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A B S T R A C T

Inverse problems of contact heat conduction with an interfacial heat source are common in various fields of
science, engineering and technology. In this study, an algorithm for their solution is developed based on an
inverse parametric optimisation method with an impulse response function describing the heat partition and
contact heat transfer. A first-order thermocouple model with a time constant parameter is embedded in the
impulse response function. The specific power of the heat source is sought in the form of a polynomial from the
condition of least-squares deviation of the simulated temperature from the temperature samples obtained by a
thermocouple. Compared to the classical methods of simple inverse convolution and sequential function speci-
fication, the algorithm proves to be accurate in a substantially larger region of variation of the heating duration
and time constant, covering slow-response thermocouple measurements. Additionally, the algorithm is signifi-
cantly more robust against noise with a sufficient number of temperature samples. The applicability of the al-
gorithm is demonstrated by solving inverse problems of contact heat conduction typical for sliding friction, laser
and electric resistance welding at different thermal contact conditions and ratios of the time constant to the
heating duration.

Notation

h measuring junction location, m
i imaginary unit, i =

̅̅̅̅̅̅̅
− 1

√

k thermal diffusivity, m2/s
n specific power function degree plus one
p number of temperature samples
q heat source specific power, W/m2

qmax maximum specific power, W/m2

s Laplace transform parameter
t time variable, s
ts heating duration, s
x spatial coordinate, m
В dimensionless contact heat transfer coefficient, В = γh/K1
K thermal conductivity, W/(m ◦C)
Q dimensionless specific power, Q = q/qmax
T temperature, ◦C
Ti initial temperature, ◦C
Tm measured temperature, ◦C
α heat generation coefficient
γ contact heat transfer coefficient, W/(m2 ◦C)

η dimensionless time variable, η = k1t/h2

ηr dimensionless discrete time
ηs dimensionless heating duration, ηs = k1ts/h2

ϑ dimensionless temperature, ϑ = K1(T − Ti1)/(hqmax)
ϑm dimensionless measured temperature, ϑm =

K1(Tm − Ti1)/(hqmax)
ϑ0 dimensionless initial temperature of body 2, ϑ0 =

K1(Ti2 − Ti1)/(hqmax)
ξ dimensionless spatial coordinate, ξ = x/h
τ thermocouple time constant, s
χ thermal diffusivity ratio, χ = k2/k1
Δ dimensionless time step
Θ dimensionless time constant, Θ = k1τ/h2
Λ thermal conductivity ratio, Λ = K2/K1
Ψ dimensionless impulse response function
L [ • ] Laplace transform operator
∎̃ Laplace transform image
∎1 related to body 1
∎2 related to body 2
∎1,2 related to bodies 1 and 2
∎* optimal/rational value
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erfc( • ) complementary error function
exp( • ) exponential function
IPOM inverse parametric optimisation method
SFSM sequential function specification method
SICM simple inverse convolution method

1. Introduction

Whenever two bodies are in mechanical contact, heat is transferred
between them by various mechanisms, with an inevitable contribution
of the heat conduction. This leads to temperature changes in the bodies
affecting almost all processes, including mechanical, thermal, electro-
magnetic, chemical and biological processes. The problem of contact
heat conduction, involving the determination of contact temperatures
and heat fluxes, is therefore essential from both a theoretical and
practical point of view.

In many technical applications and technological processes, such as
sliding friction, machining and welding, the interfacial region between
the contacting bodies is subjected to intensive heating accompanied by
the action of aggressive factors, e.g. mechanical deformations, material
removal, phase transitions or electromagnetic pulses. This means that
the sensing element of a temperature sensor must not be located directly
at the interface, as otherwise its function would be impaired. On the
other hand, the use of non-contact measurement methods such as
infrared thermography is limited by the fact that the interface is hidden
between the bodies which are generally not transparent. For example,
the friction pad of a disc brake may be several millimetres worn,
implying that the temperature sensor cannot be installed at a smaller
initial distance from the friction surface. Another example is welding,
where metallic pieces heated in their interfacial region can melt at a
temperature exceeding the upper measurement limit of the temperature
sensor. This is where inverse heat transfer methods come into play
which aim to reconstruct the contact temperatures and heat fluxes from
the readings of a temperature sensor whose sensing element is located at
a safe distance from the interface.

Hundreds of publications deal with inverse heat conduction prob-
lems in various fields of science, engineering and technology, as re-
ported by Beck et al. [1], Woodbury et al. [2] and Zálešák et al. [3].
However, very few of them are devoted to the heat conduction study in
the coupled formulation, i.e. the reconstruction of temperatures and
heat fluxes in both bodies caused by a heat source acting at their
interface. Chen et al. [4] reconstructed the friction heat generation be-
tween two sliding cylindrical bars using the conjugate gradient method
and discrepancy principle. A similar approach was used by Wang et al.
[5] for a semispace sliding against a plane-parallel layer and by Chen
and Yang [6] for two semispaces one of which is covered by a plane-
parallel layer. Bauzin et al. [7] carried out theoretical and experi-
mental estimates of the heat flux generated by friction in a multi-disc
aircraft brake, considering the imperfection of thermal friction con-
tacts. Bauzin et al. [8] and Cherikh et al. [9] investigated the heat
generation and imperfect thermal contact parameters in a friction pair
consisting of a hollow steel cylinder and a bronze cylinder based on the
experimental data and finite-difference analysis. Gostimirovic et al. [10]
performed numerical simulations and experiments to improve the pro-
ductivity and quality of grinding by finding the optimal heating regime
for the workpiece–wheel contact.

The inverse problem of contact heat conduction becomes more
difficult if the duration of the interfacial heat source is short. For
example, in welding processes based on the laser, electrical resistance or
electromagnetic principle, a single heat pulse may last 0.1 s or less. In
this case, measurements with a temperature sensor are affected by its
thermal inertia caused by transient heat transfer in the sensing element,
thermal contact resistance between the sensing element and measurand,
heat transfer in the wires, delays in signal processing, etc. Woodbury
[11] showed a strong influence of the dynamics of the thermocouple
sensor on the accuracy of reconstruction of the surface heat flux with a

