-CES. Further, we discuss the existence of such UPBs for qubit systems.
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I. INTRODUCTION

Entanglement has long been known to be an enabling re-
source for a variety of information processing protocols such
as quantum communication [1] and quantum metrology [2,3].
The ongoing rapid development of quantum network tech-
nologies requires a thorough theoretical characterization of its
multipartite facet. It is a very challenging problem because
the description of quantum systems with multiple nodes is far
more complex than that of systems with only two subsystems
[4,5]. The topic has attracted much attention in recent years,
and many profound results related to its different aspects have
been reported in the literature (see, e.g., [6–11]). It is note-
worthy that the theoretical advancements have largely been
made in parallel with remarkable progress in the experimental
domain (see, e.g., [12–16]). Still, despite all the efforts, many
aspects of many-body entanglement remain insufficiently ex-
plored, and further research to better understand it is highly
necessary. This work is in line with this important trend.

A particular useful tool for the characterization of entan-
glement in multipartite systems is the entanglement depth
[17], which indicates how many particles in a given ensemble
are genuinely entangled. The concept has found applications,
for example, in the domain of cold gases [18–20]. The no-
tion of entanglement can also be meaningfully considered for
subspaces in addition to individual states. The most general
notion is that of completely entangled subspaces (CESs),
which are those subspaces that contain only pure entangled
states [21–24]. More specific classes of CESs considered
in the literature are, e.g., subspaces containing only states
with bounded tensor rank (r-entangled subspaces) [25,26]
or genuinely entangled subspaces [22,27], which are partic-
ularly interesting in the multipartite scenario because they
contain only genuinely entangled states—the most resourceful
states in this framework. Interesting examples of genuinely
entangled subspaces are those spanned by the stabilizer error-
correction codes, including the five-qubit [28] and toric [29]
codes.

Entangled subspaces play an important role in quantum
information science, making them objects of intrinsic interest
(see, e.g., [30–32] for some recent results). First of all, they
constitute an invaluable tool in the theory of entanglement
because they can be readily utilized for the construction of
mixed entangled states owing to the simple fact that any state
supported on an entangled subspace is necessarily entangled.
An important class of such constructed states comprises those
built from unextendible product bases [33] and having posi-
tive partial transpose (PPT). These states share the appealing
property of being bound entangled; i.e., their entanglement
cannot be distilled into singlets with local operations and clas-
sical communication. In fact, the construction from Ref. [33]
was the first general construction of multipartite bound en-
tangled states harnessing the notion of completely entangled
subspaces. Second, it was shown that almost all subspaces
are completely entangled, provided they are not too large,
i.e., their dimension does not exceed the maximal permissible
one for CESs [24]. This result was utilized to prove that
almost all sets of states (separable or entangled) are locally
unambiguously distinguishable if the number of elements in
the set is not larger than the difference between the dimension
of the whole system and the maximal dimension of a CES in
the given setup [24,34]. Moreover, entangled subspaces, such
as the antisymmetric one and that introduced in Ref. [22],
have been exploited to provide counterexamples to the ad-
ditivity of the minimum output Rényi entropy of quantum
channels [35,36]. Their practical applicability further adds to
their significance. It has been recognized that they are relevant
in the dynamically growing field of quantum error correction
[37,38]. A recent development in the research exploring this
connection revealed that there exists a certain trade-off re-
lating the larger capability of a code to correct errors to the
higher entanglement of the code space [39]. Furthermore, a
link between entangled subspaces and self-testing was estab-
lished [40–43], pointing to their use, e.g., in cryptography.

Our current contribution is to marry the notions of the
entanglement depth and entangled subspaces. Precisely, we
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introduce completely entangled subspaces of entanglement
depth k (k-CESs) as those subspaces containing only pure
states whose entanglement depth is at least k. We find the max-
imal dimensions of such subspaces and present their universal
construction from sets of nonorthogonal product vectors in
any multipartite setup. Further, we discuss the relation be-
tween k-CESs and unextendible product bases (UPBs). This
includes the derivation of a nontrivial bound on the cardi-
nalities of UPBs leading to k-CESs and a discussion with a
positive conclusion about their existence.

II. PRELIMINARIES

In this section we introduce the relevant notions and termi-
nology.

We consider quantum states defined on n-partite (n � 3)
Hilbert spaces

Hd1···dn :=
n⊗

i=1

Hi = Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn . (1)

We will mainly focus on the scenario with equal local
dimensions di = d , in which case the space will be de-
noted as Hdn . Single-partite subsystems (parties) are denoted
A1, A2, . . . , An := A. A division of the set of parties into K
nonoverlapping nonempty sets Si such that

⋃
i Si = A is called

a K-partition and is denoted S1| . . . |SK .
An n-partite state |�〉 ∈ Hd1···dn is called k-producible if it

can be written as

|�〉 = |φ1〉 ⊗ · · · ⊗ |φM〉, (2)

where |φi〉′s are at most k-partite states. If a k-producible state
is not (k − 1)-producible at the same time, it is said to have
entanglement depth k [17,44]. States with entanglement depth
k = 1 are named fully product because they are products of
pure states on individual subsystems Ai. All other states with
k � 2 are said to be entangled, and those with entanglement
depth equal to n, in particular, are called genuinely multipar-
tite entangled (GME). These are the states which cannot be
written as a product for any bipartition of the parties. Excellent
examples of GME states are the Greenberger-Horne-Zeilinger
(GHZ) states [45],

|GHZn〉 = 1√
2

(|0〉⊗n + |1〉⊗n), (3)

which belong to a general class of GME states called graph
states [46].

