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Abstract: The maximum permissible load of underground power cables (known in U.S. engineering
as “ampacity”) is a function of many parameters, in particular, the thermal resistivity of the native
soil. If this resistivity is relatively high, thermal/stabilized backfill is applied, i.e., another material is
placed around the cables, providing favourable conditions for heat transfer to the environment. It has
a positive impact on the reliability of the power supply and favours the operational durability of the
cables. In design practice, however, there is a difficult task—correct determination of the ampacity of
the cable line depending on the thermal parameters and the geometry of the backfill. Therefore, this
article presents the results of a numerical analysis to determine the ampacity of cable lines in which
stabilized backfill is used. A new mathematical relationship is proposed that allows the correction of
the ampacity of cable lines depending on their cross-section as well as the thermal and geometric
parameters of the cable surroundings.

Keywords: ampacity; numerical modelling; power cables; reliability; thermal analysis

1. Introduction
1.1. General Description of the Topic

The vast majority of cable systems and the associated modelling relate to under-
ground cable installations. The widespread increase in demand for electricity (especially in
developing countries) and the constant desire to develop the distribution network, also
in unfavourable soil conditions, require cable line designers to use both standard and
case-specific design methods. There are a number of aspects of power cable installation
design that must be considered to improve the modelling of underground cable systems
while maintaining power network flexibility and reliability [1]. In the indicated context,
issues related to the operational reliability of power systems are important, as widely
described by the author of the publication [2]. The operational reliability of power systems
relates, among other factors, to the transmission capacity of cable lines (current-carrying
capacity/ampacity), resistance to damage, and economic efficiency [3]. The authors of the
paper [4] emphasize the importance of optimizing reliability in cable system design, which
also relates to the topic of this research. The indicated factors apply to the entire assumed
operational period of underground cable systems (usually a minimum of 30 years). In order
to ensure the required parameters, the frequently used design solution is thermal/stabilized
backfill in underground power cable systems. The use of this type of solution is widely
described, for instance, in [5–7]. The most frequently raised issue in studies is how to
maintain appropriate and predictable mechanical and thermal properties of the stabilized
backfill so as to ensure proper operating conditions of underground power cable lines [8,9].
The thermal resistivity of the soil undoubtedly influences the ampacity of power cable
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lines laid in the ground. In order to improve the conditions of heat exchange between
the cable and the ground (increasing the ampacity), the surrounding soil is most often
replaced by stabilized backfill with a lower thermal resistivity. Because the resistivity of the
native soil depends on several factors, including grain composition, grain size and moisture
content [10,11], the use of stabilized backfill allows for uniform heat exchange conditions
between the power cables and the surroundings. Uniform and good heat exchange condi-
tions help to avoid local thermal exposure of cables in places where the thermal resistivity
of the native soil is high [3,12]. Local overheating of cables leads to the rapid aging of their
insulation, and it reduces the operational durability of cables [12–14]. Stabilized backfill is
also beneficial to avoid mechanical stress on the cables. The native soil may contain stones
and other sharp elements, whereas the backfill is homogeneous and free from damaging
fractions [10]. The use of stabilized backfill also makes it possible to avoid the occurrence
of so-called dry zones in underground installations. Dry zones occur as a result of local
moisture migration due to the heating of power cables’ surroundings by Joule heat. As a
consequence, the thermal resistance of the surrounding soil increases and the long-term
permissible temperature for a power cable’s insulation may be exceeded [15]. Therefore,
both designers and power system operators are concerned about maintaining stable and
optimal thermal conditions around the installed power cable lines [11,16,17]. In addition
to the technical arguments indicated, economic issues are also important for the use of
stabilized backfill [8,18]. Taking into account the above information, the main issue when
designing a cable line is determining its long-term ampacity correctly in order to avoid
thermal damage to the cables. If no stabilized backfill is used, this is not a major problem.
In this respect, the use of common standards [19–22] is sufficient, and their provisions can
be used to verify numerical calculations [3,23–26]. As noted by the authors of article [26],
the ampacity determined based on standards [20–22] is overestimated when compared to
numerical models.

