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The shape of an ROC curve in the evaluation  
of credit scoring models 

Błażej Kochański1 

Abstract 

The AUC, i.e. the area under the receiver operating characteristic (ROC) curve, or its scaled 
version, the Gini coefficient, are the standard measures of the discriminatory power of credit 
scoring. Using binormal ROC curve models, we show how the shape of the curves affects the 
economic benefits of using scoring models with the same AUC. Based on the results, we 
propose that the shape parameter of the fitted ROC curve is reported alongside its AUC/Gini 
whenever the quality of a scorecard is discussed. 
Key words: credit scoring, receiver operational characteristic, AUC. 

1.  Introduction 

Credit scoring is probably the best known application of statistical methods 
in finance. Usually based primarily on a customer’s credit history and application data, 
typically built using logistic regression, and less often using neural networks or other 
machine learning methods, a credit scoring model (a scorecard) returns a numerical 
score that allows the ranking of potential credit customers. Low scores typically indicate 
increased risk of default on the loan, while high scores imply lower credit risk.  

In the past, the primary goal of a credit scorecard was to provide a single binary 
classification – to inform the decision maker when to accept or reject a loan. Today, 
the banking industry uses scorecards to rank customers for many other purposes. 
Credit institutions use scorecards to differentiate loan terms, such as interest rates 
(a practice referred to as “risk-based pricing”), loan amounts and periods. Credit limits 
are set and reset based on credit scores. Models drive cross-sell, up-sell and collection 
strategies. Credit scores feed into the capital adequacy and loss provisioning models. 

The receiver operating characteristic (ROC) curve is a graphical plot that shows 
how well a binary classifier performs at various levels of the discrimination threshold. 
It is widely used in many domains, including signal processing, medical statistics, 
psychology, finance and machine learning applications in general. The ROC curve is 
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plotted in the unit square with the false positive proportion (FPP) on the X-axis and the 
true positive proportion (TPP) on the Y-axis. It represents combinations of FPP and 
TPP for many possible thresholds (cut-off points). Credit scorecards are set up to 
identify potential non-payers (“defaults” or “bad” customers), therefore in this context, 
FPP is the share of non-defaulters (“goods”) who scored below a given cut-off among 
all goods, and TPP is the share of bads who scored below the same given cut-off among 
all bads.  

The AUC (area under the ROC curve) or its rescaled version, the Gini coefficient, 
are typical ways of assessing the discriminatory power of a credit scorecard. The AUC 
can be thought of as the probability of correctly assigning a worse score to a bad case, 
given one random good case and one random bad case (Hanley and McNeil, 1982). The 
AUC can vary from 0 to 1, where an uninformative scorecard has an AUC of 0.5, while 
a perfect scorecard has an AUC of 1. Credit scoring practitioners often prefer the Gini 
coefficient (equivalent to Somers’ D statistic), which is a linearly scaled version of the 
AUC: uninformative scoring has a Gini of 0, while perfect scorecards have a Gini of 1. 

Although the AUC is widely used by both practitioners and academics to assess the 
discriminatory power of credit scoring models, it has several serious drawbacks. Lobo, 
Jiménez-Valverde and Real (2008) summarise the drawbacks from a biostatistical 
perspective. From a credit scoring standpoint, the most important disadvantage of 
AUC can be described as “lift inconsistency”. As Idczak (2019) and Řezáč and Koláček 
(2012) have shown, scorecards with the same AUC/Gini can have different efficiencies 
in reducing the default rate once a percentage of the worst applicants is rejected. This 
is related to Hand’s (2009) broader claim that AUC is “fundamentally incoherent 
in terms of misclassification costs”. 

To address the shortcomings of the AUC, alternative measures are sometimes 
proposed. Řezáč and Koláček (2012) suggest using a summary of the lift curve at all 
possible cut-off points. Hand (2009) introduces an h-measure, which evaluates the 
model based on the distribution of likely values of the classification cost. Verbeke et al. 
(2012), Verbraken, Verbeke and Baesens (2013) and Garrido, Verbeke and Bravo 
(2018) introduce profit-based measures.  