Let us now recall the concept of entangled subspaces.
A subspace of a multipartite Hilbert space Hd1···dn is called
completely entangled if all pure states belonging to it are
entangled [21,22]. Importantly, entanglement of these states
can be of any kind, including only bipartite. In the extreme
case of all states from a subspace being GME one deals with
genuinely entangled subspaces (GESs) [27]. This is the case,
for instance, for the antisymmetric subspace.

Entangled subspaces are closely related to the so-called
unextendible product bases, and we will extensively exploit
this connection in later parts of the paper. Below we recall the
basic necessary facts about the discussed notions.

Consider a set of fully product mutually orthogonal n-
partite vectors from Hd1···dn ,

B :=
{

|ψ ( j)〉 =
n⊗

i=1

|ϕ( j)
i 〉

}m

j=1

, (4)

where |ϕ( j)
i 〉 ∈ Cdi . B is called an unextendible product basis

iff it does not span the total Hilbert space Hd1···dn and a fully
product vector in the subspace complementary to span B does
not exist [33,47]. We will refer to the number of elements in
B as the size or cardinality of it.

Clearly, by the very definition of a UPB, its complementary
subspace is a CES. To illustrate this general link with a simple
example let us consider the following set of three-qubit fully
product vectors introduced in Ref. [33]:

S := {|000〉, |1 + −〉, | − 1+〉, | + −1〉}, (5)

where |±〉 = (|0〉 ± |1〉)/
√

2. One can easily verify that S
is, indeed, a UPB and only entangled vectors belong to
(span S )⊥, which itself is thus a CES. Notably, the latter
subspace is not a GES because it contains biproduct vectors,
e.g., |1〉 ⊗ |φ〉, where |φ〉 is an entangled two-qubit vector
orthogonal to | + −〉, |1+〉, and | − 1〉.

Concluding this section, we give two results regarding the
unextendibility of a set of product vectors that will be our
main tools in later parts. The first is the following observation.

Fact 1 [33,47]. Consider a set of n-partite product
vectors B defined in Eq. (4). A fully product vector or-
thogonal to B exists if and only if a partition of B into
n disjoint subsets exists: B = B1 ∪ · · · ∪ Bn, such that for
all subsets Bi (i = 1, 2, . . . , n), the local vectors {|ϕ( j)

i 〉 :
|ψ ( j)〉 ∈ Bi} do not span the corresponding local Hilbert
spaces Hi = Cdi .

This elegant result often serves as a basis for the construc-
tions of UPBs, and it will be used by us for a direct check
of whether one of the considered bases possesses a certain
property of unextendibility. Its immediate consequence is a
lower bound on the cardinalities of unextendible sets:

m �
n∑

i=1

(di − 1) + 1. (6)

A stronger version of Fact 1 is given in the following
corollary.

Corollary 1. Consider a set of product vectors B defined in
Eq. (4) satisfying the condition (6). If for every i any di-tuple
of local vectors {|ϕ( j)

i 〉} j spans the corresponding local Hilbert
space Hi = Cdi , then the set B is unextendible with product
vectors.

In fact, for sets with the minimal cardinality
∑

i(di − 1) +
1 the constituent vectors must necessarily have the property
of full local spanning on subsystems given in the corollary
above.

Importantly, both results related to unextendibility, Fact 1
and Corollary 1, are also applicable to sets of nonorthogonal
vectors.
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III. COMPLETELY ENTANGLED SUBSPACES
OF ENTANGLEMENT DEPTH k

Let us move to the main body of the paper. We introduce
a class of entangled subspaces defined through the entangle-
ment depth of vectors belonging to them. We propose the
following.

Definition 1. A subspace S ⊂ Hd1···dn is called a completely
entangled subspace of entanglement depth k if the entan-
glement depth of any vector belonging to S is at least k.
Equivalently, a k-CES is void of (k − 1)-producible states.

Let us remark that for k = 2 the above definition recovers
the definition of completely entangled subspaces, whereas
for k = n it recovers the definition of genuinely entangled
subspaces.

Before delving into a characterization of k-CESs, let us
give a few simple examples of them, which will allow for a
quick grasp of the notion.

As the first example let us take the above-discussed CES
complementary to the UPB given in Eq. (5). Within our ter-
minology we can now say that it is a 2-CES (CES), but it is
not a 3-CES (GES) because, as discussed, the complementary
subspace contains a three-qubit vector with an entanglement
depth of 2.

For the second example, we turn our attention to quantum
error correction. Consider the celebrated nine-qubit Shor’s
code [48] described by the vectors

|ψ0〉 = |GHZ3〉 ⊗ |GHZ3〉 ⊗ |GHZ3〉, (7)

|ψ1〉 = |GHZ3〉 ⊗ |GHZ3〉 ⊗ |GHZ3〉, (8)

where |GHZ3〉 = (1/
√

2)(|000〉 − |111〉) and |GHZ3〉 is de-
fined in Eq. (3). Now, the subspace span{|ψ0〉, |ψ1〉} is a
3-CES because the entanglement depth of both |ψ0〉 and |ψ1〉
is 3, and at the same time, any linear combination of these
vectors is GME, i.e., it has an entanglement depth equal to 9.