1.2. The Issue of Cable Placement in Stabilized Backfill

Determining the ampacity of power cables laid in the ground with the use of stabilized
backfill is not obvious and the recommended method using the aforementioned standards
is inadequate. This is primarily due to the fact that the cited standards are based on the
Neher–McGrath approach [27], which provides analytical solutions for simple computa-
tional models. In this case, the only accurate solution is to use numerical calculations of
the thermal states of power cables, which allows us to obtain the values of the ampacity
of power cable lines in the assumed conditions. Therefore, there is a real need to develop
computational methods based on numerical calculations of thermal states for power cables
laid in the ground with the use of stabilized backfill. This article is dedicated to this issue. It
should be emphasized that similar issues have been studied by other scientists, but there are
some gaps. The authors of article [1] presented the problem related to the drying out of the
surroundings of power cable installations and the possible consequences of this in the form
of the aging of the cables’ insulation and indicated the possibility of using stabilized backfill
with no indication of the load of the power cables in the new configuration/geometry with
stabilized backfill. In paper [12], the authors pointed out important factors affecting the
ampacity of power cables laid in the ground; however, the influence of stabilized backfill
on ampacity was only briefly mentioned. Article [28] included an analysis of various types
of stabilized backfill and their impact on ampacity; however, the relationship between the
ampacity and the thermal parameters of the soil/stabilized backfill was not developed.
Paper [14] contains a description of the work carried out using the system of dynamic
line rating (DLR) for underground installations, while also considering various types of
stabilized backfill. Nevertheless, such an application is appropriate for smart grids and
presents a challenge for the future. Similar conclusions regarding the usefulness of numeri-
cal calculations and their comparison with standards are included in article [29], but the
authors of the publication did not summarize their calculations with a general relationship.
The authors of article [30] presented a computational model of the ampacity of power
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cables buried in the ground with stabilized backfill, which is based on the thermal circuit
model. The article does not provide an assessment of the accuracy of the computational
model used. The authors of article [31] undertook research related to the grounding system
covered with stabilized backfill and claim that the modern simulation approach, especially
in complicated computational cases, gives accurate results which are often impossible to
determine analytically. Article [16] addresses the issue of developing analytical methods for
determining the ampacity of power cable lines laid in the ground using stabilized backfill
(in particular, improving the accuracy of determining the ampacity by using standards).
The obtained research results were summarized in analytical relationships (with some
limitations). The authors of paper [16] emphasized the importance of using bentonite as a
stabilized backfill to improve the ampacity of power cables; however, they did not refer
the results of their research to the numerical determination of the increase in the ampacity.
Paper [11] contains information on the influence of stabilized backfill material type, particle
density and particle dimensions on the thermal properties of the backfill. However, the
authors of the article did not consider the direct impact of these parameters on the ampacity
of power cables laid in the discussed stabilized backfill. The authors of study [32] examined
the influence of soil moisture on the permissible long-term temperature of certain types of
power cables. They estimated the possible reduction in the service life of the power cable
line at nominal load but did not take this phenomenon into account when calculating the
ampacity of the power cable line.

The research results presented in this article constitute a significant extension of the
content included in the authors’ article [3], commenting on the problem and indicating
possible solutions for cables laid in thermal/stabilized backfill. Based on further, extensive
analyses, the authors have introduced a method to calculate ampacity, taking into account
the cross-sectional area of the cables and the dimensions of the stabilized backfill. Thanks
to the implementation of advanced numerical models and calculations, a mathematical
relationship for a correction factor is proposed that allows for the determination of the
ampacity of cables. As a result of the authors’ approach, it is possible to maximize the
transmission potential of cables for their given cross-sectional area and stabilized backfill
dimensions. The authors’ proposal will have a positive impact on the reliability of cable
systems. The authors’ approach is an alternative to other solutions and a contribution to
the current state of knowledge. This is very important for design practice, because proper
modelling of ground properties has a significant impact on the thermal parameters of cable
lines and, therefore, their ampacity [33].

The rest of the article is organized as follows: Section 2 applies to the power cable
system without stabilized backfill and presents the computer model of the analyzed system,
assumptions for simulation calculations, and visualization of the temperature fields for the
cable system for various parameters. Section 3 contains the results of relevant computer
tests on the ampacity of power cables placed in the ground with stabilized backfill. This
section also includes a discussion of the results as well as a mathematical relationship
summarizing the obtained results. Section 4 provides an overall summary of the article
and related conclusions.