In this paper, we propose to take a different route. Often, if not always, practitioners 
will use the same credit scoring model for multiple purposes. Some objectives are better 
served by one scorecard, while other objectives are better served by another. Rather 
than deciding priorities for potential users or ranking different objectives, we suggest 
summarising the scoring model and the associated ROC curve by two numbers instead 
of one: (1) the AUC/Gini, which measures the area under the curve, and (2) a measure 
that summarises the shape of the curve. When discussing the quality of the model, two 
measures could be provided.  

The remainder of the paper is organised as follows: in the next section, we present 
a motivating example of two intersecting ROC curves representing models that excel at 
different tasks. Then, a binormal ROC curve model is introduced, which produces 
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smooth, idealised ROC curves with only two parameters: AUC/Gini and the 
shape/symmetry parameter. The minimal distance fitting of binormal ROC curves to 
empirical ROC data is then described. This approach is subsequently demonstrated 
using two empirical examples from the literature. Finally, we discuss our conclusions. 

2.  When two ROC curves intersect – a motivating example 

Several authors (e.g. Adams and Hand, 1999; Řezáč and Koláček, 2012) note that 
the problem with comparing the two AUCs becomes most apparent when the ROC 
curves of two scorecards intersect. Idczak (2019) and Tang and Chi (2015) provide 
empirical illustrations. 

In Figure 1, we present a motivating (hypothetical) example of two scorecards 
(labelled I and II) with identical areas under their ROC curves (Gini = 0.7, AUC = 0.85) 
but different shapes. The intersecting ROC curves have been simulated using the 
binormal ROC formulas introduced in the next section.  

We will now evaluate the scorecards based on how much the proportion of the 
customers who fail to repay their loans (“bad rate”) in the loan portfolio will be lowered 
when the cut-off point is introduced and loan applications below cut-off are rejected. We 
assume here and in the examples below that the bad rate in the total scored population of 
loan applicants is 8%, which is a typical bad rate in the consumer finance market. 
However, analogous results can be obtained for population bad rates at other levels. 

Figure 1:  ROC curves for two scoring models with Gini=0.7. Model I is an example of a TPP-
asymmetric ROC, and model II of a TNP-asymmetric ROC 
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If our strategy was to reject 10% of customers with the lowest scores, Model I would 
be preferred. It would have reduced the bad rate by 49.7% (after the introduction of the 
cut-off, and rejecting 10% of the applications, the share of defaulted customers would 
fall from 8% to 4.02%). Model II would have performed much worse in this setup, with 
a reduction of only 35.7% (from 8% to 5.15%).  

The situation would be quite different if the portfolio manager were to select the 
top 10% of customers and offer them, for example, an increase in their credit limit. 
In such a case, Model II would prove to be much more effective. If selected using Model 
II, the top 10% of clients would have a default rate of only 0.04% (~200 times lower than 
the average). In comparison, the top 10% selected using Model I would have a default 
rate of 0.95% (only ~8 times lower than the average). 

The difference between the curves is apparent on visual inspection. The ROC curve 
for Model I is more inclined to the OY axis, and the ROC curve for Model II is more 
inclined to the top line of the unit square (whose equation is y=1). The inclination 
indicates where the model performs best. Model I excels at identifying the worst of the 
bad cases (inclination to the OY axis), while Model II wins at picking the best of the 
good customers (inclination to the y=1 line). Outside of the field of credit scoring, such 
curves are referred to as asymmetric ROC curves (Killeen and Taylor, 2004, 
Bhattacharya and Hughes, 2015). Model I is an example of a TPP-asymmetric ROC and 
Model II of a TNP-asymmetric ROC, where TNP stands for “true negative proportion”. 