As the final example we give an elementary general con-
struction. With this aim we take a GES of a k-partite Hilbert
space. Then, we take a tensor product of all the vectors from
this subspace with an arbitrary, possibly different for each vec-
tor, fully product (n − k)-partite vector. This clearly results
in a k-CES of an n-partite Hilbert space. This rather trivial
method does not lead to k-CESs of the maximal dimensions
for k < n, as can be seen from dimension considerations (see
Appendix B), and in Sec. IV we will provide a more elaborate
construction which does this job. However, it is noteworthy
that if we choose the otherwise arbitrary vectors to be the same
for each of the vectors from a GES, the resulting subspace
will be a k-CES with all vectors belonging to it having an
entanglement depth equal exactly to k.

One of the central problems of the theory of entangled sub-
spaces is the problem of verifying whether a given subspace is
entangled and, further, determining to which class it belongs.
It is worth noting that some tools have been developed in the
literature so far which could also be applied for the case of
k-CESs. Specifically, the simple criterion based on the entan-
glement of basis vectors from Ref. [49] is directly applicable,
and the hierarchical method from Ref. [31] can be readily
adapted. Another vital problem in the area is the quantification
of subspace entanglement (see [50] for recent results). Here,

also, we find certain methods which can be used in the current
case, e.g., the semidefinite programming bounds of Ref. [51].

Let us now investigate how big—in terms of their
dimensions—k-CESs can be. The theory of completely en-
tangled subspaces helps us address this question successfully.
For simplicity, we concentrate on the case of equal local di-
mensions in our derivation, but a properly adjusted argument
is applicable in the general case too. We have the following
proposition.

Proposition 1. The maximal attainable dimension of a
k-CES of Hdn equals

Dmax
k-CES = dn − (

tdk−1 + dn−(k−1)t − t
)
, (9)

where

t =
⌊

n

k − 1

⌋
. (10)

Proof. By definition, a k-CES S ⊂ Hdn does not contain
(k − 1)-producible pure states. This implies that S is a CES
in any r-partite Hilbert space

(Cd )⊗n1 ⊗ (Cd )⊗n2 ⊗ · · · ⊗ (Cd )⊗nr , (11)

where ni � k − 1 and i = 1, 2, . . . , r, corresponding to an r-
partition S1|S2| · · · |Sr of the parties, where the size of each
subset Si is |Si| = ni.

References [21,22] showed that the maximal attainable di-
mension of a CES of Hd1···dn is given by

∏n
i=1 di − [

∑n
i=1(di −

1) + 1] [note that the term in the square brackets happens to
match the right-hand side of Eq. (6)]. Applying this result to
(11), we obtain

dn −
[

r∑
i=1

(dni − 1) + 1

]
, (12)

which must further be minimized (equivalently, the term in
the square brackets must be maximized) over n′

is to obtain
an upper bound on the maximal dimension of a k-CES.
This is achieved for ni = k − 1, i = 1, 2, . . . , t , and nt+1 =
n − t (k − 1), where t = 
n/(k − 1)� (see Appendix A). The
minimal value of (12) is thus

dn − (tdk−1 + dn−(k−1)t − t ). (13)

The choice above corresponds to the partitions of the parties
as follows (we assume that for k − 1|n we have t-partitions):

(Cdk−1
)⊗t ⊗ Cdn−(k−1)t

. (14)

Further, generic subspaces are known to saturate bounds on
the dimensions of entangled subspaces (cf. [25]), meaning that
a random subspace of a proper dimension will be a k-CES. �

The maximal dimension (9) is a strictly decreasing func-
tion of k for given d and n (see Appendix B). For k = 2 and
k = n, it obviously recovers the known maximal dimensions
of CESs and GESs, respectively, which are explicitly given by

Dmax
2-CES = dn − n(d − 1) − 1 (15)

and

Dmax
n-CES = (dn−1 − 1)(d − 1). (16)
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IV. UNIVERSAL CONSTRUCTION OF k-CESs

While random subspaces do have significance in quantum
information theory (see, e.g., Ref. [52]), it is the explicit
constructions which often help one analyze these objects in
more detail, for example, to compute entanglement measures
of states supported on them. In this section, we provide a
universal analytical construction of k-CESs; that is, we in-
troduce a method for building k-CESs of any dimension for
any combination of the numbers k, n, and d . For this aim
we utilize the approach put forward recently in [53], which
was originally designed for the construction of GESs. It turns
out that it is versatile enough to be translated directly to the
current case.

The core idea of the construction is to use a set of prod-
uct vectors for which the full local spanning of Corollary
1 is apparent for properly chosen r-partitions of the parties
[see Eq. (11)]. Consequently, the subspace complementary to
the set will be automatically inferred to be void of (k − 1)-
producible states, as needed. The desired properties are held
by the Vandermonde vectors:

|vdn (x)〉A := (
1, x, x2, . . . , xdn−1

)T

A

=
n⊗

m=1

⎛
⎝ d−1∑

sm=0

xqm,sm |sm〉
⎞
⎠

Am

, (17)

where

qm,sm = smdn−m. (18)

Crucially, the Vandermonde matrices, that is, matrices with
rows being Vandermonde vectors,

VK,L =
K−1∑
k=0

|k〉〈vL(xk )|, (19)

with arbitrary K and L, are totally positive (i.e., all their
minors are strictly positive) whenever the nodes {xi}i obey the
relation

0 < x0 < x1 < · · · < xK−1. (20)

Let us now consider the following set of linearly indepen-
dent vectors:

{|vdn (xi )〉A}K−1
i=0 , (21)

where the number K satisfies the inequality

K � tdk−1 + dn−t (k−1) − t, (22)

which follows from Eq. (9), and the nodes xi ∈ R are ordered
as in Eq. (20).