2. Materials and Methods

The numerical analysis used in the authors’ research is based mainly on the quantita-
tive examination of the thermal states of power cables (cable lines) placed in the ground
with and without the use of stabilized backfill. The power cable lines consisting of three
single-core copper conductors were analyzed (three-phase system—three cables in a flat,
touching formation). The cross-sectional area of the cables was taken into account in the
model tests. The tested power cable lines consisted of cables with a cross-sectional area of
3 × 35 mm2, 3 × 120 mm2, and 3 × 240 mm2, respectively. The cross-sectional view of the
analyzed cable type is shown in Figure 1.
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35 7.2 12.4 
120 13.2 19.4 
240 18.8 26.8 

The introduction to detailed analyses related to the influence of stabilized backfill 
parameters on the ampacity of power cable lines is conditional to the verification of the 
numerical model. Verification of the numerical model can be performed on a relatively 
simple model—in this case, it will concern a power cable line buried directly in the ground 
without the use of stabilized backfill. The illustrative model is presented in Figure 2. The 
results of numerical calculations for the simple model (without stabilized backfill) will be 
compared with the known values contained in the standard [19]. 

 
Figure 2. A simple version of the cable system (three cables in a flat, touching formation, without 
stabilized backfill) to verify the correctness of the numerical model. 

Figure 1. Illustrative drawing of the analyzed power cable type.

The characteristic dimensions of a given type of power cable are included in Table 1.

Table 1. List of dimensions of the analyzed power cables.

Cross-Sectional Area,
mm2

Copper Conductor
Diameter D1, mm

External Diameter D2,
mm

35 7.2 12.4
120 13.2 19.4
240 18.8 26.8

The introduction to detailed analyses related to the influence of stabilized backfill
parameters on the ampacity of power cable lines is conditional to the verification of the
numerical model. Verification of the numerical model can be performed on a relatively
simple model—in this case, it will concern a power cable line buried directly in the ground
without the use of stabilized backfill. The illustrative model is presented in Figure 2. The
results of numerical calculations for the simple model (without stabilized backfill) will be
compared with the known values contained in the standard [19].
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The simplified model shown in Figure 2 was implemented in the ANSYS Fluent
software(version 2020 R2 and 19.1). According to the presented model, the power cable
line is arranged in a flat, touching arrangement and is embedded in the ground to a depth
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of h = 0.7 m. The assumption made, as well as a certain simplification, is the homogeneity
of materials in the analyzed geometric system. A steady-state simulation was conducted to
analyze the heat transfer between power cables and their surrounding material. During
the simulation, the energy equation was enabled and the physical properties of various
materials, such as density and thermal characteristics (including thermal conductivity and
specific heat), were implemented into the model. The energy equation in ANSYS Fluent is
complex; however, for the specified computational case, thermal conduction in the solid
body is the only heat transfer mechanism that needs to be resolved. The temperature
boundary condition in the lower part of the model was set to 20 ◦C, which aligns with
Polish geological and thermal conditions. The design air temperature tair is 20 ◦C and the
convective heat coefficient of 15 W/(m2K) is set on the upper boundary of the domain.
These parameters are consistent with the assumptions of the standard [22] and possible
unfavourable conditions of heat exchange in the environment.

Figure 3 shows an example of the distribution of computational mesh elements for
a selected part of the model. The computational domain encompasses approximately
400,000 computational cells in total. Within this domain, calculations were conducted
to determine the ampacity (IA) of the power cable line under investigation, which was
modelled using varying values of soil thermal resistivity ρg: 0.5, 1.0, and 2.0 (K·m)/W.
The determination of the ampacities results from the thermal balance, or more precisely,
from the Joule’s heat portion supplied to the working conductor of the power cable so
as to achieve the maximum permissible temperature. The critical temperature threshold
for PVC material was determined to be 70 ◦C. By incrementally augmenting the heat flux
applied to the internal surface of the insulation, the system’s maximum temperature was
elevated to meet this limit, which represents the maximum permissible temperature for
cable insulation.
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Figure 3. View of the computational grid for the numerical model.