As this simple motivating example shows, two scorecards with the same AUC may 
be far from equivalent. Which of the models is most effective depends on the intended 
use in a particular case. Since credit scorecards have more than one specific application 
nowadays, they need to be assessed at many thresholds for various purposes. It would 
be virtually impossible to devise a single metric summarising their effectiveness.  
The h-measure – a popular alternative to AUC – is not a step forward in this case. The 
Monte Carlo simulation with R and the h-measure package (using the package’s default 
assumptions about the distribution of possible cost values) showed that Model I has an 
h-measure of 0.325, while Model II has an h-measure of 0.193. The h-measure seems to 
indicate that Model II is inferior to Model I, which, as we have seen, is not necessarily 
true. 

3.  Modelling ROC curves with a binormal model 

ROC curve models are mathematical formulae that allow idealised smooth ROC 
curves to be plotted that approximate real data. Examples of ROC curve models include 
binormal (Hanley, 1996), bilogistic (Walsh, 1997), bibeta (Chen and Hu, 2016) or 
bigamma (Dorfman et al., 1997) curves. Such models have 1-4 parameters that 
determine the course of the curve. ROC curve models are widely used in biostatistics 
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and signal processing, but their use in credit scoring research has so far been limited. 
Some prominent exceptions are Blöchlinger and Leippold (2006), Satchell and Xia 
(2008) and Kürüm et al. (2012), who applied ROC curve models to credit scoring 
problems. Kochański (2022) evaluates ROC curve models from a credit scoring 
perspective and examines how well they fit empirical data. He finds that the binormal 
model is the best fit for the largest number of empirical data sets and can be 
accommodated to have the Gini coefficient as a parameter. Following this result, 
we choose the binormal function from among the many ROC curve models. It can be 
expressed as the formula y=f(x) with two parameters: one representing the area under 
the ROC curve (or the Gini coefficient) and the other describing the shape 
(symmetry/inclination) of the curve. 

The name “binormal” refers to the assumption that the scores of both good and bad 
customers are normally distributed (perhaps after a monotone transformation). 
The standard formula for the binormal ROC curve is as follows: 

𝑦 ൌ Φ൫𝑎 ൅ 𝑏Φെ1ሺ𝑥ሻ൯,          (1) 

where x is a false positive proportion, y is a true positive proportion, Φ is the CDF of 
a standard normal variable, Φ-1 is its inverse, and a and b are parameters that can be 
interpreted as functions of the means and variances of the normally distributed scores 
of goods and bads (Bandos, Guo and Gur, 2017). 

It can be shown that the AUC in this case is: 

𝐴𝑈𝐶 ൌ 𝑐 ൌ 𝛷 ൬
௔

ඥଵା௕మ
൰,          (2) 

which leads to an equivalent alternative parameterisation: 

𝑦 ൌ ΦቀΦିଵሺ𝑐ሻ√1 ൅ 𝑏ଶ ൅ 𝑏Φିଵሺ𝑥ሻቁ        (3) 

or, using Gini g = 2𝑐 െ 1: 

𝑦 ൌ 𝐵𝑖𝑛𝑏,𝑔ሺ𝑥ሻ ൌ Φ൬Φିଵ ቀ௚ାଵ
ଶ
ቁ√1 ൅ 𝑏ଶ ൅ 𝑏Φିଵሺ𝑥ሻ൰    (4) 

The ROC curve generated by the binormal model has a shape that depends on the 
parameter b. In the context of the binormal model construction, it can be thought of as 
the ratio between the standard deviations of the good and bad scores (which are 
assumed to follow normal distributions). Curves with b < 1 are TPP-asymmetric, 
curves with b > 1 exhibit TNP asymmetry. When b = 1, the ROC curve is symmetric 
about the negative diagonal of the unit square, i.e. the line connecting points (0,1) 
and (1,0). 

Figure 2 illustrates how the parameter b affects the shape of the ROC curve 
in practice. The figure displays curves with two different levels of Gini and three 
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different values of the shape parameter b. The curves were generated using the binormal 
model as described by equation 4. Note that the curves in Figure 1 were also drawn 
using the binormal formula with parameters g = 0.7 (both models), b = 0.77 (Model I), 
b = 1.3 (Model II). 