The claim is that the vectors in Eq. (21) are not extendible
with vectors of the entanglement depth less than or equal to
k − 1, i.e., the subspace orthogonal to their span is a k-CES.
The proof is almost immediate. We write

|vdn (xi )〉A = ∣∣ϕ(i)
1

〉
S1

⊗ ∣∣ϕ(i)
2

〉
S2

⊗ · · · ⊗ ∣∣ϕ(i)
r

〉
Sr

(23)

for an r-partition S1|S2| · · · |Sr of the parties corresponding to
(11), in particular (14). We consider matrices with rows being

local vectors on S′
js,

S j =
K−1∑
k=0

|k〉〈ϕ(k)
j

∣∣, j = 1, 2, . . . , r. (24)

From the total positivity of Vandermonde matrices with pos-
itive nodes (see above) it follows that S′

js are also totally
positive. This further means that for every j any set of dnj

vectors {|ϕ(i)
j 〉}i spans the Hilbert space (Cd )⊗n j of S j . This

is the case for any r-partition with ni � k − 1. By Corollary
1, we conclude that, indeed, there does not exist a (k − 1)-
producible state in the orthocomplement of the span of vectors
(21), i.e., the resulting subspace is a k-CES. Its dimension is
dn − K , which for the smallest K corresponds to the maximal
dimension given in Eq. (9). Explicit (nonorthogonal) bases for
such constructed subspaces were given in [53].

Similar to Ref. [53], one could also use the discrete Fourier
transform matrices in the construction. The method presented
here can be viewed as a construction of “nonorthogonal”
UPBk−1’s (see Sec. V), whose elements are not mutually
orthogonal.

We observe that the construction is flexible in that for
a given k-CES we can always increase k by adding some
number of Vandermonde vectors with properly chosen nodes
to the construction set (21). For example, consider an 11-
dimensional 2-CES, or, simply, a CES in the standard
terminology, in the system of four qubits. Its construction
requires five Vandermonde vectors. If we now add two more
vectors to (21), we obtain a nine-dimensional 3-CES (in Ap-
pendix C we give an example of such a subspace). If we
again add two vectors, we obtain a seven-dimensional 4-CES,
i.e., a GES, of the maximal permissible dimension. Further
enlargement of the set of Vandermonde vectors leads to GESs
of smaller dimensions.

V. k-CESs AND UNEXTENDIBLE PRODUCT BASES

In this section, we explore the link between k-CESs and
UPBs. This line of study is motivated by the important fact
that UPBs lead directly to a general construction of multipar-
tite states with undistillable entanglement [33].

We are interested in a certain type of UPBs, namely, those
bases which are unextendible with vectors of the entanglement
depth less than k that thus lead to k-CESs. We thus propose the
following.

Definition 2. A UPB which is unextendible with (k − 1)-
producible vectors, i.e., states with an entanglement depth
less than or equal to k − 1, is called a (k − 1)-unextendible
product basis, denoted UPBk−1.

For k = 2 we have the standard UPBs (see Sec. II), while
for k = n we have genuinely unextendible product bases
(GUPBs), that is, UPBs unextendible even with biproduct
vectors [27,54], whose existence is currently unknown (see
Refs. [54–56] for recent results related to this topic).

By definition, the orthocomplement of a UPBk−1 is a k-
CES. Importantly, the reverse statement is not necessarily
true even in the cases when the dimension of a k-CES is
such that its complement may admit a UPBk−1. In fact, the
orthocomplement of a k-CES may also be a k-CES itself.
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We observe that the theoretical minimal cardinality of a UPBk−1 is [see Eq. (10) for the definition of t]

mtheor
min =

⎧⎨
⎩

dn d = 2 and k = n,

t (dk−1 − 1) + dn−(k−1)t odd d or [even d and {(k − 1|n and odd t ) or (k − 1 � n and even t )}],
t (dk−1 − 1) + dn−(k−1)t + 1 otherwise.

(25)

These numbers correspond to the minimal cardinalities of
UPBs [57–59] for systems defined on Hilbert spaces as in
Eq. (14). We will refer to these bounds as trivial and discuss
their improvement in the next section.

A. Bound on cardinalities of UPBk−1

The trivial bounds from Eq. (25) can, in many cases, be
strengthened if the internal product structure of partitions is
appropriately taken into account. The improvement can be
achieved by a generalization of the technique recently intro-
duced in Ref. [54] to lower bound permissible cardinalities of
UPBn−1’s, i.e., GUPBs. There, the pigeonhole principle was
the key resource; here, its generalization naturally comes in
handy. We have the following.

Proposition 2. The number of states m in a UPBk−1 is
bounded as follows:

m � dk−1 + (n − k + 1)

(⌊
dk−1 − 2

k − 1

⌋
+ 1

)
. (26)

Proof. Consider a set of mutually orthogonal fully product
vectors

K = {|vi〉A}m
i=1, |vi〉A =

n⊗
j=1

∣∣u(i)
j

〉
Aj

. (27)

We will show that if the number of elements in K is strictly
smaller than the right-hand side of (26), then K is extendible
with vectors of the entanglement depth k − 1 or smaller, i.e.,
it is not a UPBk−1.