To enhance calculation accuracy, a second-order discretization scheme was imple-
mented for energy residue. In general, for the second order spatial discretization, quanti-
ties at cell faces are computed using a multidimensional linear reconstruction approach,
whereas for the first order discretization, a cell is represented by its cell-center value. Only
the energy equation was solved within the solver framework, with the flow and turbulence
equations disabled. Convergence criteria were set to “none”, and iterative computations
were monitored via the energy equation residual chart until the residual exhibited neg-
ligible further changes, signalling computational stability. Table 2 shows the results of
numerical simulations and a comparison of their results with data from the standard [19].
Examples of temperature distributions/fields around the cables can be found in Figure 4.
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Table 2. Summary of the results of numerical model verification (IA—ampacity).

Cross-Section of
All Three Cables,

mm2

Soil
Thermal Resistivity,

ρg, (K·m)/W

Numerical
Simulations,

IA, A

Standard IEC
60364-5-52 [19],

IA, A

Difference between
Simulation Results and

the Standard [19] Data, %

35
based on [3]

0.5 219.4 207.0 6.0
1.0 169.8 165.0 2.9
2.0 127.4 124.0 2.7

120
0.5 431.3 414.0 4.2
1.0 330.0 330.0 0.0
2.0 245.2 246.4 0.5

240
0.5 627.1 602.0 4.2
1.0 482.4 480.0 0.5
2.0 357.5 358.4 0.3
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Summarizing the results obtained in Table 2, it is possible to prove the high con-
vergence of the numerical model with the values given in the standard [19]. Differences
in ampacity IA amount to a maximum of 6% (for a thermal resistivity of soil equal to
ρg = 0.5 (K·m)/W). It should be mentioned here that the authors of the standard [19] as-
sume that the overall accuracy of the values included in the standards is around 5%. Based
on the verification of the numerical model, it can be concluded that the presented model is
correct and accurate enough. These results justify the development of a model of a system
containing stabilized backfill.

3. Results and Discussion

A computational model was developed to determine the ampacity of power cable
lines using stabilized backfill, according to Figure 5.
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Figure 5. A simplified graphical model presenting the method of the ampacity testing using stabi-
lized backfill.

The model presented in Figure 5 assumes, similarly to the verification of the previous
model in Figure 2, a flat formation of the power cable line with a cross-sectional area of
35 mm2, 120 mm2 and 240 mm2. Unlike the original model (see Figure 2), a stabilized
backfill was used. Stabilized backfill is contained in the area limited by dimension “z”.
The value of this parameter varied accordingly: z = 10 cm, 20 cm, and 30 cm. The thermal
resistivity of stabilized backfill ρz varied (two values): 0.75 and 1.0 (K·m)/W. The stabilized
backfill parameters presented above are often used in practice. Table 3 contains the results
of calculations of the ampacity for the analyzed power cable lines and the parameters of
stabilized backfill.

Graphical interpretations of the results obtained in Table 3 are presented in Figures 6–8.
In order to better present the obtained results, further considerations cover calculation
cases for which the thermal resistivity of the ground (native soil) is equal to ρg = 1.0 and
2.0 (K·m)/W. For practical reasons, further analyses do not present results for native soil
resistivity ρg = 0.5 (K·m)/W (soil would be better than stabilized backfill).
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Table 3. Ampacity (IA−sb) for the cable system with stabilized backfill (z = 10 cm, 20 cm,
30 cm)—summary of the results of numerical calculation.

z,
cm

ρg,
(K·m)/W

ρz,
(K·m)/W

IA−sb, A
(for 35 mm2

Based on [3])

IA−sb, A
(for 120 mm2)

IA−sb, A
(for 240 mm2)