first-order model. Augustin et al. [12] used the first-order thermocouple
model in a numerical algorithm to predict fluid temperatures in com-
bustion engine exhaust systems. Frankel and Chen [13] developed and
validated an inverse method by incorporating the first-order thermo-
couple model into an analytical temperature expression for a heated
semispace. Nosko and Tsybrii [14] applied a similar approach to
reconstruct the surface temperature of a pin sample sliding against a
disc. Oliveira et al. [15] proposed a correction method for thermocouple
measurements to avoid underestimation of boundary heat fluxes due to
a delayed temperature response and applied it to a large-scale jet cooling
of a hot plate. Gomez et al. [16] analysed the influence of different
factors on the heat flux determination with particular attention to the
thermal contact resistance of a thermal paste around the thermocouple
measuring junction. The first-order model has been used extensively to
evaluate the performance of different types of thermocouples when
measuring temperatures at grinding contacts (Nee and Tay [17],
Lefebvre et al. [18]), in flames (Santoni et al. [19], Huang et al. [20]), in
fluids (Jaremkiewicz et al. [21], Zhang et al. [22]), in impingement heat
transfer (Terzis et al. [23]), in reactor cores (Sylvia et al. [24], Sridhar
et al. [25]), etc. With one parameter — the time constant, the first-order
model allows the response of a temperature sensor to be described in the
simplest way. As can be seen from the literature, this model has been
used in inverse heat conduction methods. Note that more complex
thermocouple models are also known. Tagawa and Ohta [26], for
example, used a two-thermocouple probe for temperature measure-
ments during combustion, assuming that the time constant of the ther-
mocouple can vary depending on the flow and temperature conditions.
Taler et al. [27] used a second-order differential equation to describe the
dynamic response of a temperature sensor in a heavy thermowell.

The present study develops an algorithm to solve inverse problems of
contact heat conduction with an interfacial heat source. Following the
theoretical approach presented by Frankel and Chen [13], the algorithm
uses an impulse response function in which the first-order thermocouple
model is embedded. The impulse response function is derived for two
bodies coupled with the imperfect thermal contact conditions taking
into account the heat partition and contact heat transfer. The properties
of the algorithm, including the solution stability, accuracy and noise
robustness, are systematically investigated. Its applicability is demon-
strated by solving practical problems.

2. Direct problem of contact heat conduction

Consider a body 1 (x > 0) with thermal conductivity K1 and diffu-
sivity k1 and a body 2 (x < 0) with thermal conductivity K2 and diffu-
sivity k2, as shown in Fig. 1. Temperatures T1,2(x, t) in the bodies change
in time t according to the heat conduction equations

∂T1
∂t = k1

∂2T1
∂x2 , x > 0, 0 < t ≤ ts;

∂T2
∂t = k2

∂2T2
∂x2 , x < 0, 0 < t ≤ ts

(1)

where ts is the heating duration.
At initial time t = 0, the bodies have uniformly distributed but

different temperatures Ti1 and Ti2, i.e.

T1|t=0 = Ti1;
T2|t=0 = Ti2

(2)

A heat source with specific power q(t) acts at the interface x = 0.
Assume an imperfect thermal contact defined by the conditions

− K1
∂T1
∂x

⃒
⃒
⃒
⃒
x=0

= αq+ γ(T2 − T1)|x=0;

K2
∂T2
∂x

⃒
⃒
⃒
⃒
x=0

= (1 − α)q − γ(T2 − T1)|x=0

(3)
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where α is the heat generation coefficient; γ is the contact heat transfer
coefficient. Obviously, Eq.(3) fulfils the heat balance condition. The
coefficient α is responsible for the partition of the generated heat, while
the coefficient γ specifies the intensity of the contact heat transfer due to
the temperature jump (T2 − T1) at the interface.

The temperatures are undisturbed at infinite distance, which is
described by the conditions

∂T1
∂x

⃒
⃒
⃒
⃒
x→+∞

=
∂T2
∂x

⃒
⃒
⃒
⃒
x→− ∞

= 0 (4)

Thereby, Eqs.(1)–(4) imply two factors affecting the temperature
distributions T1,2, namely the interfacial heat source q and initial tem-
perature difference (Ti2 − Ti1).

Take a polynomial specific power of the heat source in the form

q = qmax
∑n

j=1
ajtj− 1, 0 < t ≤ ts (5)

where n is the number of coefficients equal to the degree of the specific
power function q plus one; aj is the j-th coefficient; qmax is the maximum
value of the specific power q in the considered time interval from zero to
ts.

Further, consider a thermocouple installed in the body 1 with its
measuring junction at distance h from the interface (see Fig. 1). The
thermocouple response is assumed to be governed by the first-order
model, i.e. the measured temperature Tm(t) is related to the tempera-
ture T1 at x = h according to the equation

τ dTm
dt

+ Tm = T1|x=h, 0 < t ≤ ts (6)

where τ is the thermocouple time constant.
Naturally, the initial temperature of the measuring junction is equal

to the initial temperature of the body 1, i.e.

Tm|t=0 = Ti1 (7)

The problem of contact heat conduction given by Eqs.(1)–(7) thus
defines the relation between the heat source specific power q, initial
temperature difference (Ti2 − Ti1) and measured temperature Tm

depending on many parameters: K1,2, k1,2, α, γ, Ti1,2, ts, qmax, aj, h and τ. It
can be considerably simplified with the help of dimensionless variables

ξ =
x
h
, η =

k1t
h2

, ϑ1,2 =
K1
(
T1,2 − Ti1

)

hqmax
,

ϑm =
K1(Tm − Ti1)

hqmax
, Q =

q
qmax

and parameters

Λ =
K2

K1
, χ =

k2
k1
, B =

γh
K1

, ϑ0 =
K1(Ti2 − Ti1)

hqmax
, ηs =

k1ts
h2

, Θ =
k1τ
h2

The dimensionless representation of Eqs.(1)–(4) reads

∂ϑ1

∂η =
∂2ϑ1

∂ξ2
, ξ > 0, 0 < η ≤ ηs;

∂ϑ2

∂η = χ ∂2ϑ2

∂ξ2
, ξ < 0, 0 < η ≤ ηs;

ϑ1|η=0 = 0;

ϑ2|η=0 = ϑ0;

−
∂ϑ1

∂ξ

⃒
⃒
⃒
⃒

ξ=0
= αQ+ B(ϑ2 − ϑ1)|ξ=0;

Λ
∂ϑ2

∂ξ

⃒
⃒
⃒
⃒

ξ=0
= (1 − α)Q − B(ϑ2 − ϑ1)|ξ=0;

∂ϑ1

∂ξ

⃒
⃒
⃒
⃒

ξ→+∞
=

∂ϑ2

∂ξ

⃒
⃒
⃒
⃒

ξ→− ∞
= 0

(8)

while the specific power of Eq.(5) has the form

Q =
∑n

j=1
μjηj− 1 (9)

where

μj = aj

(
h2

k1

)j− 1

, j = 1,…, n

The thermocouple response due to Eq.(6) and Eq.(7) transforms into

Θ
dϑm

dη + ϑm = ϑ1|ξ=1, 0 < η ≤ ηs;