Any two vectors from K, |vp〉 and |vq〉, are orthogonal be-
cause their local vectors on at least one site Ak are orthogonal,
i.e., 〈u(p)

k |u(q)
k 〉 = 0 for at least one value of index k. By the

generalized pigeonhole principle [60] (see Appendix D), we
conclude that for any vector |vi〉 there are w sites such that the
total number of vectors orthogonal to |vi〉 on these sites is at
least

s := w

⌊
m − 1

n

⌋
+ min

(
w, m − 1 − n

⌊
m − 1

n

⌋)
. (28)

Let us focus on one of the vectors from K, e.g., |v1〉. As-
sume that said s vectors which are orthogonal to |v1〉 are
K1 = {|v2〉, |v3〉, . . . , |vs+1〉}, with orthogonality holding on
sites from Aw := A1, A2, . . . , Aw. Since a vector orthogonal
to K1 exists on one of the sites from Aw, we immediately infer
that the elements of K1 do not span the whole Hilbert space
corresponding to Aw, that is,

dim span
{
⊗w

j=1

∣∣u(i)
j

〉
Aj

}s+1

i=2
< dim HAw

. (29)

Now, if the remaining vectors K2 := K \ K1 =
{|v1〉, |vs+2〉, . . . , |vm〉} do not span A \ Aw, the corresponding

Hilbert space, i.e.,

dim span KA\Aw

2 < dim HA\Aw
, (30)

where

KA\Aw

2 =
{
⊗n

j=w+1

∣∣u(i)
j

〉
Aj

}
i=1,s+2,s+3,...,m

, (31)

then we will find a vector orthogonal to K in the form

(
⊗w

j=1

∣∣u(1)
j

〉
Aj

)
⊗ |ξ 〉A\Aw

, (32)

with an arbitrary (n − w)-partite vector |ξ 〉 orthogonal to
KA\Aw

2 . Clearly, the vector |ξ 〉 would have, in this case, an
entanglement depth of at most (n − w), and as a consequence,
K would not be a UPBn−w.

We are interested in the permissible cardinalities of
UPBk−1’s, in which case we need to consider

w = n − k + 1 (33)

and verify when the condition (30) holds true. This will pro-
vide us with the forbidden cardinalities of the bases, and by
negating the obtained bound we will arrive at (26). A sufficient
condition for (30) is simply that the number of states in KA\Aw

2
is smaller than the dimension of HA\Aw

, that is,

m − s � dn−w − 1 := r, (34)

which needs to be solved for m.
Let us define the following function corresponding to the

left-hand side of Eq. (34):

fw(m) = m − s = m − w

⌊
m − 1

n

⌋

− min

(
w, m − 1 − n

⌊
m − 1

n

⌋)
. (35)

Using the identities min(x, y) = x + y − max(x, y) and
max(x, y) = max(x − z, y − z) + z, we can write this func-
tion as

fw(m) = (n − w)

⌊
m − 1

n

⌋

+ max

(
m − w − n

⌊
m − 1

n

⌋
, 1

)
. (36)
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It is straightforward to show that this function has the following property (see Appendix E):

fw(m + 1) =

⎧⎪⎨
⎪⎩

fw(m) + 1 if m − n
⌊m

n

⌋
� w + 1 or n | m,

fw(m) if m − n
⌊m

n

⌋
� w and n � m.

(37)

It then follows that for a fixed w function fw(m) is nonde-
creasing in m and takes all integer values. This allows us to
look for the largest solution of fw(m) = r, that is,

(n − w)

⌊
m − 1

n

⌋
+ max

(
m − w − n

⌊
m − 1

n

⌋
, 1

)
= r.

(38)
We now observe that we can replace the maximum with the
function inside of it, as for any m for which this function
is less than 1, we can find another argument m̃ > m that
reaches 1 without changing the value of the whole function
under scrutiny; precisely, we can take m̃ = n
m−1

n � + w + 1
for which fw(m) = fw(m̃). In turn, we can consider

(n − w)

⌊
m − 1

n

⌋
+ m − w − n

⌊
m − 1

n

⌋
= r (39)

with the assumption that⌊
m − 1

n

⌋
� m − w − 1

n
. (40)

Equation (39) simplifies to

m − w q = r + w, q :=
⌊

m − 1

n

⌋
. (41)

From Eqs. (40) and (41) we have

q � r + qw − 1

n
, (42)

which after solving for q gives

q � r − 1

n − w
, (43)

implying further that the largest solution to Eq. (41) is

m = r + w + w

⌊
r − 1

n − w

⌋
. (44)

Plugging r = dn−w − 1 back in and substituting w = n − k +
1 [(33)], we finally obtain the largest excluded cardinality:

m = dk−1 + n − k + (n − k + 1)

⌊
dk−1 − 2

k − 1

⌋
, (45)

meaning that the minimal permissible size of a UPBk−1 is

dk−1 + (n − k + 1)

(⌊
dk−1 − 2

k − 1

⌋
+ 1

)
, (46)

as claimed in Eq. (26). �
We have proved the statement for equal local dimensions,

but a similar reasoning can be applied to the general case. We
omit the derivation here.