10 0.5 0.75 200.3 395.6 575.3
10 1.0 0.75 179.7 351.6 508.8
10 2.0 0.75 152.8 293.6 428.4
10 0.5 1.0 187.6 365.8 537.0
10 2.0 1.0 146.7 281.8 410.4
20 0.5 0.75 197.6 386.9 566.7
20 1.0 0.75 183.2 356.4 515.2
20 2.0 0.75 161.5 312.3 450.8
20 0.5 1.0 181.2 354.8 518.4
20 2.0 1.0 152.8 293.6 424.6
30 0.5 0.75 195.7 384.0 560.9
30 1.0 0.75 184.7 359.6 521.6
30 2.0 0.75 166.5 323.0 468.6
30 0.5 1.0 178.2 348.3 508.8
30 2.0 1.0 156.3 301.2 436.0
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Figure 6. Ampacity (IA−sb) of the power cable line (35 mm2) as a function of the stabilized backfill
dimension (z), its thermal parameters (ρz), and native soil thermal parameters (ρg).
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Figure 7. Ampacity (IA−sb) of the power cable line (120 mm2) as a function of the stabilized backfill
dimension (z), its thermal parameters (ρz), and native soil thermal parameters (ρg).
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Figure 8. Ampacity (IA−sb) of the power cable line (240 mm2) as a function of the stabilized backfill
dimension (z), its thermal parameters (ρz), and native soil thermal parameters (ρg).

The contents of Figures 6–8 present approximate characteristics of the variability
ampacity depending on the characteristic dimension (z) of stabilized backfill and the
thermal resistivity parameters of the ground and stabilized backfill, respectively, for cable
lines of 35 mm2 (see Figure 6), 120 mm2 (see Figure 7), 240 mm2 (see Figure 8). According to
the presented relationships, which show the same trends for each of the three lines laid in
the ground (native soil) with the following thermal resistivities: ρg = 1.0 and 2.0 (K·m)/W,
the use of stabilized backfill is justified—as the stabilized backfill volume increases, the
permissible load/ampacity of the line increases. Figures 9 and 10 show (as an example)
selected temperature distributions for the analyzed calculation cases of a power cable line
with a conductor cross-section equal to 120 mm2.
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Figure 10. Temperature fields (◦C) for the analyzed three power cables (120 mm2) with param-
eters: (a) IA−sb = 351.6 A, ρg = 1.0 (K·m)/W, ρz = 0.75 (K·m)/W, z = 10 cm; (b) IA−sb = 359.6 A,
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Based on the presented temperature field drawings, it can be concluded that in cases
where there is a relatively high value of native soil thermal resistivity (here ρg = 2.0), the
heating area around power cable lines is much wider compared to soil with low thermal
resistivity (here ρg = 1.0)—Figure 9 vs. Figure 10, and Figure 11 vs. Figure 12. Comparing
cases (a) and (b) for Figures 9–12, it can be seen that with the increase in stabilized backfill
volume, the area of increased ground temperature also increases.
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Later in the article, the authors will make an algebraic generalization of the given
relationships regarding the determination of the ampacity of power cable lines depending
on the thermal and geometric parameters of stabilized backfill and the cross-sectional area
of the power cables. For this purpose, a correction factor for the ampacity is introduced:

FIc =
IA−sb

IA
(1)

where:
FIc—correction factor, [-];
IA−sb—ampacity with stabilized backfill, [A];
IA—ampacity without stabilized backfill, [A].
The value of ampacity IA−sb for power cable lines with stabilized backfill is included in

Table 3. For comparison, the value of ampacity IA for power cable lines without stabilized
backfill is included in Table 2.

Figures 13–15 show graphical relationships between correction factor values and
stabilized backfill dimensions. The given dependencies have been linearized to a family of
straight lines intersecting on the coordinate system at point (0; 1.0)—this point physically
means a calculation case for an arrangement without stabilized backfill.

In a further stage, the description of the family of straight lines was generalized.
Figure 16 shows the relationship between the slope coefficients of the family of lines
defined in Figures 13–15 and the ratio (r) of the thermal resistivity of the ground to the
thermal resistivity of stabilized backfill.

As can be seen, the relationship for all three types of power cable lines considered is a
second-degree polynomial (in general: ax2 + bx + c). Coefficient “c” is constant for all cases
and coefficient “b” changes from 0.0166 to 0.0174, so the relative difference is below 5%.
The changes in coefficient “a”, for various cross-sections, are definitely more significant,
so the strongest dependency is between coefficient “a” and the cross-sectional area. To
generalize the first term of the polynomial, the function in Figure 17 has been presented.
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Figure 13. Value of the correction factor (FIc) as a function of the stabilized backfill dimension (z) and
its thermal parameters for a power cable line with a cross-sectional area of 35 mm2.
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Figure 14. Value of the correction factor (FIc)as a function of the stabilized backfill dimension (z) and
its thermal parameters for a power cable line with a cross-sectional area of 120 mm2.
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Figure 15. Value of the correction factor (FIc) as a function of the stabilized backfill dimension (z) and
its thermal parameters for a power cable line with a cross-sectional area of 240 mm2.
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Figure 17. Dependence of the value of the first term of the polynomial depending on the cross-
sectional area (s) of the considered lines.