ϑm|η=0 = 0
(10)

By applying the Laplace integral transform L with respect to the
time variable η (Doetsch [28]) as

ϑ̃1,2(ξ, s) = L
[
ϑ1,2(ξ, η)

]

it is possible to represent Eq.(8) in the space of images as

∂2ϑ̃1

∂ξ2
− sϑ̃1 = 0, ξ > 0;

χ ∂2ϑ̃2

∂ξ2
− sϑ̃2 = − ϑ0, ξ < 0;

−
∂ϑ̃1

∂ξ

⃒
⃒
⃒
⃒
⃒

ξ=0

= αQ̃+ B
(

ϑ̃2 − ϑ̃1

)⃒
⃒
⃒
⃒

ξ=0
;

Λ
∂ϑ̃2

∂ξ

⃒
⃒
⃒
⃒
⃒

ξ=0

= (1 − α)Q̃ − B
(

ϑ̃2 − ϑ̃1

)⃒
⃒
⃒
⃒

ξ=0
;

∂ϑ̃1

∂ξ

⃒
⃒
⃒
⃒
⃒

ξ→+∞

=
∂ϑ̃2

∂ξ

⃒
⃒
⃒
⃒
⃒

ξ→− ∞

= 0

(11)

while the image of the specific power of Eq.(9) is written as

Fig. 1. Schematic of the contact heat conduction problem
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Q̃(s) = L [Q(η) ] =
∑n

j=1

μj(j − 1)!
sj

(12)

where s is the parameter of the Laplace transform.
The temperature images ϑ̃1,2 result from Eq.(11) and Eq.(12) in the

form

ϑ̃1 =
∑n

j=1

μj(j − 1)!
(
αΛ

̅̅
s

√
+ B ̅̅̅χ√ )

s1/2+j
(
Λ
̅̅
s

√
+ B

(
Λ +

̅̅̅χ√ ) )exp
{
− ξ

̅̅
s

√ }

+
ϑ0BΛ

s
(
Λ
̅̅
s

√
+ B

(
Λ +

̅̅̅χ√ ) )exp
{
− ξ

̅̅
s

√ }
;

ϑ̃2 =
∑n

j=1

μj(j − 1)!
(
(1 − α) ̅̅̅χ√ ̅̅

s
√

+ B ̅̅̅χ√ )

s1/2+j
(
Λ
̅̅
s

√
+ B

(
Λ +

̅̅̅χ√ ) ) exp
{

ξ
̅̅̅χ√

̅̅
s

√
}

+ϑ0

(
1
s
−

B ̅̅̅χ√

s
(
Λ
̅̅
s

√
+ B

(
Λ +

̅̅̅χ√ ) )exp
{

ξ
̅̅̅χ√

̅̅
s

√
})

(13)

In both expressions of Eq.(13), the first term describes the influence
of the heat source, while the second term represents the contact heat
transfer due to the initial temperature difference. Note that Eq.(13) can
be derived as a superposition of the long-known expressions obtained by
Schaaf [29] for two semispaces coupled with the imperfect thermal
contact conditions equivalent to Eq.(3) and by Mersman [30] for the
heat transfer between the semispaces in the presence of a thermal con-
tact resistance.

Finally, the transform

ϑ̃m(s) = L [ϑm(η) ]

of Eq.(10) leads to the measured temperature image

ϑ̃m =
α
Θ
∑n

j=1

μj(j − 1)!
( ̅̅

s
√

+ B ̅̅̅χ√ /
(αΛ)

)
exp{ −

̅̅
s

√
}

s1/2+j
( ̅̅

s
√

+ B
(
1+

̅̅̅χ√ /
Λ
) )

(s+ Θ− 1)

+
ϑ0Bexp{ −

̅̅
s

√
}

Θs
( ̅̅

s
√

+ B
(
1+

̅̅̅χ√ /
Λ
) )

(s+ Θ− 1)

(14)

The known transform (Carslaw and Jaeger [31]) of

L
− 1
[

exp{ −
̅̅
s

√
}

(
̅̅
s

√
+ b)(s − c)

]

=
exp{cη}

2

(
exp{ −

̅̅̅
c

√
}

b+
̅̅̅
c

√ erfc

{
1

2 ̅̅̅η√ −
̅̅̅̅̅
cη√
}

+
exp{

̅̅̅
c

√
}

b −
̅̅̅
c

√ erfc

{
1

2 ̅̅̅η√ +
̅̅̅̅̅
cη√
})

−
bexp{b(1+ bη) }

b2 − c
erfc

{
1

2 ̅̅̅η√ + b
̅̅̅η√
}

(15)

allows obtaining useful transforms

L
− 1
[

exp{ −
̅̅
s

√
}

̅̅
s

√
(
̅̅
s

√
+ b)(s − c)

]

=
exp{cη}
2
̅̅̅
c

√

(
exp{ −

̅̅̅
c

√
}

b+
̅̅̅
c

√ erfc

{
1

2 ̅̅̅η√ −
̅̅̅̅̅
cη√
}

−
exp{

̅̅̅
c

√
}

b −
̅̅̅
c

√ erfc

{
1

2 ̅̅̅η√ +
̅̅̅̅̅
cη√
})

+
exp{b(1+ bη) }

b2 − c
erfc

{
1

2 ̅̅̅η√ + b ̅̅̅η√
}

(16)

and

L
− 1
[

exp{ −
̅̅
s

√
}

s(
̅̅
s

√
+ b)(s − c)

]

=
exp{cη}

2c

(
exp{ −

̅̅̅
c

√
}

b+
̅̅̅
c

√ erfc

{
1

2 ̅̅̅η√ −
̅̅̅̅̅
cη√
}

+
exp{

̅̅̅
c

√
}

b −
̅̅̅
c

√ erfc

{
1

2 ̅̅̅η√ +
̅̅̅̅̅
cη√
})

−
exp{b(1+ bη) }

b
(
b2 − c

) erfc

{
1

2 ̅̅̅η√ + b
̅̅̅η√
}

−
1
bc
erfc

{
1

2 ̅̅̅η√

}

(17)

where erfc( • ) is the complementary error function; b and c are real.
The transforms of Eqs.(15)–(17) at b = B

(
1+

̅̅̅χ√
/Λ
)
and c = − Θ− 1

enable finding the original of Eq.(14) in the form

ϑm =
∑n

j=1
μjΨj +Φ (18)

where the impulse response function Ψ(η) and the function Φ(η) repre-
senting the initial temperature difference are expressed as