We now show when the obtained bound is nontrivial, i.e.,
when it gives a lower bound strictly larger than the one

provided by Eq. (25). We have the following chain of inequal-
ities:

dk−1 + (n − k + 1)

(⌊
dk−1 − 2

k − 1

⌋
+ 1

)

� dk−1 + (n − k + 1)
dk−1 − 1

k − 1
(47)

= t (dk−1 − 1) + 1 + (dk−1 − 1)

(
n

k − 1
− t

)
� t (dk−1 − 1) + d (k−1)( n

k−1 −t ) (48)

= t (dk−1 − 1) + dn−(k−1)t , (49)

where t = 
 n
k−1�. The first inequality follows from the fact

that for any pair of integers x and y > 0 the following inequal-
ity holds true:⌊

x

y

⌋
=
⌈

x + 1

y

⌉
− 1 � x + 1

y
− 1, (50)

and the equality in (47) holds iff k − 1 divides dk−1 − 1.
The second inequality, Eq. (48), follows from Bernoullie’s in-
equality, stating that (1 + x)r � 1 + xr, with x > −1 and 0 �
r � 1, here applied with x = dk−1 − 1 and r = n/(k − 1) − t .
The equality in this case holds iff k − 1 divides n (then r = 0;
r = 1 is never the case).

Confronting the above conditions for equalities with
Eq. (25) provides us with the cases when Eq. (26) is certainly
nontrivial. For example, this is the case for odd d if it addi-
tionaly holds that k − 1 � dk−1 − 1 or k − 1 � n. On the other
hand, there are clearly cases when it is trivial. This happens,
for example, in the case of 3-CESs in systems of four qubits
(n = 4, d = 2, k = 3). Then, our bound gives 8 as the minimal
cardinality, and the same number is obtained from the theory
of bipartite UPBs applied to a 4 ⊗ 4 system.

Note that for k = n (GUPBs) the bound reproduces, as it
should, the one from [54], in which case it is always nontrivial.
This bound was recently improved in [56]. At this point, it is
not clear whether our current bound on the permissible cardi-
nalities of UPBk−1’s can be improved using the graph-theory
techniques of [56].

B. Construction of k-CESs from UPBs

While the bound of Proposition 2 puts limitations on the
sizes of UPBk−1’s, it does not say anything about the pos-
sibility of the actual constructions of bases with permissible
cardinalities. This is particularly important in view of the
unknown status of this problem for GUPBs (k = n). It turns
out that UPBk−1’s do exist for k < n, and in fact, there
are already examples in the literature for systems of four
qubits [61].

We will now reconstruct one of the four-qubit bases from
Ref. [61] and show the existence of a UPB3 in the case of
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five qubits. In both situations, we are interested in the case of
k = n − 1. For this aim we use the results of Ref. [62], where
a recursive procedure was given for a construction of UPBs of
size 2n−1 for any n.

Let us begin with n = 4. The UPB from Ref. [62] is
given by

K(4) = {|0000〉, |01 f e〉, |1e1e〉, |1 f e0〉,
|e001〉, |e1 f f 〉, | f e1 f 〉, | f f e1〉}, (51)

where {|e〉, | f 〉} is any orthonormal basis different from
{|0〉, |1〉}, e.g., {|+〉, |−〉}. It is easy to see that a vector
with an entanglement depth equal to 2 orthogonal to K(4)

exists, i.e., this set is not a UPB2. For example, such a vector
is given by |ϕ〉A1A4 ⊗ |ψ〉A2A3 , where |ϕ〉 ⊥ {|10〉, | f 1〉} and
|ψ〉 ⊥ {|00〉, |1 f 〉, |e1〉}. We can see that this stems from the
fact that there are pairs of vectors in K(4) which are identical
in two subsystems. Here, there are three such pairs, but for
sets with a cardinality of 8 this would already be an obsta-
cle if there were only two of them. However, the following
amendment can be made to K(4) to avoid this problem: in the
pairs of vectors with |1〉 and |e〉 on the first site (A1), we swap
vectors on the third site (A3). This leads to the following set:

K(4) = {|0000〉, |01 f e〉, |1eee〉, |1 f 10〉,
|e0 f 1〉, |e10 f 〉, | f e1 f 〉, | f f e1〉}, (52)

which recovers one of the UPBs given in Ref. [61], which
showed that it is unextendible for any of the two vs two party
bipartitions, i.e., that K(4) is a UPB2. As noted in Sec. V A, its
cardinality is the minimal possible.

In the n = 5 case the UPB from Ref. [62] is as follows:

K(5) = {|00000〉,
|001 f e〉, |e001 f 〉, | f e001〉, |1 f e00〉, |01 f e0〉,
|01e1e〉, |e01e1〉, |1e01e〉, |e1e01〉, |1e1e0〉,
|1 f f f e〉, |e1 f f f 〉, | f e1 f f 〉, | f f e1 f 〉, | f f f e1〉}.

The set has a visibly cyclic structure, and when proving the
(non)existence of a vector with an entanglement depth of 3
orthogonal to all its elements, one needs to consider only two
bipartitions because the rest are equivalent to one of them.
These bipartitions are A1A2|A3A4A5 and A1A3|A2A4A5. With
an exhaustive search based on Fact 1 we have verified that K(5)

is already a UPB3 and no modifications of it are necessary.
Since the UPBs of Ref. [62] were constructed recursively,

it is plausible that they could be used, directly or after some
modifications similar to those shown above in the four-qubit
case, to obtain UPBn−2’s for any n.