It can be seen that the relationship presented in Figure 17 is approximated by a straight
line, which facilitates further considerations.

As a result of further analyses, the obtained results and transformations, a generalized
notation of the correction factor was obtained according to the following relationship
proposed in (2):

FIc =

((
−5·10−6·s − 0.0015

)
·
(

ρg

ρz

)2
+ 0.0169·

(
ρg

ρz

)
− 0.015

)
·z + 1 (2)

Taking into account the scope of the simulations performed by the authors and the
related limitations, the application of Formula (2) is possible for the following values of the
considered parameters:

• cross-section of cable cores: s ∈ ⟨35; 240⟩, [mm2];
• native soil thermal resistivity: ρg ∈ ⟨1.0; 2.0⟩, [(K·m)/W];
• stabilized backfill thermal resistivity: ρz ∈ ⟨0.75; 1.0⟩, [(K·m)/W];
• thermal resistivity ratio: ρg/ρz ∈ ⟨1.0; 2.7⟩, [-];
• stabilized backfill dimension: z ∈ ⟨0; 30⟩, [cm].

By employing (1) and (2) provided herein, one can ascertain the ampacity of a power
cable line situated within a stabilized backfill medium. This is achieved by multiplying
the correction factor FIc by the ampacity IA of a power cable line placed directly in the
ground, devoid of stabilized backfill (e.g., as delineated by line 4 in Table 2). Table 4 offers
a comparative analysis, demonstrating the calculated ampacity for a power cable line
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featuring a cross-sectional area of 240 mm2 and positioned within a thermally stabilized
medium, and the parameters of stabilized backfill.

Table 4. Summary of the comparison results of the calculated ampacity values for a power cable line
with a cross-sectional area of 240 mm2.

z,
cm

ρg,
(K·m)/W

ρz,
(K·m)/W

IA−sb, A
(from Table 3, ANSYS

Simulations)

IA−sb = (F1c·IA), A
(Correction Factor

FIc–Rel. (2))

Relative
Error,

%

10 1.0 0.75 508.8 493.1 3.1
10 2.0 0.75 428.4 397.3 7.3
10 2.0 1.0 410.4 387.1 5.7
20 1.0 0.75 515.2 506.2 1.7
20 2.0 0.75 450.8 436.3 3.2
20 2.0 1.0 424.6 415.7 2.1
30 1.0 0.75 521.6 519.4 0.4
30 2.0 0.75 468.6 475.2 1.4
30 2.0 1.0 436.0 444.4 1.9

The fourth column of Table 4 (IA) contains a repetition of the results of the numerical
calculations for the analyzed cases involving stabilized backfill, which are included in
Table 3. Column 5 of Table 4 contains results for the same cases, but multiplying the
ampacity included in Table 2 (for the same values of thermal resistivity of the native soil)
by the value of the correction factor FIc from (2). As we can observe, the accuracy of
determining ampacity by using the correction factor FIc is high, and the average error of the
obtained comparison is 2.4% (arithmetic mean of the results contained in the last column of
Table 4).

4. Conclusions

Evaluation of the ampacity of power cable lines placed in the ground without sta-
bilized backfill is not a major problem. The situation changes when stabilized backfill
materials with different thermal resistivity values to that of the native soil are used. In
such cases, numerical calculations of the thermal states of power cable installations in these
conditions are necessary. Installation users and designers are not always equipped with
tools to determine precise calculations. The mathematical relationship proposed by the
authors allows for the determination of the load/ampacity based on industry standards,
supplemented by the known thermal and geometric parameters of materials involved in the
heat exchange between cables and the environment. No specialized computer software is
required to implement the correction factor. The presented results of these innovative calcu-
lations are characterized by good accuracy. The results related to the proposed calculation
method can be used for other voltage levels/cable types, but under certain conditions—the
cables must be of similar construction and must be laid in the same way (touching each
other in a flat formation).
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