Ψ =
αΛi+ B

̅̅̅̅̅̅
χΘ

√

2
(
BΘ
(
Λ +

̅̅̅χ√ )
i − Λ

̅̅̅̅
Θ

√ )exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

× erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

}

+
αΛi − B

̅̅̅̅̅̅
χΘ

√

2
(
BΘ
(
Λ +

̅̅̅χ√ )
i+ Λ

̅̅̅̅
Θ

√ )

×exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

+
BΛ
( ̅̅̅χ√

− α
(
Λ +

̅̅̅χ√ ) )

Λ2 + ΘB2
(
Λ +

̅̅̅χ√ )2 exp
{
B
(
Λ +

̅̅̅χ√ )

Λ2

(
Λ + B

(
Λ +

̅̅̅χ√ )
η
)
}

× erfc

{
1

2 ̅̅̅η√ +
B
(
Λ +

̅̅̅χ√ )

Λ
̅̅̅η√
}

;

Φ =
ϑ0Λ

Λ +
̅̅̅χ√ erfc

{
1

2 ̅̅̅η√

}

−
ϑ0BΛ

̅̅̅̅
Θ

√

2
(
B
(
Λ +

̅̅̅χ√ ) ̅̅̅̅
Θ

√
+ Λi

)exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

}

−
ϑ0BΛ

̅̅̅̅
Θ

√

2
(
B
(
Λ +

̅̅̅χ√ ) ̅̅̅̅
Θ

√
− Λi

)exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

−
ϑ0Λ3

(
Λ +

̅̅̅χ√ )(
Λ2 + ΘB2

(
Λ +

̅̅̅χ√ )2
)

×exp
{
B
(
Λ +

̅̅̅χ√ )

Λ2

(
Λ + B

(
Λ +

̅̅̅χ√ )
η
)
}

× erfc

{
1

2 ̅̅̅η√ +
B
(
Λ +

̅̅̅χ√ )

Λ
̅̅̅η√
}

(19)

while the subscript of Ψ in Eq.(18) indicates repeated integration by the
rule

Ψj(η) = (j − 1)!
∫ η

0
…
∫ η

0⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅⏟
j

Ψ(ς)dς…dς
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

j

(20)

The functions Ψ and Φ given by Eq.(19) take real values, although
they contain the imaginary unit i =

̅̅̅̅̅̅̅
− 1

√
. Appendix A provides the

analytical expressions Ψj due to Eq.(20) which allow the specific power
Q to be defined as a polynomial of degree up to and including 9.

The analytical solution for the direct problem of contact heat con-
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duction is thus given by Eq.(18). Although this solution is based on the
classical mathematical methods, it is additionally validated by com-
parisons with the numerical solutions obtained by the Crank–Nicolson
implicit method in order to avoid accidental errors. Fig. 2 shows such
comparisons for constant, linear and quadratic specific power Q at Λ =

2, χ = 3, α = 1/4, B = 5, ϑ0 = 1, Θ = 6 and ηs = 10.

3. Particular cases of the contact heat conduction problem

The important particular cases differing in the thermal contact
conditions are considered. The asymptotic analysis of Eq.(18) is
cumbersome due to the complex-structured functions Ψ and Φ. A more
efficient approach is to find the limit expression of the image given by
Eq.(14) and then perform its inverse transform.

The imperfect thermal contact conditions of Eq.(3) generalise several
well-known types of thermal contact, as reviewed by Yevtushenko and
Kuciej [32] and Nosko [33]. As B→0, there is no contact heat transfer
between the bodies, and Eq.(14) simplifies to the expression

ϑ̃m =
α
Θ
∑n

j=1

μj(j − 1)!exp{ −
̅̅
s

√
}

s1/2+j(s+ Θ− 1)

which, according to Eq.(15), corresponds to the functions

Ψ =
αi

2
̅̅̅̅
Θ

√

(

exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

− exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

})

;

Φ = 0

(21)

Note that the expressions equivalent to Ψ in Eq.(21) were previously
derived by Frankel and Chen [13] and Nosko and Tsybrii [14].

On the other hand, when B→∞, Eq.(3) degrades to the perfect
thermal contact conditions, implying temperature continuity at the
interface, while Eq.(14) transforms into

ϑ̃m =

̅̅̅χ√

Θ
(
Λ +

̅̅̅χ√ )
∑n

j=1

μj(j − 1)!exp{ −
̅̅
s

√
}

s1/2+j(s+ Θ− 1)
+

ϑ0Λexp{ −
̅̅
s

√
}

Θ
(
Λ +

̅̅̅χ√ )
s(s+ Θ− 1)

or, in the space of originals,

Ψ =
i ̅̅̅χ√

2
̅̅̅̅
Θ

√ (
Λ +

̅̅̅χ√ )

(

exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

− exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

})

;

Φ =
ϑ0Λ

2
(
Λ +

̅̅̅χ√ )

(

2 erfc

{
1

2 ̅̅̅η√

}

− exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

− exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

})

(22)

In some practical situations, the temperature variation in the
counter-body (body 2) can be neglected. If Λ→∞ is assumed, Eq.(14)
simplifies to

ϑ̃m =
α
Θ
∑n

j=1

μj(j − 1)!exp{ −
̅̅
s

√
}

sj(
̅̅
s

√
+ B)(s+ Θ− 1)

+
ϑ0Bexp{ −

̅̅
s

√
}

Θs(
̅̅
s

√
+ B)(s+ Θ− 1)

implying

Ψ =
α

2
̅̅̅̅
Θ

√ (
B
̅̅̅̅
Θ

√
+ i
)exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

}

+
α

2
̅̅̅̅
Θ

√ (
B
̅̅̅̅
Θ

√
− i
)exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

−
αB

1+ ΘB2
exp{B(1+ Bη) }erfc

{
1

2 ̅̅̅η√ + B ̅̅̅η√
}

;

Φ = ϑ0 erfc

{
1

2 ̅̅̅η√

}

−
ϑ0B

̅̅̅̅
Θ

√

2
(
B
̅̅̅̅
Θ

√
+ i
)exp

{

−
η
Θ
−

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ −
i ̅̅̅η√

̅̅̅̅
Θ

√

}

−
ϑ0B

̅̅̅̅
Θ

√

2
(
B
̅̅̅̅
Θ

√
− i
)exp

{

−
η
Θ
+

i̅
̅̅̅
Θ

√

}

erfc

{
1

2 ̅̅̅η√ +
i ̅̅̅η√

̅̅̅̅
Θ

√

}

−
ϑ0

1+ ΘB2
exp{B(1+ Bη) }erfc

{
1

2 ̅̅̅η√ + B ̅̅̅η√
}

(23)

The practical significance of Eqs.(21)–(23) is shown in the next
sections.