Let us conclude with an observation that in general, the
case k − 1|n is somewhat special because then we deal with
systems with t subsystems of equal local dimensions dk−1 (re-
call our assumption of dimension d of each subsystem Ai) in
the “coarse-grained” Hilbert space [Eq. (14)]. Constructions
of UPBs for homogeneous systems (i.e., with equal local di-
mensions) are far better explored than those for heterogeneous
systems (i.e., different local dimensions). A possible route
to find UPBk−1’s could then be to build UPBs first for (14)
and then look for their proper “fine-grained” versions in the
original space.

VI. CONCLUSIONS AND OUTLOOK

We proposed to consider the notion of the entanglement
depth in the context of entangled subspaces by introducing
the notion of completely entangled subspaces of entanglement
depth k (k-CESs), that is, subspaces composed solely of pure
states with an entanglement depth of at least k. We presented
a universal construction of such subspaces that works for
any multipartite system. We also considered the relationship
between unextendible product bases (UPBs) and k-CESs. In
particular, we provided a nontrivial bound on the cardinalities
of UPBs whose orthocomplements are k-CESs. Further, we
discussed the problem of constructing such UPBs and pro-
vided some examples in systems of several qubits.

From the general point of view, it is natural to expect that
the introduced notion may turn out to be relevant for analyses
of many-body systems, where the entanglement depth is a
figure of merit. The already established connection between
entangled subspaces and quantum error correction may sug-
gest that k-CESs could be of some use also in this area, and
their analysis could help us to understand this relationship
better. Moreover, it would be interesting to see whether the
k-CESs we have provided could be useful in further studies
of counterexamples to the additivity of the minimum output
Rényi entropy of quantum channels.

There are also several concrete open problems that nat-
urally emerge from our study. For example, it would be
desirable to see whether the obtained bound on the cardinal-
ities of UPBs leading to k-CESs can be further improved, in
particular, using graph-theoretic methods, and to research the
possibility of a general practical construction of such UPBs,
as this would automatically entail a construction of PPT states.
Finally, there is constant demand for practical methods of sub-
space entanglement certification and quantification tailored to
specific types of entangled subspaces, so this line of research
is also worth exploration.
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APPENDIX A: MINIMAL VALUE OF (12)

Let us start with two auxiliary results.
Lemma 1. Let n and k � n be positive integers. Further, let

x = (x1, x2, . . . , xn) (A1)

be a nonincreasing sequence of non-negative integers, such
that

xi+1 � xi � k − 1,
∑

i

xi = n, (A2)

and
y = (

k − 1, . . . , k − 1︸ ︷︷ ︸
t times

, n − t (k − 1), 0, . . . , 0
)
, (A3)

where

t =
⌊

n

k − 1

⌋
. (A4)
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Then, for any p � n it holds that
p∑

i=1

xi �
p∑

i=1

yi, (A5)

i.e., x is majorized by y, written as x ≺ y.
Proof. The result is obvious.
Lemma 2. (See, e.g., [63]). Let g(·) be a convex function

and x ≺ y. It then holds that∑
i

g(xi ) �
∑

i

g(yi ). (A6)

Furthermore, if g(·) is strictly convex and x is not a permuta-
tion of y, then the inequality in Eq. (A6) is strict.

We can now prove the following.
Fact 2. The maximal value of

n∑
i=1

(dni − 1) + 1 (A7)

over all n = (n1, n2, . . . , nn) such that
∑

i ni = n and 0 �
ni � k − 1 is

tdk−1 − t + dn−t (k−1), (A8)

where t = 
 n
k−1�.

Proof. From Lemma 1 and Lemma 2 with g(x) = dx − 1,
which is strictly convex, it follows immediately that the maxi-
mal value of

∑
i(d

ni − 1) over all permissible n′s corresponds
to the choice n = y, with y defined in Eq. (A3). Equation (A8)
then follows from the direct substitution of the optimal n′

is.
The minimal value of the expression in Eq. (12) is obtained

by subtracting the obtained value (A8) from dn.

APPENDIX B: PROPERTIES OF Dmax
k-CES

In this Appendix we prove some basic properties of the
maximal dimension of a k-CES. In what follows we denote

D(d, k, n) := Dmax
k-CES = dn − (tn,kdk−1 + dTn,k − tn,k ), (B1)

with

tn,k := t =
⌊

n

k − 1

⌋
, Tn,k := n − (k − 1)tn,k . (B2)

Fact 3. The maximal dimension of a k-CES is strictly
(1) increasing in d for fixed k and n, D(d + 1, k, n) >

D(d, k, n), (2) decreasing in k for fixed d and n, D(d, k +
1, n) < D(d, k, n), and (3) increasing in n for fixed k and d ,
D(d, k, n + 1) > D(d, k, n).