4.  Shape of the ROC curves and efficiency of scoring models 

As the motivating example showed, the reduction in the bad rate on accepted loans 
at the 10% cut-off appears to vary significantly depending on the shape of the ROC 
curve. Figure 3 extends this example by showing the reduction in the bad rate for 
a range of values of the shape parameter while maintaining Gini at g = 0.7. Since the 
empirical ROC curves have shapes corresponding to the range of 0.7 to 1.4 (Kochański, 
2022), this graph shows this range. It appears that a 10% cut-off can reduce the bad rate 
on approved loans from 34% to 52%, depending on the asymmetry of the ROC curve.  

Figure 2:  Binormal ROC curves with two Gini levels (0.5 and 0.7) and three values of b parameter 
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Figure 3:  Bad rate reduction at 10% cut-off (90% approval rate) for a Gini=0.7 scorecard and various 
 shapes of the ROC curve as modelled by the binormal model 

Figure 4 illustrates this issue from a different perspective. We now fix the desired 
reduction in the bad rate (40% at the 10% cut-off) and see which Gini/shape 
combinations produce a reduction at this level. Again, the binormal model was used to 
answer this question. It turns out that, depending on the shape of the curve, such 
a reduction is possible with a Gini ranging from 0.56 to 0.75. Three such ROC curves 
are shown in Figure 5. As can be seen, they all intersect at one point, which corresponds 
to the cut-off point. 

5.  Minimal distance fitting of the shape parameter 

The simulations presented show that information about the shape of the ROC  
curve can be crucial for credit decision makers and users of credit scoring. Therefore, 
we suggest that in business and research practice, in addition to reporting the 
Gini/AUC value, analysts should report a measure that describes the shape of the curve. 

We suggest that ROC curve models could be used to describe the shape of the curve. 
To apply such a model, one must fit the empirical ROC data to a theoretical curve and 
find the parameters that give the best fit. 
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Figure 4:  Shape (b) and Gini (g) combinations resulting in a bad rate reduction from 8.0% to 4.8% 
 modelled with binormal ROC curves 

Figure 5:  Three binormal ROC curves that reduce the bad rate by 40% when the cut-off point is set to 
 reject 10% of loan applicants 
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The literature suggests many fitting methods, but for the problem at hand, minimal 
distance fitting, as described by Hsieh and Turnbull (1996), Davidov and Nov (2012), 
and Jokiel-Rokita and Topolnicki (2019), seems to be the best approach. For the 
purposes of this paper, we use the following procedure to fit an ROC curve where the 
two parameters are the Gini/AUC and the shape parameter: 

(1) Empirical ROC data points are collected representing the TPP and FPP for 
a sufficient set of cut-off points on the ROC graph,  

(2) The empirical ROC curve function is derived as a polygon (piecewise linear 
function) connecting the empirical ROC data points, 

(3) The Gini coefficient (or AUC) is calculated using the usual trapezoid method, 
(4) The shape parameter of the best fitting ROC curve is found after fixing the AUC. 

Step (4) is performed using an appropriately adapted “minimum distance 
estimation” method. The aim is to minimise the 𝐿ଶ distance between the empirical ROC 
curve y=ROC(x) and a theoretical ROC curve function 𝑦 ൌ 𝐵𝑖𝑛௕,௚ ሺ𝑥ሻ, when g is 
already given, and the only value sought is the shape parameter b that gives the best-
fitting curve.  

Using the notation of Jokiel-Rokita and Topolnicki (2019), the minimised objective 
function is: 

‖𝜉ሺ𝑏ሻ‖ ൌ න 𝜉ଶሺ𝑏, 𝑡ሻ𝑑𝑡
ଵ

଴
 

where  
ξଶሺ𝑏, 𝑡ሻ ൌ ቀROCሺ𝑡ሻ െ 𝐵𝑖𝑛௕,௚ሺ𝑡ሻቁ

ଶ
 

6.  Describing the shape of an ROC curve – examples 

Rezáč and Rezáč (2011) and Hahm and Lee (2011) are rare examples of papers that 
provide data on empirical credit-scoring ROC curves in a form of a table. We use these 
examples to demonstrate the usefulness of describing the shape of ROC curves 
in assessing the quality of scoring models. 