4. Algorithm based on the inverse parametric optimisation
method

The measurement data from a thermocouple represents a series of
temperature samples ϑ(r)

m obtained at discrete times ηr. The sampling
frequency is normally constant, implying that ηr can be defined as

ηr =
ηs
p
r, r = 1,…, p

where p is the number of temperature samples ϑ(r)
m , which by default is

set equal to 100.
According to Eq.(9), the sought specific power Q is approximated by

a polynomial with n unknown coefficients μj. Note that the number n is
also unknown a priori. Thus, the inverse problem of contact heat con-
duction consists in finding n and μj from the temperature samples ϑ(r)

m

and the parameters contained in the functions Ψ and Φ. It can be solved
Fig. 2. Validation of the contact heat conduction problem solution
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by the inverse parametric optimisation method (IPOM), originating
from early studies by Beck [34], Frank [35] and Burggraf [36]. The root-
mean-square deviation σ of the temperature ϑm determined by Eq.(18)
at times ηr from the temperature samples ϑ(r)

m tends to the minimum, i.e.

σ2 = 1
p
∑p

r=1

(
∑n

j=1
μjΨj(ηr) + Φ(ηr) − ϑ(r)

m

)2

→min (24)

For a fixed value of n, taking derivative of the deviation σ with
respect to each μj and equalising it to zero lead to the system of linear
algebraic equations

∑n

l=1

∑p

r=1
Ψj(ηr)Ψl(ηr)μl =

∑p

r=1

(
ϑ(r)
m − Φ(ηr)

)
Ψj(ηr), j = 1,…, n (25)

Solving Eq.(25) for the cyclically incremented number n makes it
possible to find the parameters n = n* and μj providing the minimum
deviation σ = σ* and reconstruct the specific power Q by Eq.(9).

Fig. 3 illustrates the application of IPOM according to Eqs.(24),(25)
for a cubic specific power specified as Q = 1 − 4(η/ηs) + 9(η/ηs)

2
−

6(η/ηs)
3 at Λ = 2, χ = 3, α = 1/4, B = 5, ϑ0 = 1, Θ = 6 and ηs = 10. It

can be seen that with n from 1 to 3, the deviation σ decreases although
taking a relatively large value of order 10− 2 as the IPOM solution re-
mains inadequate. For n = n* = 4, Q is perfectly described by Eq.(9)
with σ* of order 10− 12. The subsequent increase in n leads to an accu-
mulation of calculation errors and an associated increase in σ. The
calculation errors originate from ill-conditioned Eq.(25), integration due
to Eq.(20), rounding-off, etc.

Fig. 4 considers the general case where the specific power Q is not
polynomial. It is accepted that Q = 16/33/2(η/ηs)

3/2
(1 − η/ηs)

1/2 under
the same parameters as in the previous case. As n changes from 1 to 8,
the IPOM solution becomes more adequate, which is accompanied by
decreasing σ. The minimum deviation σ* of order 10− 5 is reached at n =

n* = 8, providing an accurate approximation of Q by a polynomial of
degree 7.

The above analysis reveals two general trends in the behaviour of the
deviation σ depending on the number n. On the one hand, as n increases,
the IPOM solution is able to approximate Qmore accurately, implying a
smaller value of σ. On the other hand, an increase in n leads to larger
calculation errors and an increase in σ. The intersection of the trends
corresponds to the minimum deviation σ* at n = n*. The number n thus
plays the role of a regularisation parameter, similar to the Tikhonov

regularisation parameter which establishes a balance between the
competing effects of the bias and random errors (Woodbury and Beck
[37]).

For certain parameter combinations, however, the calculation errors
reach a critical level when the minimum deviation σ* is unacceptably
large and the IPOM solution is correspondingly inaccurate. Fig. 5 shows
the influence of the calculation errors on the reconstruction of the si-
nusoidal heat pulse specified as

Q = sin
(

πη
ηs

)

(26)

The IPOM solution is obtained using the function Ψ from Eq.(21)
corresponding to the forced heat partition conditions at α = 1 and Θ =

1. It is shown that for ηs = 100, σ* is of order 10− 6, while the IPOM
solution coincides with the exact solution. In contrast, a noticeable error
occurs in the IPOM solution at ηs = 1000 with σ* of order 10− 2, which is
due to ill-conditioned Eq.(25).

The analysis shows that if IPOM provides an accurate solution, the
number n is not greater than 9. This limits the application range of IPOM
to the set of specific power functions which can be approximated by a
polynomial of degree up to about 8.

5. Reference inverse methods

For any specific power function Q, the contact heat conduction
problem of Eq.(8) can be expressed in the form of convolution equation

ϑm(η) =
∫ η

0
Q(η − ϵ)Ψ(ϵ)dϵ+Φ(η) (27)

which belongs to the family of Volterra integral equations of the first
kind with difference kernel.

The introduction of time stepΔ defines the discrete times ηr = rΔ and
mid-times ηr±1/2 = (r ± 1/2)Δ. The quadrature formula based on the
trapezoidal rule transforms Eq.(27) into the equation relating the spe-
cific power Q(r− 1/2) at the mid-times ηr− 1/2 and the temperature samples
ϑ(r)
m at the times ηr as follows:

ϑ(r)
m =

∑r

m=1
Q(m− 1/2)ΔΨr− m +Φ(ηr) (28)

where ΔΨr− m is obtained by integration

Fig. 3. Application of IPOM to reconstruct the polynomial specific power Q
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ΔΨr− m =

∫ ηr− m+1

ηr− m
Ψ(ς)dς = Ψ1(ηr− m+1) − Ψ1(ηr− m)

The solution of Eq.(28) is found using the recurrent formula (Stolz
[38], Beck [39])

Q(r− 1/2) =
1

ΔΨ0

(

ϑ(r)
m − Φ(ηr) −

∑r− 1

m=1
Q(m− 1/2)ΔΨr− m

)

(29)

After calculations with Eq.(29), the specific power Q(r) at the time ηr
is finally determined as the average between Q(r− 1/2) and Q(r+1/2). The
inverse heat conduction method given by Eq.(29) is referred to as the
simple inverse convolution method (SICM).

The stability and accuracy of SICM are intimately related to the
specification of the time step Δ. On the one hand, the SICM solution
becomes less stable with a decrease in Δ, implying the occurrence of
unphysical oscillations. On the other hand, an increase in Δ leads to an
oversmoothed SICM solution with a loss of physically explainable fre-
quencies. Therefore, a rational time step Δ* should be chosen to avoid

the instability and achieve a reasonable smoothness of the SICM solu-
tion. The principle of natural step regularisation suggests thatΔ* is equal
to the point of maximum of the kernel function (Alifanov [40]), i.e.