Proof. Case 1. Assume now d is a continuous parameter
such that d ∈ [2,∞). It holds that

∂D(d, k, n)

∂d
= 1

d
{ndn − [tn,k (k − 1)dk−1 + Tn,kdTn,k ]}

>
n

d
{dn − [tn,kdk−1 + sgn(Tn,k )dTn,k ]}. (B3)

The term in the curly brackets is, in fact, the difference of
the product and the sum of numbers, which are all larger than
or equal to 2, and as such, it is larger than or equal to zero,
implying that ∂D/∂d > 0. This, in turn, means that D(d, k, n)
is strictly increasing in d . �

Case 2. Recall from Fact 2 in Appendix A that the maximal
dimensions D(d, k, n) and D(d, k + 1, n) correspond in (A7)
to, respectively, y = (k − 1, . . . , k − 1, Tn,k ) with (k − 1) ap-
pearing tn,k times [see Eq. (A3)] and

ỹ = (k, . . . , k︸ ︷︷ ︸
tn,k+1 times

, Tn,k+1, 0, . . . , 0). (B4)

(Note that tn,k � tn,k+1, and we may need to pad zeros in ỹ,
so that the vectors match in length.) Clearly, y ≺ ỹ, and by
Lemma 2 it holds that D(d, k + 1, n) < D(d, k, n). �

Case 3. Taking into account that

tn+1,k =
{

tn,k + 1 if k − 1|n + 1,

tn,k if k − 1 � n + 1,
(B5)

we have

D(d, k, n + 1) − D(d, k, n) =
{

dn+1 − dn − dk−1 + 1 + dTn,k−k+2(dk−2 − 1) if k − 1|n + 1,

(dn − dTn,k )(d − 1) if k − 1 � n + 1.
(B6)

Since 2 � k � n, we can easily verify that D(d, k, n + 1) >

D(d, k, n). �
Case 3 supports the claim made in Sec. III that the con-

struction of (n − 1)-CESs in n-partite systems from GESs in
(n − 1)-partite ones does not lead to subspaces of the maximal
dimension.

APPENDIX C: MAXIMAL 3-CES: FOUR-QUBIT CASE

In this Appendix, we give a nine-dimensional, i.e.,
maximal, 3-CES in the case of four qubits (n = 4,
d = 2, k = 3) obtained with the construction in
Sec. IV.

With the choice of nodes xi = i + 1, i = 0, 1, . . . , 6, the
Vandermonde vectors (21) are now of the form (we omit the

transpose and shift the index)

(1, i, i2, . . . , i15)A

= (1, i8)A1 ⊗ (1, i4)A2 ⊗ (1, i2)A3 ⊗ (1, i)A4 , (C1)

with i = 1, 2, . . . , 7. The matrix built from these vectors is
totally positive. This implies that matrices constructed from
bipartite vectors on any pair AmAn [see Eq. (24)] are always
full rank, meaning, in particular, that any four (d2 with d = 2)
such vectors span the whole four-dimensional Hilbert space.
Corollary 1 tells us then that a vector of the form |φ〉AmAn ⊗
|ϕ〉A\AmAn , i.e., a 2-producible vector, which is orthogonal to
all the vectors (C1) does not exist. Consequently, the ortho-
complement of the span of the vectors (C1) is a 3-CES.

We present a nonorthogonal basis for this 3-CES as a
matrix whose rows are the basis vectors:
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(C2)

APPENDIX D: GENERALIZED PIGEONHOLE PRINCIPLE

For convenience, we recall here the statement of the gener-
alized pigeonhole principle [60].

Fact 4. If pq + r objects are put into q boxes, then for each
0 � s � q, s boxes with the total number of objects in them
being at least ps + min(r, s) exist.

APPENDIX E: PROOF OF EQUATION (37)

Let us start by recalling the definition of the function in
question:

fw(m) = (n − w)

⌊
m − 1

n

⌋
+ max

(
m− w− n

⌊
m− 1

n

⌋
, 1

)
,

(E1)

with w = n − k + 1.
Case 1. n|m. We begin with the case of n being a divisor of

m. We then have⌊m

n

⌋
= m

n
,

⌊
m − 1

n

⌋
= m

n
− 1. (E2)

It follows that

fw(m) = (n − w)
(m

n
− 1

)
+ max (n − w, 1)

= (n − w)
m

n
(E3)

since n − w = k − 1 � 1. Further,

fw(m + 1) = (n − w)
⌊m

n

⌋
+ max

(
m + 1 − w − n

⌊m

n

⌋
, 1
)

(E4)

= (n − w)
m

n
+ max (1 − w, 1) (E5)

= (n − w)
m

n
+ 1 = fw(m) + 1 (E6)

because w = n − k + 1 � 1.
Case 2. n � m. We now consider the opposite case of n not

being a divisor of m. It now holds that⌊
m − 1

n

⌋
=
⌊m

n

⌋
. (E7)

Within the current case we analyze two subcases related to the
value of the function under the maximum in fw(m).

Subcase 2a. m − n
m
n � − w � 1. We just note that this

condition can never be satisfied simultaneously with case 1
and is valid only for n � m. We have

m − n

⌊
m − 1

n

⌋
− w = m − n

⌊m

n

⌋
− w � 1 (E8)

in view of Eq. (E7). As a consequence, in both fw(m) and
fw(m + 1) we can take the function under the maximum as its
value. We then have, after trivial simplifications,

fw(m) =m − w − w

⌊
m − 1

n

⌋
(E9)

and

fw(m + 1) =m − w + 1 − w
⌊m

n

⌋
= fw(m) + 1. (E10)

012403-9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


DEMIANOWICZ, VOGTT, AND AUGUSIAK PHYSICAL REVIEW A 110, 012403 (2024)

Subcase 2b. m − n
m
n � − w � 0. Now, the maximum is

easily seen to be equal to 1 for both fw(m) and fw(m + 1),
which, taking into account Eq. (E7), results in this subcase in
fw(m) = fw(m + 1).

This concludes the proof of Eq. (37).
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