Figure 6 shows data points from Rezáč and Rezáč (2011) with polygon interpolation 
(dotted line) and fitted binormal function (Gini = 0.451, shape = 1.045). The shape 
parameter b is close to 1, which means that the curve is almost perfectly symmetric; 
it is similarly effective in both the high and low score ranges – a result that is usually 
desirable for a credit scorecard used for risk-based pricing.  

The fit is quite good. The square root of ‖𝜉ሺ𝑏ሻ‖ is 0.009, which means that the 
average (or, more precisely, the root mean square) vertical difference between the 
empirical and fitted ROC curves is less than one percentage point.  
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Figure 6:  Rezáč and Rezáč (2011) data points with polygon interpolation (dotted line) and fitted 
 binormal function (g = 0.451, b = 1.045, ඥ‖𝜉ሺ𝑏ሻ‖=0.009) 

 

The empirical and fitted ROC curves for models from Hahm and Lee (2011), who 
discuss scorecards developed using credit bureau data in a Korean bank, are shown 
in Figure 7. The fit of model A is quite good, but visibly worse than the previous case; 
the fit of model B is slightly better. Model A is a model that uses only negative credit 
bureau data (only default and late repayment data from other banks), while Model B is 
a model that also includes positive data (data on timely loan repayments). The inclusion 
of positive data increases the discriminatory power of the scorecard: AUC increases 
from 0.841 to 0.869 (Gini from 0.682 to 0.739). The shape parameter of the curve 
indicates that Model B is less asymmetric than Model A (b  = 0.785 for Model A and 
0.935 for Model B). The change in the shape of the curve implies that the inclusion of 
positive credit bureau data significantly improves the scorecard's ability to identify the 
best customers. Indeed, calculations show that both models reduce the default rate by 
about half when the 8% worst customers are rejected. If the rejection rate is set at 60%, 
banks can achieve a fivefold reduction using model A and about a tenfold reduction 
using model B. The apparent advantage of positive credit bureau data is that it allows 
the best customers to be identified much more easily, while negative data only filters 
out the worst customers. 
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Figure 7:  Hahm and Lee (2011) data points for models A and B with polygon interpolation and fitted 
 binormal curves (model A: g = 0.682, b = 0.785, ඥ‖𝜉ሺ𝑏ሻ‖ = 0.014, model B: g = 0.739,  
 b = 0.935, ඥ‖𝜉ሺ𝑏ሻ‖ = 0.007). 

7.  Conclusions 

As it has been shown in the examples presented above, scorecards with the same 
AUC have different effectiveness in different score ranges. In this paper, we propose 
that when discussing the quality of a scorecard, we should not only provide the 
AUC/Gini, but also a figure that summarises the shape of the curve. 

This approach can be useful when discussing the quality of existing or newly 
created scoring models. Knowing the shape of the curve allows one to assess which tasks 
the model is best suited for. Measuring the shape of the ROC curve can also be useful 
when evaluating individual component variables or component scorecards included 
in the combined master model. Reporting the shape of the ROC curve allows analysts 
to assess whether an individual variable or component scorecard owes its separation 
strength to its ability to find the best or worst customers, or – if the curve is symmetrical 
– it is equally efficient at both tasks. 

In the current practice of lending businesses, the use of scoring models is 
multifaceted – they are used not only to identify the worst customers, but also to set the 
prices and terms, demand collateral, drive customer relationship and collection actions, 
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support loan provisioning procedures and capital adequacy calculations. Using only 
one number (AUC/Gini) or focusing only on one cut-off is simplistic and may not be 
sufficient to assess the separation power of a model. However, descriptive measures are 
needed to summarise the strength of the scorecard. Presenting two numbers instead of 
one seems to be a useful compromise between synthesis and attention to detail. 
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