Ψ(Δ*)→max (30)

The instability and oversmoothing effects are illustrated for the si-
nusoidal heat pulse of Eq.(26). Fig. 6 shows the specific power recon-
structed by Eq.(29) with Ψ given by Eq.(21) at α = 1, Θ = 1 and ηs = 50.
It can be seen that the SICM solution is unstable at Δ = Δ*/2. Further,
SICM provides a sufficiently accurate solution at Δ = Δ*. Furthermore,
the SICM solution is oversmoothed at larger Δ = 4Δ*. The following
SICM simulations obey the principle of natural step regularisation due to
Eq.(30).

The limitation from below on the time stepΔ inherent in SICM is very
impractical. Beck [41,42] proposed a generalisation of SICM that uses
information about the future temperature and allows a significant
reduction of the time step, the so-called sequential function specification
method (SFSM). The simplest formulation of SFSM, in which only one

Fig. 4. Application of IPOM to reconstruct the non-polynomial specific power Q

Fig. 5. Influence of the calculation errors on the IPOM solution

Fig. 6. Influence of the time step Δ on the SICM solution
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future temperature is considered, discretises Eq.(27) for the future time
ηr+1 = (r + 1)Δ as

ϑ(r+1)
m =

∑r

m=1
Q(m− 1/2)ΔΨr− m+1 +Q(r− 1/2+1)ΔΨ0 +Φ(ηr+1) (31)

It is also assumed that the future specific power is equal to the cur-
rent specific power, i.e.

Q(r− 1/2+1) = Q(r− 1/2) (32)

The condition of least-squares deviation of the temperatures given by
Eq.(28) and Eq.(31) in the form

∑1

l=0

(
∑r+l

m=1
Q(m− 1/2)ΔΨr− m+l + Φ(ηr+l) − ϑ(r+l)

m

)2

→min

combined with Eq.(32) leads to the following equation:

Q(r− 1/2) =
ΔΨ0ϑ(r)

m + (ΔΨ0 + ΔΨ1)ϑ(r+1)
m

(ΔΨ0)
2
+ (ΔΨ0 + ΔΨ1)

2

−
ΔΨ0Φ(ηr) + (ΔΨ0 + ΔΨ1)Φ(ηr+1)

(ΔΨ0)
2
+ (ΔΨ0 + ΔΨ1)

2

−
∑r− 1

m=1
Q(m− 1/2)ΔΨ0ΔΨr− m + (ΔΨ0 + ΔΨ1)ΔΨr− m+1

(ΔΨ0)
2
+ (ΔΨ0 + ΔΨ1)

2

(33)

The analysis shows that SFSM given by Eq.(33) yields a stable solu-
tion at smaller time step Δ = Δ*/4, which is used in the following
simulations. The further two-fold decrease in Δ may already be
accompanied by the instability effects. This agrees well with the
conclusion by Beck [41] that ‘the newmethod is stable with time steps as
small as one sixth of the minimum allowable time step in the Stolz
method’.

6. Accuracy and noise robustness of the algorithm

The accuracy and noise robustness of IPOM is analysed for the si-
nusoidal heat pulse of Eq.(26) and compared to those of SICM and SFSM.
The considered problem involves two dimensionless parameters, namely
the heating duration ηs and time constant Θ. IPOM uses Ψ given by Eq.
(21) with α = 1.

The accuracy of the inverse method is characterised by the root-
mean-square deviation σQ of the reconstructed specific power Q from
exact Eq.(26). Fig. 7 shows the region of accurate simulations in the
plane (ηs,Θ) with σQ < 1%. The solid, dashed and dotted lines corre-
spond to IPOM, SFSM and SICM, respectively. The highlighted practical
region is bounded by the line Θ = 100ηs (slow-response thermocouple)
and Θ = 0.01ηs (fast-response thermocouple). For a more meaningful
representation, a logarithmic scale with a base of 10 is used.

SICM is accurate within a small fraction of the practical region cor-
responding to fast-response thermocouple measurements. SFSM allows
accurate simulations for a larger region, but still does not cover slow-
response thermocouple measurements due to the oversmoothing ef-
fect. As discussed above, the oversmoothing cannot be overcome by
decreasing the time step Δ as the inverse solution becomes unstable. In
contrast, IPOM is accurate over a substantially larger fraction of the
practical region and covers both fast- and slow-response thermocouple
measurements.

The noise robustness of the inverse method is investigated by dis-
turbing the temperature samples ϑ(r)

m with random noise with zero mean
and a small standard deviation σϑ and by analysing the influence on the
specific power deviation σQ. In the analysis, the heating duration ηs = 50
and time constant Θ = 1 are accepted, which, according to Fig. 7,
correspond to the stable and accurate solutions by the three inverse
methods for the undisturbed measured temperature. Table 1 shows the
obtained statistical data, where the deviation σQ is the mean value for a

cycle of 1000 simulations, while the ratio σQ/σϑ is used to characterise
the noise sensitivity of the inverse methods. The presented values of σQ
are repeatable from cycle to cycle of the simulations.

According to Table 1, SICM is sensitive to noise with σQ/σϑ of about
1–3. SFSM is more noise sensitive with σQ/σϑ ≈ 4 (at Δ = Δ*/4). The
noise sensitivity of IPOM decreases with an increase in the number p of
temperature samples or with an increase in the standard deviation σϑ.
For small p = 10, IPOM has the ratio σQ/σϑ which is comparable to the
ratio σQ/σϑ for SICM. However, with an increase in p to 1000, σQ/σϑ

becomes an order of magnitude smaller. At σϑ = 0.1, for example, it is
only 0.054.

Compared to SICM and SFSM, IPOM thus exhibits a significantly
higher robustness against noise, especially for large p. This finding can
be explained by the fact that the larger is p, the smaller is the influence of
a single noise-induced deviation in the temperature samples ϑ(r)

m on the
reconstruction of the specific power Q. In other words, the filtering of
the measured temperature is an intrinsic property of the IPOM-based
algorithm. Note that increasing the sampling frequency of a data
acquisition system (i.e. increasing p) often leads to an amplification of
the noise (i.e. an increase in σϑ). Together with the relations from

Fig. 7. Accuracy of the inverse methods for the sinusoidal heat pulse

Table 1
Noise sensitivity of the inverse methods for the sinusoidal heat pulse

σϑ Inverse method σQ σQ/σϑ

10− 3 ± 10− 5

SICM 0.0028 2.8
SFSM 0.0041 4.1
IPOM at p = 10 (n* = 5) 0.00094 0.94
IPOM at p = 102 (n* = 7) 0.00031 0.31
IPOM at p = 103 (n* = 7) 0.00011 0.11

10− 2 ± 10− 4

SICM 0.0099 0.99
SFSM 0.040 4.0
IPOM at p = 10 (n* = 5) 0.0054 0.54
IPOM at p = 102 (n* = 5) 0.0017 0.17
IPOM at p = 103 (n* = 5) 0.00069 0.069

10− 1 ± 10− 3

SICM 0.097 0.97
SFSM 0.40 4.0
IPOM at p = 10 (n* = 3) 0.034 0.34
IPOM at p = 102 (n* = 5) 0.016 0.16
IPOM at p = 103 (n* = 5) 0.0054 0.054
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Table 1, this means that reducing σQ by adjusting p is a non-trivial task in
practice.

7. Algorithm applications

7.1. Laser welding

Laser welding is a common technique for joining materials. If one of
the materials is transparent to the laser wavelength, the laser beam can
be directed perpendicular to the interface from the side of the trans-
parent material. The energy of the laser pulse penetrates the transparent
material with insignificant energy losses and is absorbed in the inter-
facial region, which leads to the heating of the materials and the for-
mation of the welding joint (Cvecek et al. [43]). The quality of the
welding joint strongly depends on the temperature regime.

Consider an inverse problem of contact heat conduction in laser
welding of dissimilar glass pieces 1 and 2. The pieces have the following
thermal properties: K1 = 0.9 W/(m ◦C), k1 = 5 • 10− 7 m2/s and K2 =

0.6 W/(m ◦C), k2 = 3 • 10− 7 m2/s. The initial temperature is Ti1 = Ti2 =

20 ◦C. The laser pulse is focussed through the transparent piece 2 onto
the interface x = 0. The specific power q of the laser pulse changes in the
time interval from zero to ts = 8 s due to the function q/qmax =
28/5(t/ts)4/5(1 − t/ts)4/5 describing a single symmetrical pulse with the
peak qmax = 2 • 106 W/m2. A thermocouple is installed in the piece 1 in
such a way that the distance between its measuring junction and the
interface is h = 1 mm. The thermal contact resistance between the
measuring junction and piece 1 leads to a delay in the thermocouple
response, which is characterised by the time constant τ = ts/10 = 0.8 s.
The temperature measurement is conducted with a frequency of 50 Hz,
implying p = 400 temperature samples, and a standard deviation of the
noise of 5 ◦C. Reconstruct the specific power q and contact temperature
T1 = T2 assuming that the thermal contact between the pieces is perfect,
while all the energy of the laser pulse is absorbed at the interface.

Fig. 8 presents the IPOM solution obtained by Eqs.(24),(25) with the
functions Ψ and Φ from Eq.(22) corresponding to the perfect thermal
contact conditions. The minimum deviation σ* is reached at n* = 8, i.e. q
is approximated by a polynomial of order 7. The IPOM and exact curves
agree well for q and T1, with the exception of the end interval, where a

slight deviation occurs. With SFSM of Eq.(33), q can generally be
reconstructed, albeit with the noticeable disturbances caused by the
noise. Attempts to reconstruct q using Eq.(29) indicate that SICM is not
suitable here due to a large rational time step Δ*. Note that these results
should be treated as estimate since several factors are not considered,
including phase changes in the pieces and temperature effects on their
properties.

7.2. Sliding friction

It is known that when bodies slide against each other, mechanical
energy is dissipated in the form of heat at their interface. The associated
temperature changes affect the properties of the bodies including their
tribological performance (Kennedy [44]). Therefore, the temperature
aspect is of paramount importance in the development and use of fric-
tion systems, such as brakes, clutches and bearings.

Consider an inverse problem of heat conduction in a brake pad 1
sliding against a disc 2 during a single braking interaction (Bryant and
Day [45]). The pad 1 comprises a multi-ingredient material with K1 = 4
W/(m ◦C) and k1 = 3 • 10− 6 m2/s. Its initial temperature is Ti1 = 20 ◦C.
The steel disc 2 has sufficient heat capacity to neglect the temperature
rise in it during the braking process, implying a constant temperature of
T2 = 20 ◦C. If the mechanical energy is completely converted into heat,
the specific power q of heat generation is equal to the product of the
friction coefficient, contact pressure and sliding speed. The function
q/qmax = 55/3/28/3(t/ts)1/3(1 − t/ts)4/3 simulates a fast increase in q in
the start interval due to the increasing contact pressure, where the peak
qmax = 7 • 106 W/m2 is reached at t = ts/5, and a subsequent decrease
in q to zero due to the decreasing sliding speed. The braking duration is
ts = 0.6 s. The imperfect thermal contact between the pad 1 and disc 2 is
characterised by the heat generation coefficient α = 0.09 and contact
heat transfer coefficient γ = 800 W/(m2 ◦C). A thermocouple is installed
in the pad 1 with a measuring junction at distance h = 0.5 mm from the
friction surface. The time constant of the thermocouple is τ = ts/3 = 0.2
s. The frequency of the temperature measurement is 500 Hz, resulting in
p = 300 temperature samples. The standard deviation of the noise is
0.7 ◦C. Reconstruct the specific power q and the contact temperature T1
of the pad 1.

Fig. 8. Inverse problem of contact heat conduction in laser welding
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Fig. 9 presents the IPOM solution according to Eqs.(24),(25) this time
using the functions Ψ and Φ from Eq.(23) describing the imperfect
thermal contact of a body with a constant-temperature counter-body.
The IPOM solution corresponds to n* = 6 and, accordingly, to a poly-
nomial q of order 5. Despite the small deviations of the IPOM curve q
from the exact curve, the overall character of q is not distorted, leading
to an accurate reconstruction of T1. It can also be seen that the SFSM
solution by Eq.(33) is less accurate, while the SICM solution by Eq.(29) is
not suitable at all.

7.3. Electric resistance welding

Electric resistance welding is a technique used to join materials by
passing a controllable electric current through them. The passage of the
current through the interface between the materials leads to thermo-
electric processes associated with intensive heating and welding of the
materials (Yang et al. [46]). As with laser welding, the temperature
regime has a decisive influence on the quality of the welding joint.

Consider an inverse problem of contact heat conduction in electric
resistance welding of similar pieces 1 and 2 made of an aluminium alloy.
The thermal properties of the pieces are specified as K1 = K2 = 200 W/
(m ◦C) and k1 = k2 = 8 • 10− 5 m2/s. The initial temperature of the piece
1 is Ti1 = 20 ◦C, while the initial temperature Ti2 = 300 ◦C of the piece 2
is higher due to the technological requirements. The specific power q of
the heat generation changes due to a down-slope heat profile q/qmax =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − t/ts

√
with maximum qmax = 108 W/m2 at the initial time. The

welding duration is short and equals ts = 0.1 s. Since the pieces are made
of the same material, the heat generation coefficient is reasonably
assumed to be α = 1/2. The surface roughness and oxide layers of the
pieces imply imperfect thermal contact, which is characterised by the
contact heat transfer coefficient γ = 4000 W/(m2 ◦C). A thermocouple
measures the temperature in the piece 1 at distance h = 1 mm from the
interface. The time constant of the thermocouple is τ = 2ts = 0.2 s. Due
to the short welding duration, a high sampling frequency of 5 kHz is set,
providing p = 500 temperature samples, but with a stronger noise of
standard deviation 2 ◦C. Reconstruct the specific power q and the con-
tact temperatures T1 and T2 of the respective pieces 1 and 2.

Fig. 10 shows the specific power q and temperatures T1,2 recon-
structed by IPOM of Eqs.(24),(25) along with the functions Ψ and Φ in
their general form of Eq.(19). It can be seen that a cubic approximation

of q at n* = 4 allows to accurately reconstruct T1,2 for the noisy tem-
perature measurement. The SFSM and SICM simulations by respective
Eq.(33) and Eq.(29) are inadequate and cannot be shown due to a large
rational time step Δ*.

The obtained results suggest that the proposed IPOM-based algo-
rithm allows to accurately reconstruct the heat fluxes and temperatures
in two thermally coupled bodies from noisy measurements by a slow-
response thermocouple, taking into account the interfacial heat source
and initial temperature difference. The ratio τ/ts is 1/10 for the laser
welding problem (see Fig. 8) and 1/3 for the sliding friction problem
(see Fig. 9) and is as large as 2 for the electric resistance welding
problem (see Fig. 10). Further improvements of the algorithm may
involve its combination with other advanced methods, such as those
based on neural networks (Raudenský et al. [47]), genetic algorithms
(Gosselin et al. [48]), fuzzy logic (Wang et al. [49]), particle swarm
optimisation (Zálešák et al. [50]), etc.

8. Conclusions

An algorithm for solving the inverse problems of contact heat con-
duction has been developed based on the inverse parametric optimisa-
tion method. Using the Laplace integral transform, the impulse response
function is derived for the direct problem of heat conduction in two
bodies coupled with the imperfect thermal contact conditions,
describing the interfacial heat source, heat partition and contact heat
transfer. The thermocouple response is assumed to obey the first-order
model with the time constant parameter. The specific power of the
heat source is sought in the form of a polynomial providing the least-
squares deviation of the simulated temperature from the temperature
samples obtained by the thermocouple. The important particular cases
of the imperfect thermal contact conditions, including the forced heat
partition, perfect thermal contact and imperfect thermal contact of a
body with a constant-temperature counter-body, are also treated. The
accuracy of the algorithm and its noise robustness are analysed and
compared to those for the classical methods of simple inverse convolu-
tion and sequential function specification.

The proposed algorithm proves to be accurate in a substantially
larger variation region of the heating duration and time constant,
covering also slow-response thermocouple measurements. This is
attributed to the fact that the algorithm is free from the instability and

Fig. 9. Inverse problem of contact heat conduction in sliding friction
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oversmoothing limitations inherent in the reference methods. Addi-
tionally, the algorithm is significantly more robust against noise with a
sufficient number of temperature samples. The assumption of a poly-
nomial specific power does not appear to be too restrictive in practice.
Successful applications of the algorithm are demonstrated on the inverse
contact heat conduction problems typical for sliding friction, laser and
electric resistance welding. It becomes clear that the algorithm is able to
accurately reconstruct the heat source specific power and contact tem-
peratures from noisy temperature measurements for different ratios of
the time constant to the heating duration.
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Appendix A

Analytical expressions of the repeated integrals Ψj of the impulse response function for j∊{1,2,…,10} according to Eq.(20).

Ψj(η) = (j − 1)!

⎛

⎝
αΛi+ B

̅̅̅̅̅̅
χΘ

√

2
(
BΘ
(
Λ +

̅̅̅χ√ )
i − Λ

̅̅̅̅
Θ

√ )ψ j

(

η, − i̅
̅̅̅
Θ

√

)

+
αΛi − B

̅̅̅̅̅̅
χΘ

√

2
(
BΘ
(
Λ +

̅̅̅χ√ )
i+ Λ

̅̅̅̅
Θ

√ )ψ j

(

η, i̅
̅̅̅
Θ

√

)

+
BΛ
( ̅̅̅χ√

− α
(
Λ +

̅̅̅χ√ ) )

Λ2 + ΘB2
(
Λ +

̅̅̅χ√ )2 ψ j

(

η,
B
(
Λ +

̅̅̅χ√ )

Λ

)
⎞

⎠;

ψ0(η, z) = exp{z(1+ zη) }erfc
{

1
2 ̅̅̅η√ + z

̅̅̅η√
}

;

ψ1(η, z) =
2 ̅̅̅η√ exp{ − 1/(4η) }

z
̅̅̅
π

√ − (1+ z)
erfc
{
1
/(

2 ̅̅̅η√
)}

z2
+

ψ0(η, z)
z2

;

ψ2(η, z) = (3+ z+ 4zη)
̅̅̅η√ exp{ − 1/(4η) }

3z2
̅̅̅
π

√ − (3+ z+ 6(1+ z)η )
erfc
{
1
/(

2 ̅̅̅η√
)}

6z2
+

ψ1(η, z)
z2

;

Fig. 10. Inverse problem of contact heat conduction in electric resistance welding
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ψ3(η, z) =
(
5+ z+2(25+9z)η+32zη2

)
̅̅̅η√ exp{ − 1/(4η) }

60z2
̅̅̅
π

√ −
(
5+ z+20(3+ z)η+60(1+ z)η2

) erfc
{
1
/(

2 ̅̅̅η√
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120z2
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ψ2(η, z)
z2

;

ψ4(η, z) =
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7+ z+4(49+ 10z)η+12(77+ 29z)η2 +384zη3

)
̅̅̅η√ exp{ − 1/(4η) }
2520z2

̅̅̅
π

√ −
(
7+ z+ 42(5+ z)η+420(3+ z)η2

+840(1+ z)η3
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/(

2 ̅̅̅η√
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+
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z2

;
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)
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181440z2

̅̅̅
π

√ −
(
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